七年级数学上册合并同类项(第2课时)教案人教版

合集下载

人教版数学七年级上册3-2-1 解一元一次方程—合并同类项 教案

人教版数学七年级上册3-2-1 解一元一次方程—合并同类项 教案

3.2.1 解一元一次方程—合并同类项【教学目标】1.会根据实际问题找相等关系列一元一次方程,会利用合并同类项解一元一次方程。

2.体会方程中的化归思想,会用合并同类项解决“ax+bx=c”型方程,进一步认识如何用方程解决实际问题。

3.通过对实际问题的分析,体会一元一次方程作为实际问题的数学模型的作用。

【教学重、难点】会列一元一次方程解决实际问题,并会合并同类项解一元一次方程。

【教学准备】课本、练习本、练习册【教学过程】一、忆旧识新再设疑——新课导入1.复习回顾(1)同类项:所含字母____,并且_____的指数也分别相同的项叫____。

(2)合并同类项:合并同类项时,只把_____相加减,字母与字母的指数_____。

2.创设情境,提出问题约公元820年,中亚细亚数学家阿尔—花拉子米写了一本代数书,重点论述怎样解方程。

这本书的拉丁文译本取名为《对消与原》。

“对消”与“还原”是什么意思呢?【设计意图】学生通过复习旧知识,进一步巩固了同类项的相关概念,为准备本课的学习做好铺垫。

二、曲径通幽细探寻——问题探究某校近三年共购买计算机140台,去年的购买量是前年的2倍,今年的购买量又是去年的2倍,前年这个学校购买了多少台计算机? 活动1:推理验证问题1:可以怎样设未知数?【学生活动】独立思考,同桌交流归纳。

分析:设前年购买计算机x台。

则去年购买计算机2x台,今年购买计算机4x台。

问题2:题目中的等量关系是什么?【学生活动】独立思考,小组交流归纳。

前年购买量+去年购买量+今年购买量=140台问题3:如何根据等量关系列方程?由题意得,x+2x+4x=140活动2:集思广益,寻找解一元一次方程的办法问题1:怎样解这个方程?如何将这个方程转化为x=a的形式?合并同类项,得7x=140系数化为1,得x=20答:所以前年这个学校购买了20台计算机。

思考:以上解方程中的“合并”起了什么作用?它把含未知数的项合并为一项,从而向x=a的形式迈进了一步,起到了化简的作用。

人教版七年级数学上册同步备课 《第二章》2.2.1 合并同类项(教学设计)

人教版七年级数学上册同步备课 《第二章》2.2.1 合并同类项(教学设计)

