实验五 三点式正弦波振荡器
正弦波振荡器实验报告(高频电路)

高频电路原理与分析实验报告组员:学号:班级:电子信息工程实验名称:正弦波振荡器指导教师:一.实验目的1.掌握电容三点式LC振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能;2.掌握LC振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。
二.实验内容V ,1.用示波器观察LC振荡器和晶体振荡器输出波形,测量振荡器输出电压峰-峰值p p并以频率计测量振荡频率;2.测量LC振荡器的幅频特性;3.测量电源电压变化对振荡器的影响;4.观察并测量静态工作点变化对晶体振荡器工作的影响。
三、实验步骤1、实验准备插装好正弦振荡器与晶体管混频模块,接通实验箱电源,此时模块上电源指示灯和运行指示灯闪亮。
用鼠标点击显示屏,选择“实验项目”中的“高频原理实验”,然后再选择“振荡器实验”中的“LC振荡器实验”,显示屏会显示出LC振荡器原理实验图。
说明:电路图中各可调元件的调整,其方法是:用鼠标点击要调整的原件,模块上对应的指示灯点亮,然后滑动鼠标上的滑轮,即可调整该元件的参数。
利用模块上编码器调整与鼠标调整其效果完全相同。
用编码器调整的方法是:按动编码器,选择要调整的元件,模块上对应的指示灯点亮,然后旋转编码器旋钮,即可调整其参数。
我们建议采用鼠标调整,因为长时间采用编码器调整,可能会造成编码器损坏。
本实验箱中,各模块可调元件的调整,其方法与此完全相同,后面不再说明。
2、LC振荡实验(为防止晶体振荡器对LC振荡器的影响,应使晶振停振,即调2W3使晶振停振。
)(1)西勒振荡电路幅频特性测量用铆孔线将2P2与2P4相连,示波器接2TP5,频率计与2P5相连。
开关2K1拨至“p”(往下拨),此时振荡电路为西勒电路。
调整2W4使输出幅度最大。
(用鼠标点击2W4,且滑动鼠标滑轮来调整。
)调整2W2可调整变容管2D2的直流电压,从而改变变容管的电容,达到改变振荡器的振荡频率,变容官上电压最高时,变容管电容最小,此时输出频率最高。
三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器(高频电子线路实验报告)摘要本实验采用三点式正弦波振荡器电路,通过实验验证了三点式正弦波振荡器的设计和实际应用,其中包括三点式正弦波振荡器的基本原理、电路结构和工作特性等。
实验结果表明,通过合理的电路设计和优化,可以得到高精度、稳定性好的正弦波振荡器,为工程应用提供了重要的参考。
关键词:三点式正弦波振荡器、电路结构、工作特性一、实验目的1.熟悉三点式正弦波振荡器的基本原理和电路结构;3.通过实验验证三点式正弦波振荡器的设计和实际应用。
二、实验原理三点式正弦波振荡器是一种常用的基本电路,它通过正反馈作用在电路中产生自激振荡现象,从而输出对称的正弦波信号。
其基本原理如下:当输出正弦信号幅度变动时,输入放大器的反相输出端和反馈电容之间的电压也会变化,导致反馈放大器的增益也会随之变化,最终导致输出正弦波的幅度稳定在一定的水平上。
同时,在电路中增加合理的RC网络,可以使三点式正弦波振荡器输出的波形更加准确、稳定。
其中,- OA1, OA2分别为运算放大器;- R1, R2, R3分别为电阻,C1, C2分别为电容,L为电感;- 输出信号可以从OA1反相输出端或者OA2非反相输出端输出。
三、实验过程本实验采用EDA软件进行电路仿真和搭建,整个实验过程分为以下几个步骤:1.根据电路原理图,使用EDAW工具将三点式正弦波振荡器的电路搭建出来;2.依据实验材料,按照电路图要求选择合适的R、C、L值;3.将搭建好的电路连接上电源(+12V),开启仿真。
4.在电路仿真过程中,通过示波器观察输出的正弦波形,并分析波形的稳定性和频率响应等特性;5.修改电路参数,观测输出波形的变化情况,并记录相应的数据;四、实验结果通过实验,在合适的电路参数和电源电压下,三点式正弦波振荡器的输出波形为一定幅值的正弦波。
图2 实验得到的三点式正弦波振荡器输出波形五、实验分析通过本实验,我们可以看出三点式正弦波振荡器具有以下特点:1.输出波形准确、稳定。
正弦波振荡器(LC振荡器和晶体振荡器)实验

正弦波振荡器(LC 振荡器和晶体振荡器)实验一、实验目的1.掌握电容三点式LC 振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC 振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;通过实验进一步了解调幅的工作原理。
