神经网络课程实验三hopfield网络(Matlab)

神经网络课程实验三hopfield网络(Matlab)
神经网络课程实验三hopfield网络(Matlab)

实验三 Hopfield 网络学习算法的简单应用

1.不同印刷版本数字8的识别

一. 实验目的

1. 加深对Hopfield 网络学习算法的理解

2. 通过实验了解Hopfield 学习算法的工作原理

3. 通过上机实验掌握具体的实现方法

二. 实验原理

Hopfield 网络

Hopfield 网络是一种具有全互联结构的递归神经网络,其具有反馈机制的非线性动力学系统,反映了生物神经系统结构的复杂性。

该网络一般分为离散型(DHNN )和连续型(CHNN )两种,其标准的网络

能量函数可以表示为:

1

2ij i j i i

i j i

E T VV I V =-

-∑∑∑.式中:ij T 是神经元i 和神经元j

的连接权值;i I 是神经元i 的输入阈值;i V 和j V 分别是神经元i 和神经元j 的输出值。

在满足一定条件下,能量函数的能量在网络运行过程中不断减小,最后趋于稳定的平衡状态。Hopfield 网络自提出以来,已成功应用于多个方面。

网络的定义

一个 n 阶的 Hopfield 网络是一个五元组:

(),,,,n F DHN G IF OF OA WA =

其中:

1)GF :规定 DHN (n ) 拓扑结构的扩展模糊图:

(),(),()F F F F G N G E G A G =

其中,N (G F ) = {N i (θi )∣1≤i ≤n } 是非空神经元集合,每一个神经元 N i 附有阈值 θi ;E (G F ) = {e ij ∣1≤i,j ≤n } 是边的集合,e ij 是 N i →N j 的边; A (G F ) = (w ij )n ?n 是联系矩阵,w ij 是 N i →N j 的联系效率。

2)IF ? N (G F ):输入域。 3)OF ? N (G F ):输出域。

4)WA :工作算法,令 o i (t ) ∈ {-1,1} 为 N i 在 t 时刻的状态,o (t ) =(o 1(t ),o 2(t ),…,o n (t ))T 为 N (G F )在 t 时刻的状态向量 (t=0,1,2,…),则:

:()()(,)I O I O WA IF OF →?o o o o o

其中,o I ∈ {-1,1}nI ?1 (n I ≤n ) 和 o O ∈ {-1,1}nO ?1 (n O ≤n ) 分别为 IF 和 OF 的状态向量。 5) OA :自组织算法

:()()F F OA A G A G →

对 Hopfield 网络而言,一般情况下,IF = OF = N(GF),即: oI = oO = o 。实际上,给定神经元的阈值和神经元之间的联系效率即可唯一地确定一个

Hopfield 网络,给定神经元的阈值和神经元之间的联系效率即可唯一地确定一个Hopfield 网络。

因此,一个 n 阶的 Hopfield 网络可简记为:(),n DHN =ΘW 。 其中:

1) W = A (G F ) :DHN (n ) 联系矩阵。2) Θ =(θ1,θ2,…,θn )T :DHN (n ) 阈值向量

N 阶DHN 拓扑结构

工作算法

Hopfield 网络的工作模式:

设 N 为 n 阶 Hopfield 网络 DHN(n) 每一时刻需要调整其状态的神经元的数量,则按 N 的数量:

a. 串行模式 (Serial Mode):N = 1

b. 并行模式 (Parallel Mode): N ≥2.(部分并行模式和全并行模式)

按每一时刻选择 DHN (n ) 需要调整其状态的神经元的方式的不同,又可分为:

c. 确定模式 (Deterministic Mode)

d. 随机模式 (Random Mode)

对于 Hopfield 网络的工作算法 WA :

1()()(1)sgn(())

n

j ij j j

i j

j v t w o t o t v t θ=?

=-??

?+=?∑ (..,,0)k j k j I i e N NS t ∈∈≥ 如果在给定的离散时刻 t ∈{0,1,2,…},NS k (k ∈ {1,2,…,m } 的选择则是随机地,

则 WA 为随机工作模式,否则,为确定性工作模式。

如果 ?k ∈ {1,2,…,m },|I k | = 1,即每一个集合 NS k (k ∈ {1,2,…,m } 中只有一个神经元,则 WA 为串行模式;如果 m =1,则 WA 为全并行模式;如果 ?k ∈ {1,2,…,m },1<|I k |

Hopfield 网络记忆或学习

Hopfield 网络的运行过程是将初始状态转移至稳定状态的过程。Hopfield 网络由初始状态运行至稳定状态的过程可以被理解为神经系统的联想记忆过程。稳定状态就是 Hopfield 网络记忆的内容。

外积法 (Outer Product Method) 是 Hopfield 网络综合设计方法之一。该方法源于 Hebb 学习律。

Hebb 学习律:设有一个 n 维的 Hopfield 网络DHN (n ),对任意 i ,j ∈{1,2,…,n },若 DHN (n ) 的状态值 o i 和 o j 符号相同,即 DHN (n ) 的神经元 N i 和 N j 同时处于兴奋或抑制,则它们的联系效率 w ij 应该得以加强,反之, w ij 应该减弱。 外积法 (1):

()()1()(0)

()

s s ij i j N ij ij s w s o o w w s αα=?=>??