2.2.1 合并同类项教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第二章“整式的加减” 2.2.1 合并同类项,内容包括:同类项的概念、合并同类项的法则、在合并同类项的基础上进行化简、求值运算.2.内容解析本节课是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题.合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础.另一方面,这节课与前面所学的知识的联系非常密切:合并同类项的法则是建立在有理数的加减运算的基础之上;在合并同类项过程中,要不断运用有理数的运算.可以说合并同类项是有理数加减运算的延伸与拓展.基于以上分析,确定本节课的教学重点为:知道同类项的概念,会识别同类项,理解和熟练应用合并同类项法则.二、目标和目标解析1.目标(1)知道同类项的概念,会识别同类项.(2)掌握合并同类项的法则,并能准确合并同类项.(3)能在合并同类项的基础上进行化简、求值运算.2.目标解析通过观察、对比、分析,理解同类项的定义,能够识别同类项.根据分配律,类比数的计算进行式的计算,从而理解合并同类项的概念,掌握合并同类项的法则.通过例题学习和习题训练,会利用合并同类项的法则化简多项式,会代入具体的值进行计算.经历概念的形成过程和法则的探究过程,培养观察、归纳、概括能力,发展应用意识.激发学生的求知欲,在独立思考和合作交流的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益,体验成功的喜悦.三、教学问题诊断分析学生前面已经学会了有理数运算,掌握了单项式、多项式的有关概念等知识,为本节课的学习做好了铺垫.七年级的学生思维活跃,求知欲强,有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇.但我所教班级学生受基础知识和思维发展水平的限制,抽象概括能力不强,但学生上进心强,也有强烈的好奇心和好胜心,因而在教学素材的选取与呈现方式以及学习活动的安排上要设置学生感兴趣的并且具有挑战性的内容.学生在找同类项中问题不大,这部分的内容学生自己可以消化,而在合并同类项时对同类项中利用乘法交换律时容易出错,还有在多项式中找同类项时易将单项式的系数找错,特别是系数是负数的,学生容易遗漏,老师要在课堂上加以讲解.基于以上学情分析,确定本节课的教学难点为:能在合并同类项的基础上进行化简、求值运算.四、教学过程设计(一)问题引入1.银行职员数钞票时,把100元票面、50元票面、20元票面、10元票面…的人民币分类来数,在多项式中是否也有类似的情形呢?2.下图中有两个三角形,两个矩形,你能用式子表示这四个图形的面积和吗?四个图形面积和:2a+ab+3a+2ab=___________.(二)合作探究探究一:(1) 运用运算律计算:100×2+252×2=______________;100×(﹣2)+252×(﹣2)=________________;(2) 根据(1)中的方法完成下面的运算,并说明其中的道理:100t+252t=____________.在(1)中,我们知道,根据分配律可得100×2+252×2=(100+252)×2=352×2=704100×(﹣2)+252×(﹣2)=(100+252)×(﹣2)=352×(﹣2)=﹣704在(2)中,式子100t+252t表示100t与252t两项的和.它与(1)中的两个式子有相同的结构,并且字母t代表的是一个因(乘)数,因此根据分配律也应该有100t +252t=(100+252)t=352t.探究二:填空:(1)100t -252t=( )t ;(2)3x 2+2x 2=( )x 2;(3)3ab 2-4ab 2=( )ab 2.上述运算有什么共同特点,你能从中得出什么规律吗?对于上面的(1)(2)(3),利用分配律可得100t -252t=(100-252)t=﹣152t3x 2+2x 2=(3+2)x 2=5x 23ab 2-4ab 2=(3-4)ab 2=﹣ab 2观察:多项式100t -252t 的项100t 和﹣252t ,它们含有相同的字母t ,并且t 的指数都是1;多项式3x 2+2x 2的项3x 2和2x 2,它们含有相同的字母x ,并且x 的指数都是2;多项式3ab 2-4ab 2的项3ab 2和﹣4ab 2,它们含有相同的字母a 、b ,并且a 的指数都是1次,b 的指数都是2次.