4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。
二、实验仪器1.100M 示波器 一台2.高频信号源 一台3.高频电子实验箱 一套三、实验电路原理1.基本原理振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定波形的交变振荡能量的装置。
正弦波振荡器在电子技术领域中有着广泛的应用。
在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去的。
在超外差式的各种接收机中,是由振荡器产生一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。
振荡器的种类很多。
从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。
此实验只讨论反馈式振荡器。
根据振荡器所产生的波形,又可以把振荡器分为正弦波振荡器与非正弦波振荡器。
此实验只介绍正弦波振荡器。
常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。
按照选频网络所采用元件的不同,正弦波振荡器可分为LC 振荡器、RC 振荡器和晶体振荡器等类型。
(1)反馈型正弦波自激振荡器基本工作原理以互感反馈振荡器为例,分析反馈型正弦波自激振荡器的基本原理,其原理电路如图2-1所示。
b V bE cE -1L 2L f V bV '+-图 2-1反馈型正弦波自激振荡器原理电路当开关K 接“1”时,信号源b V 加到晶体管输入端,构成一个调谐放大器电路,集电极回路得到了一个放大了的信号F V 。
当开关K 接“2”时,信号源b V 不加入晶体管,输入晶体管是F V 的一部分b V '。
电子信息专业电子线路实验之- 正弦波振荡器实验

实验三 正弦波振荡器实验一、实验目的1、掌握晶体管(振荡管)工作状态、反馈大小对振荡幅度与波形的影响。
2、掌握改进型电容三点式正弦波振荡器的工作原理及振荡性能的测量方法。
3、研究外界条件变化对振荡频率稳定度的影响。
4、比较LC 振荡器和晶体振荡器频率稳定度,加深对晶体振荡器频率稳定度高的理解。
二、实验内容1、 调试LC 振荡电路特性,观察各点波形并测量其频率。
2、 观察振荡状态与晶体管工作状态的关系。
3、 观察反馈系数对振荡器性能的影响。
4、 比较LC 振荡器和晶体振荡器频率稳定度。
三、实验仪器1、双踪示波器 一台2、万用表 一块3、调试工具 一套四、实验原理正弦波振荡器是应用非常广泛的一类电路,产生正弦信号的振荡电路形式很多,但归纳起来,不外是RC 、LC 和晶体振荡器三种形式。
在本实验研究的主要是LC 三端式振荡器及晶体振荡器。
LC 三端式振荡器的基本电路如图(4-1)所示:根据相位平衡条件,图中构成振荡电路的三个电抗中间,X 1、X 2必须为同性质的电抗,X 3必须为异性质的电抗,且它们之间应满足下列关系式:()213X X X +-= (4-1)这就是LC 三端式振荡器相位平衡条件的判断准则。
若X 1和X 2均为容抗,X 3为感抗,则为电容三端式振荡电路;若X 1和X 2均为感抗,X 3为容抗,则为电感三端式振荡器。
下面以电容三端式振荡器为例分析其原理。
1、电容三端式振荡器共基电容三端式振荡器的基本电路如图4-2所示。
图中C3为耦合电容。
图中与发射极连接的两个电抗为同性质的容抗元件C1和C2,与基极连接的为两个异性质的电抗元件C2和L ,根据判别准则,该电路满足相位条件。
若要它产生正弦波,还须满足振幅起振条件,即:01A F ⋅>(4-2)图4-1 三端式振荡器的交流等效电路式中A O 为电路刚起振时,振荡管工作状态为小信号时的电压增益;F 是反馈系数,只要求出A O 和F 值,便可知道电路有关参数与它的关系。
三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器一、实验目的1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。
3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。
二、实验内容1、 熟悉振荡器模块各元件及其作用。
2、 进行LC 振荡器波段工作研究。
3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。
4、 测试LC 振荡器的频率稳定度。
三、实验仪器1、模块 3 1块2、频率计模块 1块3、双踪示波器 1台4、万用表 1块四、基本原理实验原理图见下页图1。
