实验十三LC正弦波振荡器

合集下载

正弦波振荡器实验报告(高频电路)

正弦波振荡器实验报告(高频电路)

高频电路原理与分析实验报告组员:学号:班级:电子信息工程实验名称:正弦波振荡器指导教师:一.实验目的1.掌握电容三点式LC振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能;2.掌握LC振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。

二.实验内容V ,1.用示波器观察LC振荡器和晶体振荡器输出波形,测量振荡器输出电压峰-峰值p p并以频率计测量振荡频率;2.测量LC振荡器的幅频特性;3.测量电源电压变化对振荡器的影响;4.观察并测量静态工作点变化对晶体振荡器工作的影响。

三、实验步骤1、实验准备插装好正弦振荡器与晶体管混频模块,接通实验箱电源,此时模块上电源指示灯和运行指示灯闪亮。

用鼠标点击显示屏,选择“实验项目”中的“高频原理实验”,然后再选择“振荡器实验”中的“LC振荡器实验”,显示屏会显示出LC振荡器原理实验图。

说明:电路图中各可调元件的调整,其方法是:用鼠标点击要调整的原件,模块上对应的指示灯点亮,然后滑动鼠标上的滑轮,即可调整该元件的参数。

利用模块上编码器调整与鼠标调整其效果完全相同。

用编码器调整的方法是:按动编码器,选择要调整的元件,模块上对应的指示灯点亮,然后旋转编码器旋钮,即可调整其参数。

我们建议采用鼠标调整,因为长时间采用编码器调整,可能会造成编码器损坏。

本实验箱中,各模块可调元件的调整,其方法与此完全相同,后面不再说明。

2、LC振荡实验(为防止晶体振荡器对LC振荡器的影响,应使晶振停振,即调2W3使晶振停振。

)(1)西勒振荡电路幅频特性测量用铆孔线将2P2与2P4相连,示波器接2TP5,频率计与2P5相连。

开关2K1拨至“p”(往下拨),此时振荡电路为西勒电路。

调整2W4使输出幅度最大。

(用鼠标点击2W4,且滑动鼠标滑轮来调整。

)调整2W2可调整变容管2D2的直流电压,从而改变变容管的电容,达到改变振荡器的振荡频率,变容官上电压最高时,变容管电容最小,此时输出频率最高。

高频实验报告LC正弦波振荡电路

高频实验报告LC正弦波振荡电路

高频实验报告LC正弦波振荡电路高频实验报告LC正弦波振荡电路实验实验名称:姓名:余丽芳学号:110404213班级:通信二班时间:2014.01.03南京理工大学紫金学院电光系一、实验目的1(进一步学习掌握正弦波振荡电路的相关理论。

2(掌握电容三点式LC振荡电路的基本原理,熟悉其各元件功能;熟悉静态工作点、耦合电容、反馈系数、等效Q值对振荡器振荡幅度和频率的影响。

3(熟悉LC振荡器频率稳定度,加深对LC振荡器频率稳定度的理解。

二、实验使用仪器1(LC、晶体正弦波振荡电路实验板2(60MH双踪示波器万用表3.三、实验基本原理与电路1.LC振荡电路的基本原理,,振荡器实质上是满足振荡条件的正反馈放大器。

,,振荡器是指振荡回路是山,,元件组成的。

从交流等效电路可知:山,,振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而乂称为三点式振荡器。

如果反馈电压取自分压电感,则称为电感反馈,,振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈,,振荡器或电容三点式振荡器。

在儿种基本高频振荡回路中,电容反馈,,振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振荡频率可高达儿白,,,,,,,。