【归纳】同类项的概念像100t 与﹣252t ,3x 2与2x 2,3ab 2与﹣4ab 2这样,所含字母相同,并且相同字母的指数也相同的项叫做同类项. 几个常数项也是同类项. 例如5与﹣3.(三)考点解析例1.下列各组式子中,是同类项的是( )①2x 3y 5与x 5y 3;①x 6y 7z 与﹣3x 6y 7;①6xy 与53xy ;①x 4与34;①4x 2y 与3yx 2;①﹣100与15A.①①①B.①①①①C.①①①D.只有①【总结提升】同类项的判别方法(1)同类项只与字母及其指数有关,与系数无关,与字母在单项式中的排列顺序无关;(2)抓住“两个相同”:一是所含的字母要完全相同,二是相同字母的指数要相同,这两个条件缺一不可.(3)不要忘记几个单独的数也是同类项.【迁移应用】1.下列单项式中,ab 3的同类项是( )A.a 3b 2B.3a 2b 3C.a 2bD.ab 32.下列各选项中,不是同类项的是( )A.3a 2b 和﹣5ba 2B.12x 2y 和12xy 2C.6和23D.5x n 和﹣3x n 43.在多项式x 3﹣x+4﹣6x 3﹣5+7x 的每一项中,_____与x 3,____与﹣x ,____与4分别是同类项.(四)自学导航因为多项式中的字母表示的是数,所以我们也可以运用交换律、结合律、分配律把多项式中的同类项进行合并.例如,4x 2+2x +7+3x -8x 2-2=4x 2-8x 2+2x +3x +7-2 (交换律)=(4x 2-8x 2)+(2x +3x)+(7-2) (结合律)=(4-8)x 2+(2+3)x +(7-2) (分配律)=-4x 2+5x +5通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或者从小到大(升幂)的顺序排列,如-4x 2+5x +5也可以写成5+5x -4x 2.(五)考点解析例2.多项式3x 2y −4x 5y 2+2−xy 3按字母x 的降幂排列正确的是( )A .3x 2y +4x 5y 2+2+xy 3B .−4x 5y 2+3x 2y −xy 3+2C .4x 5y 2+3x 2y −xy 3+2D .2-xy 3+3x 2y -4x 5y 2【分析】把一个多项式按照某一字母的指数从大到小的顺序排列起来,叫做把多项式按照这个字母降幂排列.解:3x 2y −4x 5y 2+2−xy 3按字母x 的降幂排列为−4x 5y 2+3x 2y −xy 3+2【迁移应用】1.代数式3m 2n −4m 3n 2+2mn 3−1按m 的降幂排列,正确的是( )A .−4m 3n 2+3m 2n +2mn 3−1B .2mn 3+3m 2n −4m 3n 2−1C .−1+3m 2n −4m 3n 2+2mn 3D .−1+2mn 3+3m 2n −4m 3n 22.多项式5x2y+y3−3xy2−x3按y的降幂排列是()A.5x2y−3xy2+y3−x3B.y3−3xy2+5x2y−x3C.5x2y−x3−3xy2+y3D.y3−x3+5x2y−3xy2(六)自学导航1.把多项式中的同类项合并成一项叫做合并同类项.2.合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.(七)考点解析例3.合并同类项:(1)4a2﹣9b﹣3a2+8b;(2)x3﹣3x2﹣2+4x2﹣1;(3)﹣4a2b﹣3ab+1+3ab﹣2a2b﹣4.解:(1)4a2﹣9b﹣3a2+8b=(4a2﹣3a2)+(﹣9b+8b) =(4﹣3)a2+(﹣9+8)b=a2﹣b;(2)x3﹣3x2﹣2+4x2﹣1=x3+(﹣3x2+4x2)+(﹣2﹣1)=x3+(﹣3+4)x2+(﹣2﹣1)=x3+x2﹣3;(3)﹣4a2b﹣3ab+1+3ab﹣2a2b﹣4=(﹣4a2b﹣2a2b)+(﹣3ab+3ab)+(1﹣4)=(﹣4﹣2)a2b+(﹣3+3)ab+(1﹣4)=﹣6a2b﹣3.【总结提升】“合并同类项”的方法:一找,找出多项式中的同类项,不同类的同类项用不同的标记标出;二移,利用加法的交换律,将不同类的同类项集中到不同的括号内;三合,将同一括号内的同类项相加即可.