将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。
)14(1210CC C L f +=π振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数F=32.04702202203311≈+=+C C C振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。
射随器输出信号经N3调谐放大,再经变压器耦合从P1输出。
图1 正弦波振荡器(4.5MHz )五、实验步骤1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。
2、研究振荡器静态工作点对振荡幅度的影响。
(1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。
(2)改变上偏置电位器W1,记下N1发射极电流I eo (=11R V e ,R11=1K)(将万用表红表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。
电子电路综合实验-LC正弦波振荡器报告

LC 正弦波振荡(虚拟实验)1、 电容三点式(1)121100,400,10C nF C nF L mH ===示波器频谱仪(2)121100,400,5C nF C nF L mH ===示波器频谱仪(3)121100,1,5C nF C F L mH μ===示波器频谱仪数据表格: (C1, C2, L1) (C 1,C 2,L 1) O U •i U •增益A 相位差 谐振频率f 0 测量值 理论值 测量值 理论值 (100nF,400nF,10mH )5.972V1.486V44.0191806.025kHz5.627(100nF,400nF,5mH ) 4.698V 1.161V 4 4.047 180 7.995 kHz 7.958 (100nF,1uF,5mH )7.116V711.458mV1010.0021807.897 kHz7.465实验数据与理论值间的差异分析:增益差别不大但谐振频率差别较大, 主要是由于读数是的精度有限造成的。
由于游标以格为单位, 因此读数时选取的幅值最大的点可能与实际有差, 因而谐振频率的测量也有误差。
2、 电感三点式(1)1225,100,200L mH L H C nF μ===示波器频谱仪(2)1225,100,100L mH L H C nF μ===示波器频谱仪(3)1222,100,100L mH L H C nF μ===示波器频谱仪数据表格:(L1, L2, C2)(L1,L2,C2)OU•(V)iU•(mV)增益A 相位差谐振频率f0测量值理论值测量值(kHz)理论值(kHz)(5mH,100uH,200nF) 4.497V 89.938mV 50.001 50 180 5.039kHz 4.983 (5mH,100uH,100nF) 4.504V 90.070 mV 50.005 50 180 7.010kHz7.047(2mH,100uH,100nF) 4.483V 224.150mV 20.000 20 180 10.951kHz10.983实验数据与理论值间的差异分析:误差均较小, 主要由于电路不够稳定以及读数精度造成。
5.3 LC正弦波振荡器

5.3 LC正弦波振荡器定义:采用LC谐振回路作为选频网络的反馈型振荡电路称为LC振荡器,按其反馈方式,LC振荡器可分为互感耦合式振荡器、电感反馈式振荡器和电容反馈式振荡器三种类型,其中后两种通常称为三点式振荡器。
5.3.1 互感耦合振荡器互感耦合振荡器利用互感耦合实现反馈振荡。
根据LC谐振回路与三极管不同电极的连接方式分为集电极调谐型、发射极调谐型和基极调谐型。
图5 —17 三种互感耦合振荡电路集电极调谐型电路的高频输出方面比其它两种电路稳定,而且输出幅度大,谐波成分小。
基极调谐型电路的振荡频率可以在较宽的范围内变化,且能保持输出信号振荡幅度平稳。
我们只讨论集电极调谐型电路(用得最多)。
而集电极调谐型又分为共射和共基两种类型,均得到广泛应用。
两者相比,共基调集电路的功率增益较小,输入阻抗较低,所以难于起振,但电路的振荡频率比较高,并且共基电路内部反馈较小,工作比较稳定。
互感耦合电路,变压器同名端的位置必须满足振荡的相位条件,在此基础上适当调节反馈量M总是可以满足振荡的振幅条件。
振荡起振和平衡的相位条件?判断互感耦合振荡器是否可能振荡,通常是以能否满足相位平衡条件,即是否构成正反馈为判断准则。
判断方法采用“瞬时极性法”。
瞬时极性法:首先识别放大器的组态,即共射、共基、共集。