普通电容三点式振荡器的振荡频率不仅与谐振回路的LC元件的值有关,而且还与晶体管的输入电容C以及输出电容C有关。

当工作环境改变或更换管子时,振荡频率及其稳ioCC定性就要受到影响。

为减小、的影响,提高振荡器的频率稳定度,提出了改进型电i。

容三点式振荡电路一一串联改进型克拉泼电路、并联改进型西勒电路,分别如图2-1和2-2所示。

EEC CRRCRRbl C 3 bl CCC1 1L L C CCb Rb Rb2 b2 RRe e CC2 2 C图2-2西勒振荡电路图2-1克拉泼振荡电路串联改进型电容三点式振荡电路一一克拉泼电路振荡频率为:1 ,, OLC,其中由下式决定C,1111.,, CCC, CC, C, lo2i~选,时,,振荡频率可近似写成C, C, C,, CC,, C, 0121.,OLC这就使儿乎与C和值无关,提高了频率稳定度。

LC三点式正弦波振荡器实验

LC三点式正弦波振荡器实验

4.回路Q值和IEQ对频率稳定度的影响
1)Q值变化时,对振荡频率稳定度的影响
,IEQ=2mA,CT=100pF, 分别改变R值,使其值分别为1KΩ、10KΩ、110KΩ, 记录电路的振荡频率, 注意观察频率显示后几位数 的跳动情况。填入表1-37中,并说明R取哪种值的情 况下稳定度最好。
C 100pF 测试条件: C ' 1200pF
图3-1:LC三点式振荡器基本组成形式
图1-83:LC三点式振荡器基本组成形式
本实验主要研究电容三点式振荡器, 电路如图1-84所示。
2. 基本工作原理:
电路采用串联式电容反馈三 点式振荡器的改进型电路,也称 克拉波电路。采用分压式电流负 反馈偏置电路,调整RP可获得合 适的静态工作点。C1,C2为交流 耦合电容,正反馈电压取自C,两 端,改变C和C,的比值,可以改 变反馈深度,以满足振荡的振幅 条件。 此电路的振荡频率为:
5.选做内容:石英晶体-振荡器
1)按要求连好电路
2)静态工作点测试,记录IEQmin、IEQmax; 3)测量当工作点在上述范围内(至少3个点) 的振荡频率及振荡幅度(RL取110KΩ); 4)RL分别取110K Ω ,10K Ω ,1K Ω时, 测出振荡频率f,并观察频率的稳定度。 (与LC三点式振荡器相比较)。
取:CT=100pF, C、C’分别为下列三组数据:
C=C3=100pF,C’=C4=1200pF; C=C5=120pF,C’=C6=680pF; C=C7=680pF,C’=C8=120pF 调节电位器Rp ,使IEQ(静态值,即断开C1后 调IEQ,调好后再接上C1),分别为0.5,0.8,2.0, 3.0,4.0所标各值,用示波器分别测出各个振荡幅 度(峰峰值)。将所得的值填入表1-36中。

正弦波振荡器(LC振荡器和晶体振荡器)实验

正弦波振荡器(LC振荡器和晶体振荡器)实验

正弦波振荡器(LC 振荡器和晶体振荡器)实验一、实验目的1.掌握电容三点式LC 振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC 振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;通过实验进一步了解调幅的工作原理。

4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。

二、实验仪器1.100M 示波器 一台2.高频信号源 一台3.高频电子实验箱 一套三、实验电路原理1.基本原理振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定波形的交变振荡能量的装置。

正弦波振荡器在电子技术领域中有着广泛的应用。

在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去的。

在超外差式的各种接收机中,是由振荡器产生一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。

振荡器的种类很多。

从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。

此实验只讨论反馈式振荡器。

根据振荡器所产生的波形,又可以把振荡器分为正弦波振荡器与非正弦波振荡器。

此实验只介绍正弦波振荡器。

常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。

按照选频网络所采用元件的不同,正弦波振荡器可分为LC 振荡器、RC 振荡器和晶体振荡器等类型。

(1)反馈型正弦波自激振荡器基本工作原理以互感反馈振荡器为例,分析反馈型正弦波自激振荡器的基本原理,其原理电路如图2-1所示。

b V bE cE -1L 2L f V bV '+-图 2-1反馈型正弦波自激振荡器原理电路当开关K 接“1”时,信号源b V 加到晶体管输入端,构成一个调谐放大器电路,集电极回路得到了一个放大了的信号F V 。