【迁移应用】1.﹣4a2b+3ab=(﹣4+3)a2b=﹣a2b,上述运算依据的运算律是( )A.加法交换律B.乘法交换律C.分配律D.乘法结合律2.下列计算正确的是( )A.3x2﹣x2=3B.a+b=abC.3+x=3xD.﹣ab+ab=03.合并同类项:(1)﹣2x2y﹣3x2y+5x2y; (2)3x2+2xy﹣5x﹣3y2﹣6xy.解:(1)原式=(﹣2﹣3+5)x2y=0;(2)原式=(3﹣5)x2+(2﹣6)xy﹣3y2=﹣2x2﹣4xy﹣3y2.例4.求多项式3x2+4x﹣2x2﹣x+x2﹣3x﹣1的值,其中x=﹣3.解:原式=(3x2﹣2x2+x2)+(4x﹣x﹣3x)﹣1=(3﹣2+1)x2+(4﹣1﹣3)x﹣1=2x2﹣1当x=﹣3时,原式=2×(﹣3)2﹣1=17.【迁移应用】1.当x=2025时,3x2+x﹣4x2﹣2x+x2+2024的值为______.2.求多项式a2b﹣6ab﹣3a2b+5ab+2a2b的值,其中a=0.1,b=0.01.解:原式=(a2b﹣3a2b+2a2b)+(﹣6ab+5ab)=(1﹣3+2)a2b+(﹣6+5)ab=﹣ab当a=0.1,b=0.01时,原式=﹣0.1×0.01=﹣0.001.例5.七年级有三个班参加了植树活动,其中一班植树x棵,二班植树棵数比一班的2倍少5,三班植树棵数比一班的一半多10.这三个班一共植树多少棵?x+10)棵,解:根据题意,得二班植树(2x﹣5)棵,三班植树(12所以这三个班一共植树(单位:棵)x+10x+2x﹣5+12)x+(﹣5+10)=(1+2+12=7x+5.2【迁移应用】张老师家住房结构如图所示(图中长度单位:m),他打算在卧室和客厅铺上木地板.请你帮他算一算,他至少需要木地板_____m 2.例6.已知4a 4b m c 与﹣72b 2a n+3c p﹣2的和是单项式,求5m+3n ﹣p 的值. 解:因为4a 4b m c 与﹣72b 2a n+3c p﹣2的和是单项式, 所以4a 4b m c 与﹣72b 2a n+3c p ﹣2是同类项所以4=n+3,m=2,1=p ﹣2,所以m=2,n=1,p=3.当m=2,n=l ,p=3时,5m+3n ﹣p=5×2+3×1﹣3=10.【迁移应用】1.若多项式5a 3b m +a n b 2+1可以进一步合并同类项,则m ,n 的值分别是( )A.m=3,n=1B.m=3,n=2C.m=2,n=1D.m=2,n=32.若13x 3y m+2与12x 1﹣n y 4的差是单项式,则这个差的结果是_________. 3.已知﹣4x a y a+1与mx 5y b ﹣1的和是3x 5y n ,求(m ﹣n)(2a ﹣b)的值.解:因为﹣4x a y a+1与mx 5y b ﹣1的和是3x 5y n ,所以﹣4+m=3,a=5,a+1=b ﹣1=n.所以a=5,b=7,m=7,n=6.所以(m ﹣n)(2a ﹣b)=(7﹣6)×(2×5﹣7)=3.例7.已知关于x ,y 的多项式2x 2+ax ﹣y+6﹣2bx 2+3x ﹣5y ﹣2的值与字母x 的取值无关,求a ,b 的值.解:2x 2+ax ﹣y+6﹣2bx 2+3x ﹣5y ﹣2=(2﹣2b)x 2+(a+3)x+(﹣1﹣5)y+(6﹣2)=(2﹣2b)x2+(a+3)x﹣6y+4因为多项式的值与x的取值无关所以2﹣2b=0,a+3=0,所以a=﹣3,b=1.【迁移应用】1.若关于x的多项式﹣3x2+mx+nx2﹣x+3的值与x的取值无关,则m,n的值分别为( )A.﹣1,﹣3B.1,3C.﹣1,3D.1,﹣32.若关于x,y的多项式mx3+3nxy2﹣2x3﹣xy2+y中不含三次项,则2m+3n的值为______.3.有这样一道题:“当x=1,y=2025时,求多项式7x3﹣6x3y+3x2y+3x3+6x3y﹣3x2y﹣10x3+3的值.”小聪4同学说:“就算不给出x=1,y=2 025,也能求出多项式的值.”他的说法有道理吗?请说明理由.4解:有道理.理由如下:原式=(7+3﹣10)x3+(﹣6+6)x3y+(3﹣3)x2y+3=3.该多项式的值与x,y的取值无关.所以小聪同学的说法有道理.(八)小结梳理五、教学反思。