=??

(,{1,2,,})i j n ∈

向量形式为:()()1

N

s s T s α==∑W o o 。

外积法 (2):

()()10

()(0)

()

s s ij i j N ij ij s i j

w s o o i j

w w s αα=?=?=>??≠????

=??

∑ (,{1,2,

,})i j n ∈

相应的向量形式为:()()()1

N

s s T s α==-∑W o o I

三. 实验内容

以数字 8 为例,选择 N 个不同印刷字体的 8,编码后对其进行正交化,然后将其作为范例集合 Exemplar = {O(s)|s=1,2,…,N} 中的范例。

a. 编码: O (9) = (-1, -1, -1,-1,-1,1,1,…)T

b. 构造 Hopfield 网络:目标是识别 8

c. 验证范例的可识别性以及考察非范例的含噪声模式的可识别性

本次实验共准备了7种不同印刷体的8,并对他们进行了逐一编码,令1代表白,-1代表黑。

从而得到整合后的目标向量,并对他们设计相应的hopfield 神经网络。 接下来依次读入待测试的印刷体8以及含噪声的印刷体8,如下:

利用之前设计好的神经网络对其进行仿真,得到结果如下所示:

通过上图我们可以看到,仿真结果1为对测试样本的识别,可以很好地呈现出数字8.仿真结果2为对含噪样本的识别,,大体上可以看到8的形状,相对于原图,去除了一些噪点。Hopfield 网络可以很好地对范例进行识别,对含噪图可以进行大体上的识别。

四. 附录

clear; clc;

% 读入数字图片,为个人用画图板制作的图片 x = imread('08.bmp'); d=size(x);

%彩色转灰度图 if length(d)==3

I = rgb2gray(x);

else

待试图片08

待试图片18

待试图片28

待试图片38

待试图片48

待试图片58

待试图片68

测试样本

仿真结果1

含有噪声的样本

仿真结果2

I=x;

end

I0 = featureC(I);

I00 = I0';

x = imread('18.bmp'); d=size(x);

%彩色转灰度图

if length(d)==3

I = rgb2gray(x); else

I=x;

end

I1 = featureC(I);

I11 = I1';

x = imread('28.bmp'); d=size(x);

%彩色转灰度图

if length(d)==3

I = rgb2gray(x); else

I=x;

end

I2 = featureC(I);

I22 = I2';

x = imread('38.bmp'); d=size(x);

%彩色转灰度图

if length(d)==3

I = rgb2gray(x); else

I=x;

end

I3 = featureC(I);

I33 = I3';

x = imread('48.bmp'); d=size(x);

%彩色转灰度图

if length(d)==3

I = rgb2gray(x); else

I=x;

end

I4 = featureC(I);

I44 = I4';

x = imread('58.bmp');

d=size(x);

%彩色转灰度图

if length(d)==3

I = rgb2gray(x);

else

I=x;

end

I5 = featureC(I);

I55 = I5';

x = imread('68.bmp');

d=size(x);

%彩色转灰度图

if length(d)==3

I = rgb2gray(x);

else

I=x;

end

I6 = featureC(I);

I66 = I6';

%总的目标向量

T=[I00 I11 I22 I33 I44 I55 I66]; %设计hopfield网络

net=newhop(T);

%定义测试样本

x = imread('test8.bmp');

d=size(x);

%彩色转灰度图

if length(d)==3

I = rgb2gray(x);

else

I=x;

end

Itest = featureC(I);

Itest1 =Itest';

x = imread('test188.bmp');

d=size(x);

%彩色转灰度图

if length(d)==3

I = rgb2gray(x);

else

I=x;

end

Itest = featureC(I);

Itest2 =Itest';

%网络仿真

for i=1:16

T=[I00(:,i) I11(:,i) I22(:,i) I33(:,i) I55(:,i) I66(:,i)];

net=newhop(T); %设计hopfield网络

y1(:,i)=sim(net,1,[],Itest1(:,i));

end

for i=1:8

for j=1:16

if y1(i,j)<=0

y1(i,j)=-1;

else

y1(i,j)=1;

end

end

end

for i=1:16

T=[I00(:,i) I11(:,i) I22(:,i) I33(:,i) I55(:,i) I66(:,i)];

net=newhop(T); %设计hopfield网络

y2(:,i)=sim(net,1,[],Itest2(:,i));

end

for i=1:8

for j=1:16

if y2(i,j)<=0

y2(i,j)=-1;

else

y2(i,j)=1;

end

end

end

subplot(3,4,1);

figt(I00);

%figure,imshow(I0);

title('待试图片08')

subplot(3,4,2);

figt(I11);

%figure,imshow(I1);

title('待试图片18')

subplot(3,4,3);

figt(I22);