当开关K 接“2”时,信号源b V 不加入晶体管,输入晶体管是F V 的一部分b V '。

高频电子线路实验正弦波振荡器

高频电子线路实验正弦波振荡器

.太原理工大学现代科技学院高频电子线路课程实验报告专业班级信息13-1学号2013101269姓名指导教师颖实验名称 正弦波振荡器(LC 振荡器和晶体振荡器) 专业班级 信息13-1 学号 2013100 0 成绩 实验2 正弦波振荡器(LC 振荡器和晶体振荡器) 2-1 正弦波振荡器的基本工作原理 振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定的波形的交变振荡能量的装置。

正弦波振荡器在电子领域中有着广泛的应用。

在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去。

在超外差式的各种接收机中,是由振荡器产生的一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。

振荡器的种类很多。

从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。

我们只讨论反馈式振荡器。

根据振荡器所产生的波形,又可以把振荡器氛围正弦波振荡器和非正弦波振荡器。

我们只介绍正弦波振荡器。

常用正弦波振荡器主要是由决定振荡频率的选项网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。

按照选频网络所采用的元件不同,正弦波振荡器可以分为LC 振荡器、RC 振荡器和晶体振荡器等类型。

一、反馈型正弦波自激振荡器基本工作原理 以互感反馈振荡器为例,分析反馈型正弦自激振荡器的基本原理,其原理电路如图2-1所示; 当开关K 接“1”时,信号源Vb 加到晶体管输入端,这就是一个调谐放大器电路,集电极回路得到了一……………………………………装………………………………………订…………………………………………线………………………………………个放大了的信号Vf。

当开关K接“2”时,信号源Vb不加入晶体管,输入晶体管是Vf的一部分V’b。

若适当选择互感M和Vf的极性,可以使Vb和V’b大小相等,相位相同,那么电路一定能维持高频振荡,达到自激振荡的目的。

实际上起振并不需要外加激励信号,靠电路内部扰动即可起振。

LC正弦波振荡器虚拟实验报告_SEUradio

LC正弦波振荡器虚拟实验报告_SEUradio

f0
1 2 π LC 以及实验数据可得,C2 减小,谐振频率增大。
(2)由理论式 A=L1/L2 以及实验数据可得,L1 增大,放大器的电压增益 A 增大,振荡 频率减小。 (3)三次实验放大器输入输出端信号的相位差分别为 179.12,178.76,178.46,满足正反 馈要求。
3、影响电容、电感三点式振荡频率的主要因素是什么? 答:影响电容、电感三点式振荡频率的主要因素为回路电容、回路电感的大小。
相位 差 179.12 178.75 178.46
谐振频率 f0 测量值 (kHz) 5.132 7.198 10.917 理论值 (kHz) 4.983 7.047 10.983
(5mH,100uH,200nF) (5mH,100uH,100nF) (2m昕
思考和分析
1、根据电容三点式振荡电路的测量数据表格,回答:
(1)分析电感值L1改变对谐振频率有何影响? (2)分析电容值C2改变对放大器的电压增益和振荡频率有何影响? (3)放大器输入输出端信号的相位差为多少,是否满足正反馈要求? 答: (1) 由理论式
f0
1 2 π LC
=
1 C1C2 及实验数据可得 L1 减小, 谐振频率增大。 2 π L C1 C2
(2)由理论式 A=C2/C1 以及实验数据可得,C2 增大,放大器的电压增益 A 增大,振荡频 率减小 (3)三次实验放大器输入输出端信号的相位差分别为 164.176、168.75、169.57,在误差 范围内满足正反馈要求。由实验示波器所示波形可见波形稳定。
2、根据电感三点式振荡电路的测量数据表格,回答: (1)分析电容值C2改变对谐振频率有何影响? (2)分析电感值L1改变对放大器的电压增益和振荡频率有何影响? (3)放大器输入输出端信号的相位差为多少,是否满足正反馈要求? 答: (1)由理论式