5.2 第2课时 移项,合并同类项解一元一次方程 课件 人教版七年级数学上册

5.2 第2课时 移项,合并同类项解一元一次方程 课件 人教版七年级数学上册

在解方程时,习惯上把含有未知数的项移到等号的左边,不 含有未知数的项移到等号的右边.特别注意:移项一定要变号.
1.若多项式3x+5与5x-7的值相等,则x的值为 ( A ) A.6 B.5 C.4 D.3
列一元一次方程解决“盈不足”问题
2.《九章算术》中有一道题:今有人共买羊,人出七,不足三; 人出八,盈十六,问人数、羊价几何?译文:现在有若干人共同买 一头羊,若每人出7钱,则还差3钱;若每人出8钱,则剩余16钱.求买 羊的人数和这头羊的价格?设买羊的人数为x,根据题意,可列方 程( C )
法入住;若每间房住6人,则最后一间房空了4个床位.设小元所在
旅游团共有x人,则可列方程 ( D )
A.5x-9=6x+4
B.x+59=x−64
C.5x+9=6x-4
D.x−59=x+64
移项解一元一次方程的实际应用 例 将一堆桃子分给一组小朋友,若每人分5个,则余8个桃 子;若每人分8个,则还差7个桃子,求这堆桃子的数量. 解:设一共有x个小朋友. 依题意得5x+8=8x-7,解得x=5, 则5x+8=25+8=33. 答:这堆桃子有33个.
3.什么是移项? 解:把等式一边的某项变号后移到另一边,叫作移项.
1.下面的移项对不对?如果不对,应当怎样改正? (1)从5+x=10,得x=10+5; (2)从3x=8-2x,得3x+2x=8. 解:(1)不对,改为x=10-5; (2)正确.
2.解方程:3x-7=3-2x. 解:移项,可得3x+2x=3+7. 合并同类项,可得5x=10. 系数化为1,可得x=2.
1.问题2中,设这个班有x名学生,这批图书的总数你能用含x 的代数式表示出来吗?有几种方法,这些代数式有什么关系?

人教版数学七年级上册2.2合并同类项(教案)

人教版数学七年级上册2.2合并同类项(教案)
-对于难点二,例如,在整式4x^2 - 3x + 2x^2 - 5x + x^2中,需要合并所有x^2的项,得到7x^2,并将所有x的项合并,得到-8x。
-对于难点三,例如,如果问题是一个水果店卖出苹果和橙子,苹果每千克3元,橙子每千克5元,卖出2千克苹果和3千克橙子,要求计算总收入。学生需要将苹果和橙子的单价抽象为同类项,即3元/千克和5元/千克,然后合并计算总收入。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解合并同类项的基本概念。合并同类项是指将含有相同字母和相同指数的项进行相加或相减。它在整式的加减运算中具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了合并同类项在实际中的应用,以及它如何帮助我们简化整式的计算。
3.重点难点解析:在讲授过程中,我会特别强调同类项的定义和合并同类项的法则这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
2.培养逻辑推理能力,掌握合并同类项的法则,并能运用该法则解决相关问题;
3.增强数学建模能力,将实际问题抽象为数学模型,运用合并同类项解决具体问题;
4.提升学生的运算能力和问题解决能力,使其在解决实际问题时能够灵活运用所学知识,形成数学思维。
在教学过程中,关注学生的个体差异,鼓励学生积极参与讨论与思考,提高其数学表达和交流能力,为后续学习打下坚实基础。
在总结回顾环节,虽然大部分同学能够掌握合并同类项的知识点,但仍有少数同学存在疑问。在今后的教学中,我应加强对这部分同学的个别辅导,确保他们能够跟上学习进度。
举例解释:
-例如,在整式3x^2 + 5x - 2x^2 + 4中,3x^2和-2x^2是同类项,可以合并为x^2;5x是单独的同类项,保持不变;常数项4也是单独的一项,保持不变。

【人教版七年级数学上册教案】3.2解一元一次方程(一)--合并同类项与移项(第2课时)

【人教版七年级数学上册教案】3.2解一元一次方程(一)--合并同类项与移项(第2课时)