%figure,imshow(I2);

title('待试图片28')

subplot(3,4,4);

figt(I33);

%figure,imshow(I3);

title('待试图片38')

subplot(3,4,5);

figt(I44);

%figure,imshow(I4);

title('待试图片48')

subplot(3,4,6);

figt(I55);

%figure,imshow(I5);

title('待试图片58')

subplot(3,4,7);

figt(I66);

%figure,imshow(I6);

title('待试图片68')

subplot(3,4,8);

figt(Itest1);

%figure,imshow(Itest); %绘制测试样本二值化图像

title('测试样本')

subplot(3,4,9);

%figure,imshow(y); %绘出仿真输出二值化图像

figt(y1); %绘出仿真输出二值化图像

title('仿真结果1')

subplot(3,4,10);

figt(Itest2);

%figure,imshow(Itest); %绘制测试样本二值化图像

title('含有噪声的样本')

subplot(3,4,11);

%figure,imshow(y); %绘出仿真输出二值化图像

figt(y2); %绘出仿真输出二值化图像

title('仿真结果2')

function figt(t)

hold on

axis square %以当前坐标轴范围为基础,将坐标轴区域调整为方格形for j=1:16

for i=1:8

if t((j-1)*8+i)<0

fill([i i+1 i+1 i],[17-j 17-j 18-j 18-j],'k')

else

fill([i i+1 i+1 i],[17-j 17-j 18-j 18-j],'w')

end

end

end

hold off

function I = featureC( x )

%将图片数据转化为1,-1矩阵略

(完整版)BP神经网络matlab实例(简单而经典).doc

p=p1';t=t1'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); % 原始数据归一化 net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx'); %设置网络,建立相应的BP 网络net.trainParam.show=2000; % 训练网络 net.trainParam.lr=0.01; net.trainParam.epochs=100000; net.trainParam.goal=1e-5; [net,tr]=train(net ,pn,tn); %调用TRAINGDM 算法训练BP 网络 pnew=pnew1'; pnewn=tramnmx(pnew,minp,maxp); anewn=sim(net,pnewn); anew=postmnmx(anewn,mint,maxt); %对 BP 网络进行仿真%还原数据 y=anew'; 1、 BP 网络构建 (1)生成 BP 网络 net newff ( PR,[ S1 S2...SNl],{ TF1 TF 2...TFNl }, BTF , BLF , PF ) PR :由R 维的输入样本最小最大值构成的R 2 维矩阵。 [ S1 S2...SNl] :各层的神经元个数。 {TF 1 TF 2...TFNl } :各层的神经元传递函数。 BTF :训练用函数的名称。 (2)网络训练 [ net,tr ,Y, E, Pf , Af ] train (net, P, T , Pi , Ai ,VV , TV ) (3)网络仿真 [Y, Pf , Af , E, perf ] sim(net, P, Pi , Ai ,T ) {'tansig','purelin'},'trainrp' BP 网络的训练函数 训练方法 梯度下降法 有动量的梯度下降法 自适应 lr 梯度下降法 自适应 lr 动量梯度下降法弹性梯度下降法训练函数traingd traingdm traingda traingdx trainrp Fletcher-Reeves 共轭梯度法traincgf Ploak-Ribiere 共轭梯度法traincgp

人工神经网络Matlab实现代码

以下是用Matlab中的m语言编写的BP神经网络代码,实现的是一个正弦函数的拟合过程,包括了初始化、BP算法、绘制曲线等过程,可以将代码放到一个M文件中运行,以下是代码: defaultpoints=20; %%%%%%%%%隐含层节点数 inputpoints=1; %%%%%%%%%输入层节点数 outputpoints=1; %%%%%%%%%输出层节点数 Testerror=zeros(1,100);%%%%每个测试点的误差记录 a=zeros(1,inputpoints);%%%%输入层节点值 y=zeros(1,outputpoints);%%%样本节点输出值 w=zeros(inputpoints,defaultpoints);%%%%%输入层和隐含层权值 %初始化权重很重要,比如用rand函数初始化则效果非常不确定,不如用zeros初始化 v=zeros(defaultpoints,outputpoints);%%%%隐含层和输出层权值 bin=rand(1,defaultpoints);%%%%%隐含层输入 bout=rand(1,defaultpoints);%%%%隐含层输出 base1=0*ones(1,defaultpoints);%隐含层阈值,初始化为0 cin=rand(1,outputpoints);%%%%%%输出层输入 cout=rand(1,outputpoints);%%%%%输出层输出 base2=0*rand(1,outputpoints);%%输出层阈值 error=zeros(1,outputpoints);%%%拟合误差 errors=0;error_sum=0; %%%误差累加和 error_rate_cin=rand(defaultpoints,outputpoints);%%误差对输出层节点权值的导数 error_rate_bin=rand(inputpoints,defaultpoints);%%%误差对输入层节点权值的导数 alfa=0.5; %%%% alfa 是隐含层和输出层权值-误差变化率的系数,影响很大 belt=0.5; %%%% belt 是隐含层和输入层权值-误差变化率的系数,影响较小 gama=5; %%%% gama 是误差放大倍数,可以影响跟随速度和拟合精度,当gama大于2时误差变大,容易震荡 %%%%规律100个隐含节点,当alfa *gama =1.5时,效果好,其他值误差变大,belt基本不影响效果 %%%%规律200个隐含节点,当alfa *gama =0.7时,效果好,其他值误差变大,belt基本不影响效果,最小误差和100个隐含点一样 %%%%规律50个隐含节点,当alfa *gama =3时,效果好,其他值误差变大,belt基本不影响效果,最小误差和100个隐含点一样 trainingROUND=200;% 训练次数,有时训练几十次比训练几百次上千次效果要好很多sampleNUM=361; % 样本点数 x1=zeros(sampleNUM,inputpoints); %样本输入矩阵 y1=zeros(sampleNUM,outputpoints); %样本输出矩阵 x2=zeros(sampleNUM,inputpoints); %测试输入矩阵