然后根据同名端的设置判断放大器是否满足正反馈。
放大器组态的判别方法:观察放大器中晶体管与输入端和输出回路相连的电极,余下的电极便是参考端。
(后面以实例说明)①输入端接基极端,输出端接集电极,发射极为参考点(接地点),是共射组态。
共射组态为反相放大器,输入、输出信号的瞬时极性相反,如图5 —18(a)所示。
②输入端接发射极,输出端接集电极,基极为参考点(接地点),是共基组态。
共基组态为同相放大器,输入、输出信号的瞬时极性相同,如图5 —18(b)所示。
③共集:输入端接基极端,输出端接发射极,集电极为参考点(接地点),是共集组态。
实验五 三点式正弦波振荡器解析

一、实验目的
1. 掌握三点式正弦波振荡器电路的基本原理,起振条件,
振荡电路设计及电路参数计算。 2. 通过实验掌握晶体管静态工作点、反馈系数大小、负 载变化对起振和振荡幅度的影响。 3. 研究外界条件(温度、电源电压、负载变化)对振荡 器频率稳定度的影响。
二、实验内容
1.熟悉振荡器模块各元件及其作用,测量LC振荡器
振荡状态
Vp-p
Ieo
起振
振幅最大
失真
停振
2、测量振荡器输出频率范围
将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的 变化情况,记录最高频率和最低频率。
测量值
计算值
fmax fmin
3、温度对两种振荡器谐振频率的影响。
1)将加热的电烙铁靠近振荡管N1,每隔1分钟记 下频率的变化值。
振荡器的频率稳定度:在一定的时间范围内或一定的 温度、湿度、电源、电压等变化范围内振荡频率的相对变 化程度。采用稳定性好和高Q的回路电容和电感;采用与 正温度系数电感作相反变化的具有负温度系数的电容;减 小不稳定的晶体管极间电容和分布电容对振荡频率的影响。
振荡器的频率稳定度指在指定的时间间隔内,由于外界 条件的变化,引起振荡器的实际工作频率偏离标称频率 的程度。一般用下式表示:
2)开关S1交替设为“01”(LC振荡器)和“10”( 晶体振荡器)
温
2分钟
3分钟 4分钟
5分钟
波段。 2.测量LC振荡器中静态工作点对振荡器的影响。 4.测试LC振荡器与晶体振荡器的频率稳定度。
三、实验原理
1、LC三端式振荡器的基本电路
相位平衡条件: X3 = -(X1+X2) 振幅起振条件:Ao·F>1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.熟悉振荡器模块各元件及其作用,测量LC振荡器
波段。 2.测量LC振荡器中静态工作点对振荡器的影响。 4理
1、LC三端式振荡器的基本电路
相位平衡条件:
X3 = -(X1+X2) 振幅起振条件:Ao· F>1
2、
西勒振荡器原理
振荡器性能
3、电路原理图
四、实验步骤
1、振荡器静态工作点对振荡幅度的影响
将开关S1拨为“01”,S2拨为“00”,构成LC振荡器
振荡状态
起振 振幅最大不 失真 振幅最大 失真 停振
Vp-p
Ieo
2、测量振荡器输出频率范围 将频率计接于P1处,改变CC1,用示波器从TP8观察波形及
输出频率的变化情况,记录最高频率和最低频率。
振荡器的频率稳定度指在指定的时间间隔内,由于外界
条件的变化,引起振荡器的实际工作频率偏离标称频率 的程度。一般用下式表示:
晶体振荡器:石英晶体具有十分稳定的物理和化学特性,
在谐振频率附近,晶体的等效参量Lq很大,Cq很小,rq 也不大,因此晶体Q值可达百万数量级,晶体振荡器的 频率稳定度比LC振荡器高很多。
实验五 三点式正弦波振荡器
一、实验目的
1.
掌握三点式正弦波振荡器电路的基本原理,起振条件, 振荡电路设计及电路参数计算。 2. 通过实验掌握晶体管静态工作点、反馈系数大小、负 载变化对起振和振荡幅度的影响。 3. 研究外界条件(温度、电源电压、负载变化)对振荡 器频率稳定度的影响。
二、实验内容
测量值 fmax fmin 计算值
3、温度对两种振荡器谐振频率的影响。
1)将加热的电烙铁靠近振荡管N1,每隔1分钟记 下频率的变化值。 2)开关S1交替设为“01”(LC振荡器)和“10”( 晶体振荡器)
温度时间变化 LC振荡器 晶体振荡器 室温 1分钟 2分钟 3分钟 4分钟 5分钟
振幅及波形:振幅的增加主要是靠提高振荡管的静态 电流值。工作点偏高,振荡管工作范围易进入饱和区,输 出阻抗的降低将会使振荡波形严重失真,严重时,甚至使 振荡器停振。工作点低振幅减小,不易起振。
振荡器的频率稳定度:在一定的时间范围内或一定的 温度、湿度、电源、电压等变化范围内振荡频率的相对变 化程度。采用稳定性好和高Q的回路电容和电感;采用与 正温度系数电感作相反变化的具有负温度系数的电容;减 小不稳定的晶体管极间电容和分布电容对振荡频率的影响。