3.2 解一元一次方程(一) --合并同类项与移项第 2课时教课目标:1、经过解析实质问题中的数目关系,建立方程解决问题,进一步认识方程模型的重要性。

2、掌握移项方法,学会解“ax+b=cx+d ”种类的一元一次方程,理解解方程的目标,领悟解法中蕴涵的化归思想。

3、经过学生观察、独立思虑等过程,培育学生概括、概括的能力,进一步让学生感觉到并试试找寻不一样的解决问题的方法,初步领悟一元一次方程的应用价值,感觉数学文化。

教课重难点:要点:建立列方程解决实质问题的思想方法,学会移项,会解“ax+b=cx+d ”种类的一元一次方程。

难点:解析实质问题中的已经量和未知量,找出相等关系,列出方程,使使学生逐渐建立列方程解决实质问题的思想方法教课过程:一、创建情境,引入新课问题:课本问题 2:把一些图书分给某班学生阅读,假如每人分 3 本,则节余 20 本;假如每人分 4 本,则还缺 25 本,这个班有多少学生?学生思虑,而后谈论合作。

二、讲解新课问题 1:列方程解决实质问题的基本思路是什么?学生谈论、解析1、设未知数:设这个班有x 名学生2、找相等关系:这批书的总数是一个定值,表示它的两个等式相等3、列方程: 3x+20=4x-25问题 2:怎么解这个方程?它与上节课遇到的议程有什么不一样?学生谈论后发现:方程的两边都有含x 的项和常数项问题 3:如何才能使它向x=a 的形式转变?4x,为使方程的左侧没有学生思虑、探究:为使方程右侧没有含x 的项,等号两边同减去常数项,等号两边同减去20,即 3x-4x=- 25- 20问题 4:以上变形的依照是什么?学生:等式的性质1概括:像上边那样把等式一边的某项变号后移到另一边,叫做移项。

师生共同完成这道题的解题过程。

问题 5:以上解方程中的“移项”起了什么作用?学生谈论、回答,师生共同整理。

经过移项,含未知数的项与常数项分别位于方程左右两边,使方程更凑近于 x=a 的形式。

数学七年级上册第24课时《合并同类项(2)》导学案

数学七年级上册第24课时《合并同类项(2)》导学案

第24课时 第3章第4节 合并同类项(2)[学习目标]1、会合并同类项,并将数值代入求值.2、知道合并同类项所依据的运算律.[学习过程]活动一 合并同类项并求值〖自主先学〗阅读课本P81例2和P82做一做,完成下列问题:1、求代数式的值时,如果代数式中含有同类项,通常先____________再进行计算。

2、合并同类项(求值)(1)(2)6438322-+-+-a a a a ,其中2-=a〖展示交流〗学习小组内部相互交流形成统一答案后,小组推荐代表进行板演。

〖合作互学〗各小组讨论完成下列问题(1)322223573245x xy y x xy y x x ---+-22222254834ab a b ab ab a b a b -++-+,其中x=-2,y=14〖展示交流〗 学习小组内部同学之间相互说一说你对问题的看法,并形成统一答案。

老师随机抽取两组的同学到讲台上阐述你组答案,并接受同学质疑。

活动二 整体合并求值〖自主先学〗阅读课本P82议一议,完成下列问题。

1、将)(y x +,)(b a -分别看成一个整体,合并同类项(求值):(1)1)(6)(8)(9)(322-+++-+-+y x y x y x y x(2)求代数式2)(33)(2)(85)(222+-+-----a b b a b a b a 的值,其中2,14==b a〖展示交流〗同位置相互交流形成统一答案,小组推荐代表准备板书。

222222332742x y xy x y xy x y +--+(2)〖合作互学〗各小组讨论完成下列问题1、若52=-xy ,求代数式60)2(3)2(52-+---y x y x2、有这样一道题,“当a= 0.35,b=-0.28时,求代数式7a 2-6a 3b +3a 3+6a 3b -3a 2b -10a 3+3a 2b -2的值”.小明同学说题目中给出的条件a= 0.35,b=-0.28是多余的,你觉得他的说法对吗?试说明理由.〖展示交流〗组内同学之间说一说你对问题的看法,组内形成统一答案。

4.2 第2课时去括号 课件 2024-2025学年人教版数学七年级上册

4.2 第2课时去括号 课件 2024-2025学年人教版数学七年级上册

(2)(4y-5)-3(1-2y).