BP神经网络模型应用实例

BP神经网络模型 第1节基本原理简介 近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注. 目前,已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络

设想,如图34-1所示。 BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。节点的作用的激励函数通常选取S 型函数,如 Q x e x f /11)(-+= 式中Q 为调整激励函数形式的Sigmoid 参数。该算法的学习过程由正向传播和反向传播组成。在正向传播过程中,输入信息从输入层经隐含层逐层处理,并 传向输出层。每一层神经元的状态只影响下一层神经

BP神经网络的数据分类MATLAB源代码.doc

%%%清除空间 clc clear all ; close all ; %%%训练数据预测数据提取以及归一化 %%%下载四类数据 load data1 c1 load data2 c2 load data3 c3 load data4 c4 %%%%四个特征信号矩阵合成一个矩阵data ( 1:500 , : ) = data1 ( 1:500 , :) ; data ( 501:1000 , : ) = data2 ( 1:500 , : ) ; data ( 1001:1500 , : ) = data3 ( 1:500 , : ) ; data ( 1501:2000 , : ) = data4 ( 1:500 , : ) ; %%%%%%从1到2000间的随机排序 k = rand ( 1 , 2000 ) ; [ m , n ] = sort ( k ) ; %%m为数值,n为标号

%%%%%%%%%%%输入输出数据 input = data ( : , 2:25 ) ; output1 = data ( : , 1) ; %%%%%%把输出从1维变到4维 for i = 1 : 1 :2000 switch output1( i ) case 1 output( i , :) = [ 1 0 0 0 ] ; case 2 output( i , :) = [ 0 1 0 0 ] ; case 3 output( i , :) = [ 0 0 1 0 ] ; case 4 output( i , :) = [ 0 0 0 1 ] ; end end %%%%随机抽取1500个样本作为训练样本,500个样本作为预测样本 input_train = input ( n( 1:1500 , : ) )’ ; output_train = output ( n( 1:1500 , : ) )’ ; input_test = input ( n( 1501:2000 , : ) )’ ;

BP人工神经网络算法的MATLAB实现

%% 清空环境变量clc clear %% 训练数据预测数据提取及归一化 %下载四类语音信号 load data1 c1 load data2 c2 load data3 c3 load data4 c4 %四个特征信号矩阵合成一个矩阵 data(1:500,:)=c1(1:500,:); data(501:1000,:)=c2(1:500,:); data(1001:1500,:)=c3(1:500,:); data(1501:2000,:)=c4(1:500,:); %从1到2000间随机排序 k=rand(1,2000); [m,n]=sort(k);

%输入输出数据 input=data(:,2:25); output1 =data(:,1); %把输出从1维变成4维 for i=1:2000 switch output1(i) case 1 output(i,:)=[1 0 0 0]; case 2 output(i,:)=[0 1 0 0]; case 3 output(i,:)=[0 0 1 0]; case 4 output(i,:)=[0 0 0 1]; end end

%随机提取1500个样本为训练样本,500个样本为预测样本input_train=input(n(1:1500),:)'; output_train=output(n(1:1500),:)'; input_test=input(n(1501:2000),:)'; output_test=output(n(1501:2000),:)'; %输入数据归一化 [inputn,inputps]=mapminmax(input_train); %% 网络结构初始化 innum=24; midnum=25; outnum=4; %权值初始化 w1=rands(midnum,innum); b1=rands(midnum,1); w2=rands(midnum,outnum); b2=rands(outnum,1); w2_1=w2;w2_2=w2_1;

BP神经网络地设计实例(MATLAB编程)