电子电路综合实验-LC正弦波振荡器报告

电子电路综合实验-LC正弦波振荡器报告

LC 正弦波振荡(虚拟实验)1、 电容三点式(1)121100,400,10C nF C nF L mH ===示波器频谱仪(2)121100,400,5C nF C nF L mH ===示波器频谱仪(3)121100,1,5C nF C F L mH μ===示波器频谱仪数据表格: (C1, C2, L1) (C 1,C 2,L 1) O U •i U •增益A 相位差 谐振频率f 0 测量值 理论值 测量值 理论值 (100nF,400nF,10mH )5.972V1.486V44.0191806.025kHz5.627(100nF,400nF,5mH ) 4.698V 1.161V 4 4.047 180 7.995 kHz 7.958 (100nF,1uF,5mH )7.116V711.458mV1010.0021807.897 kHz7.465实验数据与理论值间的差异分析:增益差别不大但谐振频率差别较大, 主要是由于读数是的精度有限造成的。

由于游标以格为单位, 因此读数时选取的幅值最大的点可能与实际有差, 因而谐振频率的测量也有误差。

2、 电感三点式(1)1225,100,200L mH L H C nF μ===示波器频谱仪(2)1225,100,100L mH L H C nF μ===示波器频谱仪(3)1222,100,100L mH L H C nF μ===示波器频谱仪数据表格:(L1, L2, C2)(L1,L2,C2)OU•(V)iU•(mV)增益A 相位差谐振频率f0测量值理论值测量值(kHz)理论值(kHz)(5mH,100uH,200nF) 4.497V 89.938mV 50.001 50 180 5.039kHz 4.983 (5mH,100uH,100nF) 4.504V 90.070 mV 50.005 50 180 7.010kHz7.047(2mH,100uH,100nF) 4.483V 224.150mV 20.000 20 180 10.951kHz10.983实验数据与理论值间的差异分析:误差均较小, 主要由于电路不够稳定以及读数精度造成。

实验十三LC正弦波振荡器

实验十三LC正弦波振荡器

实验十三 LC 正弦波振荡器一、实验目的1、 掌握变压器反馈式LC 正弦波振荡器的调整和测试方法2、 研究电路参数对LC 振荡器起振条件及输出波形的影响 二、实验原理LC 正弦波振荡器是用L 、C 元件组成选频网络的振荡器,一般用来产生1MHz 以上的高频正弦信号。

根据LC 调谐回路的不同连接方式,LC 正弦波振荡器又可分为变压器反馈式(或称互感耦合式)、电感三点式和电容三点式三种。

图13-1为变压器反馈式LC 正弦波振荡器的实验电路。

其中晶体三极管T 1组成共射放大电路,变压器T r 的原绕组 L 1(振荡线圈)与电容C 组成调谐回路,它既做为放大器的负载,又起选频作用,副绕组L 2为反馈线圈,L 3为输出线圈。

该电路是靠变压器原、副绕组同名端的正确连接(如图中所示),来满足自激振荡的相位条件,即满足正反馈条件。

在实际调试中可以通过把振荡线圈L 1或反馈线圈L 2的首、末端对调,来改变反馈的极性。

而振幅条件的满足,一是靠合理选择电路参数,使放大器建立合适的静态工作点,其次是改变线圈L 2的匝数,或它与L 1之间的耦合程度,以得到足够强的反馈量。

稳幅作用是利用晶体管的非线性来实现的。

由于LC 并联谐振回路具有良好的选频作用,因此输出电压波形一般失真不大。

振荡器的振荡频率由谐振回路的电感和电容决定式中L 为并联谐振回路的等效电感(即考虑其它绕组的影响)。

振荡器的输出端增加一级射极跟随器,用以提高电路的带负载能力。

图13-1 LC 正弦波振荡器实验电路三、实验设备与器件1、 +12V 直流电源2、双踪示波器3、 交流毫伏表4、直流电压表5、 频率计6、振荡线圈7、 晶体三极管 3DG6×1(9011×1)LC2π1f 03DG12×1(9013×1)电阻器、电容器若干。