用 解:(1)8a+2b+(5a-b)
(2) (4y-5)-3(1-2y)
=8a+2b+5a-b
=4y-5-3+6y
=13a+b ;
=10y-8.
例题精讲
探 例2 究
两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,
与 两船在静水中的速度都是50 km/h,水流速度是a km/h.
主桥与海底隧道长度的差 92b -72(b-0.15)km
探究 去括号

究 思考: 上面的代数式①②都带有括号,应如何化简它们?


92b+72(b-0.15),①

92b-72(b-0.15).②
由于字母表示的是数,所以可以利用分配律,将括号前的乘数与括号内的各项相乘 ,去掉括号,再合并同类项,得

C.a-(-b+c+d)=a+b+c+d

D.-(-a+1)-(-b+c)=-a+1-b-c
2.化简m-n-(m+n)的结果是 ( C )
A.0
B.2m C.-2n D.2m-2n
课 3.化简:

小 (1) 4x-4-(4x-5)
结 与
= 4x-4-4x+5
检 =1
测 (2) 2(2x-5)-3(1-4x)
情境导入
探 究
问一题辆汽:车汽从车香通港过口主岸行桥驶的到行东驶人时工间岛的是平b均h速,那度么为汽96车km在/h主,在桥海底上隧行道驶和的主路桥程
与 应 用
上行驶的平均速度分别为72 km/h和92 km/h.请根据这些数据回答下列问题:

4.2整式的加法与减法(第2课时合并同类项)(教学课件)-七年级数学上册课件(人教版2024)

4.2整式的加法与减法(第2课时合并同类项)(教学课件)-七年级数学上册课件(人教版2024)
1
(2)求多项式3a+abc- c -3a+ c 的值,其中a=- ,b=2,c=-3.
3
3
6
解:(1)2x2-5x+x2+4x-3x2-2
1 2
1 2
解:(2)3a+abc- c -3a+ c
3
3
=(2+1-3)x2+(-5+4)x-2
1 1 2
=(3-3)a+abc+(- + )c
3 3
=-x-2
=-6a2b-3.
同类项的步骤
一找,找出多项式中的同类项,不同类的同类项用不同的标记标出;
二移,利用加法的交换律,将同类项集中到不同的括号内(带符号);
三合,将同一括号内的同类项相加 (有理数的加法).
1
2
2
2
例3.(1)求多项式2x -5x+x +4x-3x -2的值,其中x= ;
2
1 2
1 2
解:(1)原式=x3-3x2-2+4x2-1
解:(3)原式=-4a2b-3ab+1+3ab-2a2b-4
=x3+(-3x2+4x2)+(-2-1)
=(-4a2b-2a2b)+(-3ab+3ab)+(1-4)
=x3+(-3+4)x2+(-2-1)
=(-4-2)a2b+(-3+3)ab+(1-4)
=x3+x2-3;
解:-2x2+mx+nx2-5x-1
=(-2xx2+(m-5)x-1
因为,多项式的值与x的取值无关所以,x2与x的系数为0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合并同类项(第2课时)
教学目标:
知识与技能:
1.掌握合并同类项的法则,正确进行合并同类项;
2.正确进行化简后再求代数式的值的计算。

过程与方法: 通过对比体会化简求值较为简便。

情感态度与价值观: 在亲身体会化简求值的过程中培养学生的思维能力。

教学重点:合并同类项及化简求值。

教学难点:合并同类项及化简求值。

教具:电脑,实物展示台。

教材分析:在学习了同类项、合并同类项的概念以及正确进行合并同类项的方法后,借助本节内容进一步巩固合并同类项的知识;提高学生的运算技能和技巧。

并在此基础上引入代数式求值,使学生亲身感悟求值时先化简可以使计算更简单。

通过本节的学习,使学生的思维方法和解题策略在自身的实践中得到升华。

教学方法:讲练结合法
教学过程
引导,改变了传统的教学模式,使学生真正成了课堂学习的主人。

让学生在“做中学”,经过学生的亲身体会,使他们感悟到代数式求值时,一般应先化简再求值。

这样计算简单。

学生的思维方法、解题策略在自身的实践中得到了升华。

相关文档
最新文档