神经网络的设计实例(MATLAB编程) 例1 采用动量梯度下降算法训练BP 网络。训练样本定义如下: 输入矢量为 p =[-1 -2 3 1 -1 1 5 -3] 目标矢量为t = [-1 -1 1 1] 解:本例的MATLAB 程序如下: close all clear echo on clc % NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练 % SIM——对BP 神经网络进行仿真pause % 敲任意键开始 clc % 定义训练样本 P=[-1, -2, 3, 1; -1, 1, 5, -3]; % P 为输入矢量T=[-1, -1, 1, 1]; % T 为目标矢量

clc % 创建一个新的前向神经网络 net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值 inputWeights=net.IW{1,1} inputbias=net.b{1} % 当前网络层权值和阈值 layerWeights=net.LW{2,1} layerbias=net.b{2} pause clc % 设置训练参数 net.trainParam.show = 50; net.trainParam.lr = 0.05; net.trainParam.mc = 0.9; net.trainParam.epochs = 1000; net.trainParam.goal = 1e-3; pause clc % 调用TRAINGDM 算法训练BP 网络 [net,tr]=train(net,P,T);

bp神经网络及matlab实现讲解学习

b p神经网络及m a t l a b实现

图1. 人工神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为: 图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为: 若用X表示输入向量,用W表示权重向量,即: X = [ x0 , x1 , x2 , ....... , xn ]

则神经元的输出可以表示为向量相乘的形式: 若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net为负,则称神经元处于抑制状态。 图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。 2. 常用激活函数 激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。 (1) 线性函数 ( Liner Function ) (2) 斜面函数 ( Ramp Function ) (3) 阈值函数 ( Threshold Function ) 以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函数。 (4) S形函数 ( Sigmoid Function ) 该函数的导函数:

Matlab训练好的BP神经网络如何保存和读取方法(附实例说明)

Matlab训练好的BP神经网络如何保存和读取方法(附实例说明) 看到论坛里很多朋友都在提问如何存储和调用已经训练好的神经网络。 本人前几天也遇到了这样的问题,在论坛中看了大家的回复,虽然都提到了关键的两个函数“save”和“load”,但或多或少都简洁了些,让人摸不着头脑(呵呵,当然也可能是本人太菜)。通过不断调试,大致弄明白这两个函数对神经网络的存储。下面附上实例给大家做个说明,希望对跟我有一样问题的朋友有所帮助。 如果只是需要在工作目录下保到当前训练好的网络,可以在命令窗口 输入:save net %net为已训练好的网络 然后在命令窗口 输入:load net %net为已保存的网络 加载net。 但一般我们都会在加载完后对网络进行进一步的操作,建议都放在M文件中进行保存网络和调用网络的操作 如下所示: %% 以函数的形式训练神经网络 functionshenjingwangluo() P=[-1,-2,3,1; -1,1,5,-3]; %P为输入矢量 T=[-1,-1,1,1,]; %T为目标矢量 net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') %创建一个新的前向神经网络 inputWeights=net.IW{1,1} inputbias=net.b{1} %当前输入层权值和阀值 layerWeights=net.LW{2,1} layerbias=net.b{2} net.trainParam.show=50; net.trainParam.lr=0.05; net.trainParam.mc=0.9;

基于matlab实现BP神经网络模型仿真

基于BP神经网络模型及改进模型对全国历年车祸次数预测 一、背景 我国今年来随着经济的发展,汽车需求量不断地增加,所以全国每年的车祸次数也被越来越被关注,本文首先搜集全国历年车祸次数,接着通过这些数据利用BP神经网络模型和改进的径向基函数网络进行预测,最后根据预测结果,分析模型的优劣,从而达到深刻理解BP神经网络和径向基函数网络的原理及应用。所用到的数据即全国历年车祸次数来自中国汽车工业信息网,网址如下: https://www.360docs.net/doc/5411543190.html,/autoinfo_cn/cszh/gljt/qt/webinfo/2006/05/124650 1820021204.htm 制作历年全国道路交通事故统计表如下所示: 二、问题研究 (一)研究方向 (1)通过数据利用BP神经网络模型预测历年全国交通事故次数并与实际值进行比较。(2)分析BP神经网络模型改变训练函数再进行仿真与之前结果进行对比。 (3)从泛化能力和稳定性等方面分析BP神经网络模型的优劣。 (4)利用径向基函数网络模型进行仿真,得到结果与采用BP神经网络模型得到的结果进行比较。

(二)相关知识 (1)人工神经网络 人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。 人工神经网络有以下几个特征: (1)非线性非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性网络关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。 (2)非局限性一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。 (3)非常定性人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。 (4)非凸性一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。 (2)BP神经网络模型 BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。 (3)径向基函数网络模型 径向基函数(Radial Basis Function,RBF)神经网络由三层组成,输入层节点只传递输入信号到隐层,隐层节点由像高斯函数那样的辐射状作用函数构成,而输出层节点通常是简单的线性函数。 隐层节点中的作用函数(基函数)对输入信号将在局部产生响应,也就是说,当输入信号靠近基函数的中央范围时,隐层节点将产生较大的输出,由此看出这种网络具有局部逼近能力,所以径向基函数网络也称为局部感知场网络。