四、实验内容按图13-1连接实验电路。

电位器R W置最大位置,振荡电路的输出端接示波器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验十三 LC 正弦波振荡器
一、实验目的
1、 掌握变压器反馈式LC 正弦波振荡器的调整和测试方法
2、 研究电路参数对LC 振荡器起振条件及输出波形的影响 二、实验原理
LC 正弦波振荡器是用L 、C 元件组成选频网络的振荡器,一般用来产生1MHz 以上的高频正弦信号。

根据LC 调谐回路的不同连接方式,LC 正弦波振荡器又可分为变压器反馈式(或称互感耦合式)、电感三点式和电容三点式三种。

图13-1为变压器反馈式LC 正弦波振荡器的实验电路。

其中晶体三极管T 1组成共射放大电路,变压器T r 的原绕组 L 1(振荡线圈)与电容C 组成调谐回路,它既做为放大器的负载,又起选频作用,副绕组L 2为反馈线圈,L 3为输出线圈。

该电路是靠变压器原、副绕组同名端的正确连接(如图中所示),来满足自激振荡的相位条件,即满足正反馈条件。

在实际调试中可以通过把振荡线圈L 1或反馈线圈L 2的首、末端对调,来改变反馈的极性。

而振幅条件的满足,一是靠合理选择电路参数,使放大器建立合适的静态工作点,其次是改变线圈L 2的匝数,或它与L 1之间的耦合程度,以得到足够强的反馈量。

稳幅作用是利用晶体管的非线性来实现的。

由于LC 并联谐振回路具有良好的选频作用,因此输出电压波形一般失真不大。

振荡器的振荡频率由谐振回路的电感和电容决定
式中L 为并联谐振回路的等效电感(即考虑其它绕组的影响)。

振荡器的输出端增加一级射极跟随器,用以提高电路的带负载能力。

图13-1 LC 正弦波振荡器实验电路
三、实验设备与器件
1、 +12V 直流电源
2、双踪示波器
3、 交流毫伏表
4、直流电压表
5、 频率计
6、振荡线圈
7、 晶体三极管 3DG6×1(9011×1)
LC
2π1f 0
3DG12×1(9013×1)
电阻器、电容器若干。

四、实验内容
按图13-1连接实验电路。

电位器R W置最大位置,振荡电路的输出端接示波器。

1、静态工作点的调整
1) 接通U CC=+12 电源,调节电位器R W,使输出端得到不失真的正弦波形,如不起振,可改变L2的首末端位置,使之起振。

测量两管的静态工作点及正弦波的有效值U0,记入表13-1。

2) 把R W调小,观察输出波形的变化。

测量有关数据,记入表13-1。

3) 调大R W,使振荡波形刚刚消失,测量有关数据,记入表13-1。

表13-1
根据以上三组数据,分析静态工作点对电路起振、输出波形幅度和失真的影响。

2、观察反馈量大小对输出波形的影响
置反馈线圈L2于位置“0”(无反馈)、“1”(反馈量不足)、“2”(反馈量合适)、“3”(反馈量过强)时测量相应的输出电压波形,记入表13-2。

表13-2
3、
改变线圈L2的首、末端位置,观察停振现象;
恢复L2的正反馈接法,改变L1的首末端位置,观察停振现象。

4、测量振荡频率
调节R W使电路正常起振,同时用示波器和频率计测量以下两种情况下的振荡频率f0,记入表13-3。

谐振回路电容 1) C=1000Pf。

2) C=100Pf 。

表13-3
5、观察谐振回路Q 值对电路工作的影响
谐振回路两端并入R=5.1KΩ的电阻,观察R 并入前后振荡波形的变化情况。

五、实验总结
1、整理实验数据,并分析讨论:
1) LC正弦波振荡器的相位条件和幅值条件。

2) 电路参数对LC振荡器起振条件及输出波形的影响。

2、讨论实验中发现的问题及解决办法。

六、预习要求
1、复习教材中有关LC振荡器内容。

2、 LC振荡器是怎样进行稳幅的?在不影响起振的条件下,晶体管的集电极电流是大一些好,还是小一些好?
3、为什么可以用测量停振和起振两种情况下晶体管的U BE变化,来判断振荡器是否起振?。

相关文档
最新文档