基于遗传算法的BP神经网络MATLAB代码

用遗传算法优化BP神经网络的Matlab编程实例(转) 由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。 程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY) %-------------------------------------------------------------------------- % GABPNET.m % 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络 %-------------------------------------------------------------------------- %数据归一化预处理 nntwarn off XX=[1:19;2:20;3:21;4:22]'; YY=[1:4]; XX=premnmx(XX); YY=premnmx(YY); YY %创建网络 net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'tra inlm'); %下面使用遗传算法对网络进行优化 P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 aa=ones(S,1)*[-1,1]; popu=50;%种群规模 save data2 XX YY % 是将 xx,yy 二个变数的数值存入 data2 这个MAT-file,initPpp=initializega(popu,aa,'gabpEval');%初始化种群 gen=100;%遗传代数

BP神经网络MATLAB代码

BP神经网络matlab代码 p=[284528334488;283344884554;448845542928;455429283497;29283497 2261;... 349722616921;226169211391;692113913580;139135804451;35804451 2636;... 445126363471;263634713854;347138543556;385435562659;35562659 4335;... 265943352882;433528824084;433528821999;288219992889;19992889 2175;... 288921752510;217525103409;251034093729;340937293489;37293489 3172;... 348931724568;317245684015;]'; %====期望输出======= t=[4554292834972261692113913580445126363471385435562659... 4335288240841999288921752510340937293489317245684015... 3666]; ptest=[284528334488;283344884554;448845542928;455429283497;29283497 2261;... 349722616921;226169211391;692113913580;139135804451;35804451 2636;... 445126363471;263634713854;347138543556;385435562659;35562659 4335;... 265943352882;433528824084;433528821999;288219992889;19992889 2175;... 288921752510;217525103409;251034093729;340937293489;37293489 3172;... 348931724568;317245684015;456840153666]'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t);%将数据归一化 NodeNum1=20;%隐层第一层节点数 NodeNum2=40;%隐层第二层节点数 TypeNum=1;%输出维数 TF1='tansig'; TF2='tansig'; TF3='tansig'; net=newff(minmax(pn),[NodeNum1,NodeNum2,TypeNum],{TF1TF2 TF3},'traingdx');

BP神经网络matlab实例

神经网络Matlab p=p1';t=t1'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络 net.trainParam.show=2000; % 训练网络 net.trainParam.lr=0.01; net.trainParam.epochs=100000; net.trainParam.goal=1e-5; [net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP网络 pnew=pnew1'; pnewn=tramnmx(pnew,minp,maxp); anewn=sim(net,pnewn); %对BP网络进行仿真 anew=postmnmx(anewn,mint,maxt); %还原数据 y=anew'; 1、BP网络构建 (1)生成BP网络 = net newff PR S S SNl TF TF TFNl BTF BLF PF (,[1 2...],{ 1 2...},,,) R?维矩阵。 PR:由R维的输入样本最小最大值构成的2

S S SNl:各层的神经元个数。 [1 2...] TF TF TFNl:各层的神经元传递函数。 { 1 2...} BTF:训练用函数的名称。 (2)网络训练 = [,,,,,] (,,,,,,) net tr Y E Pf Af train net P T Pi Ai VV TV (3)网络仿真 = [,,,,] (,,,,) Y Pf Af E perf sim net P Pi Ai T {'tansig','purelin'},'trainrp' BP网络的训练函数 训练方法训练函数 梯度下降法traingd 有动量的梯度下降法traingdm 自适应lr梯度下降法traingda 自适应lr动量梯度下降法traingdx 弹性梯度下降法trainrp Fletcher-Reeves共轭梯度法traincgf Ploak-Ribiere共轭梯度法traincgp Powell-Beale共轭梯度法traincgb 量化共轭梯度法trainscg 拟牛顿算法trainbfg 一步正割算法trainoss Levenberg-Marquardt trainlm

人工神经网络作业MATLAB仿真(共3篇)

人工神经网络作业M A T L A B 仿真(共3篇) -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

人工神经网络仿真作业(3篇) 人工神经网络仿真作业1: 三级倒立摆的神经网络控制 人工神经网络仿真作业2: 基于模型整体逼近的机器人RBF网络自适应控制 人工神经网络仿真作业3: 基于RBF的机械手无需模型自适应控制研究

神经网络仿真作业1:三级倒立摆的神经网络控制 摘要:建立了基于人工神经网络改进BP 算法的三级倒立摆的数学模型,并给 出了BP 网络结构,利用Matlab 软件进行训练仿真,结果表明,改进的BP 算法控制倒立摆精度高、收敛快,在非线性控制、鲁棒控制等领域具有良好的应用前景。 1.引言 倒立摆系统的研究开始于19世纪50年代,它是一个典型的非线性、高阶次、多变量、强耦合和绝对不稳定系统.许多抽象的控制概念,如系统的稳定性、可控性、系统的收敛速度和抗干扰能力都可以通过倒立摆直观地表现出来。随着现代控制理论的发展,倒立摆的研究对于火箭飞行控制和机器人控制等现代高科技的研究具有重要的实践意义。目前比较常见的倒立摆稳定控制方法有线性控制,如LQR,LQY 等;智能控制,如变论域自适应模糊控制,遗传算法,预测控制等。 2.系统的数学模型 2.1三级倒立摆的模型及参数 三级倒立摆主要由小车,摆1、摆2、摆3组成,它们之间自由链接。小车可以在水平导轨上左右平移,摆杆可以在铅垂平面内运动,将其置于坐标系后如图1 所示: 规定顺时针方向的转角和力矩均为正。此外,约定以下记号:u 为外界作用力,x 为小车位移,i (i =1,2,3)为摆i 与铅垂线方向的夹角, i O 分别为摆i 的链接点位置。其它的系统参数说明如下:

matlab BP神经网络

基于MATLAB的BP神经网络工具箱函数 最新版本的神经网络工具箱几乎涵盖了所有的神经网络的基本常用模型,如感知器和BP网络等。对于各种不同的网络模型,神经网络工具箱集成了多种学习算法,为用户提供了极大的方便[16]。Matlab R2007神经网络工具箱中包含了许多用于BP网络分析与设计的函数,BP网络的常用函数如表3.1所示。 3.1.1BP网络创建函数 1) newff 该函数用于创建一个BP网络。调用格式为: net=newff net=newff(PR,[S1S2..SN1],{TF1TF2..TFN1},BTF,BLF,PF) 其中, net=newff;用于在对话框中创建一个BP网络。 net为创建的新BP神经网络; PR为网络输入向量取值范围的矩阵; [S1S2…SNl]表示网络隐含层和输出层神经元的个数; {TFlTF2…TFN1}表示网络隐含层和输出层的传输函数,默认为‘tansig’; BTF表示网络的训练函数,默认为‘trainlm’; BLF表示网络的权值学习函数,默认为‘learngdm’; PF表示性能数,默认为‘mse’。

2)newcf函数用于创建级联前向BP网络,newfftd函数用于创建一个存在输入延迟的前向网络。 3.1.2神经元上的传递函数 传递函数是BP网络的重要组成部分。传递函数又称为激活函数,必须是连续可微的。BP网络经常采用S型的对数或正切函数和线性函数。 1) logsig 该传递函数为S型的对数函数。调用格式为: A=logsig(N) info=logsig(code) 其中, N:Q个S维的输入列向量; A:函数返回值,位于区间(0,1)中; 2)tansig 该函数为双曲正切S型传递函数。调用格式为: A=tansig(N) info=tansig(code) 其中, N:Q个S维的输入列向量; A:函数返回值,位于区间(-1,1)之间。 3)purelin 该函数为线性传递函数。调用格式为: A=purelin(N) info=purelin(code) 其中, N:Q个S维的输入列向量; A:函数返回值,A=N。 3.1.3BP网络学习函数 1)learngd 该函数为梯度下降权值/阈值学习函数,它通过神经元的输入和误差,以及权值和阈值的学习效率,来计算权值或阈值的变化率。调用格式为: [dW,ls]=learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) [db,ls]=learngd(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)

BP神经网络matlab源程序代码

BP神经网络matlab源程序代码) %******************************% 学习程序 %******************************% %======原始数据输入======== p=[2845 2833 4488;2833 4488 4554;4488 4554 2928;4554 2928 3497;2928 3497 2261;... 3497 2261 6921;2261 6921 1391;6921 1391 3580;1391 3580 4451;3580 4451 2636;... 4451 2636 3471;2636 3471 3854;3471 3854 3556;3854 3556 2659;3556 2659 4335;... 2659 4335 2882;4335 2882 4084;4335 2882 1999;2882 1999 2889;1999 2889 2175;... 2889 2175 2510;2175 2510 3409;2510 3409 3729;3409 3729 3489;3729 3489 3172;... 3489 3172 4568;3172 4568 4015;]'; %===========期望输出======= t=[4554 2928 3497 2261 6921 1391 3580 4451 2636 3471 3854 3556 2659 ... 4335 2882 4084 1999 2889 2175 2510 3409 3729 3489 3172 4568 4015 ... 3666]; ptest=[2845 2833 4488;2833 4488 4554;4488 4554 2928;4554 2928 3497;2928 3497 2261;... 3497 2261 6921;2261 6921 1391;6921 1391 3580;1391 3580 4451;3580 4451 2636;... 4451 2636 3471;2636 3471 3854;3471 3854 3556;3854 3556 2659;3556 2659 4335;... 2659 4335 2882;4335 2882 4084;4335 2882 1999;2882 1999 2889;1999 2889 2175;... 2889 2175 2510;2175 2510 3409;2510 3409 3729;3409 3729 3489;3729 3489 3172;... 3489 3172 4568;3172 4568 4015;4568 4015 3666]'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %将数据归一化 NodeNum1 =20; % 隐层第一层节点数 NodeNum2=40; % 隐层第二层节点数 TypeNum = 1; % 输出维数 TF1 = 'tansig';

bp神经网络及matlab实现

bp神经网络及matlab实现 分类:算法学习2012-06-20 20:56 66399人阅读评论(28) 收藏举报网络matlab算法functionnetworkinput 本文主要内容包括:(1) 介绍神经网络基本原理,(2) https://www.360docs.net/doc/5411543190.html,实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法。 第0节、引例 本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在https://www.360docs.net/doc/5411543190.html,/wiki/Iris_flower_data_set 找到。这里简要介绍一下Iris数据集: 有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。 一种解决方法是用已有的数据训练一个神经网络用作分类器。 如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。 第一节、神经网络基本原理 1. 人工神经元( Artificial Neuron )模型 人工神经元是神经网络的基本元素,其原理可以用下图表示:

图1. 人工神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为: 图中yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为: 若用X表示输入向量,用W表示权重向量,即: X = [ x0 , x1 , x2 , ....... , xn ]

基于MATLAB 的神经网络的仿真

智能控制 基于MATLAB 的神经网络的仿真 学院:机电工程学院 姓名:白思明 学号:2011301310111 年级:自研-11 学科:检测技术与自动化装置 日期:2012-4-3

一.引言 人工神经网络以其具有信息的分布存储、并行处理以及自学习能力等优点, 已经在模式识别、 信号处理、智能控制及系统建模等领域得到越来越广泛的应用。MATLAB中的神经网络工具箱是以人工神经网络理论为基础, 利用MATLAB 语言构造出许多典型神经网络的传递函数、网络权值修正规则和网络训练方法,网络的设计者可根据自己的需要调用工具箱中有关神经网络的设计与训练的程序, 免去了繁琐的编程过程。 二.神经网络工具箱函数 最新版的MATLAB 神经网络工具箱为Version4.0.3, 它几乎涵盖了所有的神经网络的基本常用类型,对各种网络模型又提供了各种学习算法,我们可以根据自己的需要调用工具箱中的有关设计与训练函数,很方便地进行神经网络的设计和仿真。目前神经网络工具箱提供的神经网络模型主要用于: 1.数逼近和模型拟合; 2.信息处理和预测; 3.神经网络控制; 4.故障诊断。 神经网络工具箱提供了丰富的工具函数,其中有针对某一种网络的,也有通用的,下面列表中给出了一些比较重要的工具箱函数。 三.仿真实例 BP 网络是一种多层前馈神经网络,由输入层、隐层和输出层组成。BP 网络模型结构见图1。网络同层节点没有任何连接,隐层节点可以由一个或多个。网络的学习过程由正向和反向传播两部分组成。在正向传播中,输入信号从输入层节点经隐层节点逐层传向输出层节点。每一层神经元的状态只影响到下一层神经元网络,如输出层不能得到期望的输出,那么转入误差反向传播过程,将误差信号沿原来的连接通路返回,通过修改各层神经元的权值,逐次地向输入层传播去进行计算,在经正向传播过程,这两个过程反复运用,使得误差信号最小或达到人们所期望的要求时,学习过程结束。

用遗传算法优化BP神经网络的Matlab编程实例

用遗传算法优化BP神经网络的 Matlab编程实例 由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。 程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY) %-------------------------------------------------------------------------- % GABPNET.m % 使用遗传算法对BP网络权值阈值进行优化,再用BP 算法训练网络 %-------------------------------------------------------------------------- %数据归一化预处理 nntwarn off XX=premnmx(XX); YY=premnmx(YY); %创建网络 net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},' trainlm'); %下面使用遗传算法对网络进行优化 P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 aa=ones(S,1)*[-1,1]; popu=50;%种群规模 initPpp=initializega(popu,aa,'gabpEval');%初始化种群 gen=100;%遗传代数 %下面调用gaot工具箱,其中目标函数定义为gabpEval [x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,... 'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutatio n',[2 gen 3]); %绘收敛曲线图 figure(1) plot(trace(:,1),1./trace(:,3),'r-'); hold on plot(trace(:,1),1./trace(:,2),'b-'); xlabel('Generation'); ylabel('Sum-Squared Error'); figure(2) plot(trace(:,1),trace(:,3),'r-'); hold on plot(trace(:,1),trace(:,2),'b-'); xlabel('Generation'); ylabel('Fittness'); %下面将初步得到的权值矩阵赋给尚未开始训练的BP网络 [W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x); net.LW{2,1}=W1; net.LW{3,2}=W2; net.b{2,1}=B1; net.b{3,1}=B2; XX=P; YY=T; %设置训练参数 net.trainParam.show=1; net.trainParam.lr=1; net.trainParam.epochs=50; net.trainParam.goal=0.001; %训练网络 net=train(net,XX,YY); 程序二:适应值函数 function [sol, val] = gabpEval(sol,options) % val - the fittness of this individual % sol - the individual, returned to allow for Lamarckian evolution % options - [current_generation] load data2 nntwarn off XX=premnmx(XX); YY=premnmx(YY); P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 for i=1:S, x(i)=sol(i); end; [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x);

相关文档
最新文档