实验2正弦波振荡器(LC振
正弦波振荡器(LC振荡器和晶体振荡器)实验

正弦波振荡器(LC 振荡器和晶体振荡器)实验一、实验目的1.掌握电容三点式LC 振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC 振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;通过实验进一步了解调幅的工作原理。
4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。
二、实验仪器1.100M 示波器 一台2.高频信号源 一台3.高频电子实验箱 一套三、实验电路原理1.基本原理振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定波形的交变振荡能量的装置。
正弦波振荡器在电子技术领域中有着广泛的应用。
在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去的。
在超外差式的各种接收机中,是由振荡器产生一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。
振荡器的种类很多。
从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。
此实验只讨论反馈式振荡器。
根据振荡器所产生的波形,又可以把振荡器分为正弦波振荡器与非正弦波振荡器。
此实验只介绍正弦波振荡器。
常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。
按照选频网络所采用元件的不同,正弦波振荡器可分为LC 振荡器、RC 振荡器和晶体振荡器等类型。
(1)反馈型正弦波自激振荡器基本工作原理以互感反馈振荡器为例,分析反馈型正弦波自激振荡器的基本原理,其原理电路如图2-1所示。
b V bE cE -1L 2L f V bV '+-图 2-1反馈型正弦波自激振荡器原理电路当开关K 接“1”时,信号源b V 加到晶体管输入端,构成一个调谐放大器电路,集电极回路得到了一个放大了的信号F V 。
当开关K 接“2”时,信号源b V 不加入晶体管,输入晶体管是F V 的一部分b V '。
lc压控振荡器实验报告doc

lc压控振荡器实验报告篇一:实验2 振荡器实验实验二振荡器(A)三点式正弦波振荡器一、实验目的1. 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2. 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。
3. 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。
二、实验内容1. 熟悉振荡器模块各元件及其作用。
2. 进行LC振荡器波段工作研究。
3. 研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。
4. 测试LC振荡器的频率稳定度。
三、基本原理图6-1 正弦波振荡器(4.5MHz)【电路连接】将开关S2的1拨上2拨下, S1全部断开,由晶体管Q3和C13、C20、C10、CCI、L2构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI可用来改变振荡频率。
振荡频率可调范围为:?3.9799?M??f0??4.7079?M?CCI?25pCCI?5p调节电容CCI,使振荡器的频率约为4.5MHz 。
振荡电路反馈系数: F=C1356??0.12 C20470振荡器输出通过耦合电容C3(10P)加到由Q2组成的射极跟随器的输入端,因C3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。
射随器输出信号Q1调谐放大,再经变压器耦合从J1输出。
四、实验步骤根据图6-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。
1. 调整静态工作点,观察振荡情况。
1)将开关S2全拨下,S1全拨下,使振荡电路停振调节上偏置电位器RA1,用数字万用表测量R10两端的静态直流电压UEQ(即测量振荡管的发射极对地电压UEQ),使其为5.0V(或稍小,以振荡信号不失真为准),这时表明振荡管的静态工作点电流IEQ=5.0mA(即调节W1使IEQ=ICQ=UEQ/R10=5.0mA )。
2)将开关S2的1拨上,S1全拨下,构成LC振荡器。
电子电路综合实验-LC正弦波振荡器报告

LC 正弦波振荡(虚拟实验)1、 电容三点式(1)121100,400,10C nF C nF L mH ===示波器频谱仪(2)121100,400,5C nF C nF L mH ===示波器频谱仪(3)121100,1,5C nF C F L mH μ===示波器频谱仪数据表格: (C1, C2, L1) (C 1,C 2,L 1) O U •i U •增益A 相位差 谐振频率f 0 测量值 理论值 测量值 理论值 (100nF,400nF,10mH )5.972V1.486V44.0191806.025kHz5.627(100nF,400nF,5mH ) 4.698V 1.161V 4 4.047 180 7.995 kHz 7.958 (100nF,1uF,5mH )7.116V711.458mV1010.0021807.897 kHz7.465实验数据与理论值间的差异分析:增益差别不大但谐振频率差别较大, 主要是由于读数是的精度有限造成的。
由于游标以格为单位, 因此读数时选取的幅值最大的点可能与实际有差, 因而谐振频率的测量也有误差。
2、 电感三点式(1)1225,100,200L mH L H C nF μ===示波器频谱仪(2)1225,100,100L mH L H C nF μ===示波器频谱仪(3)1222,100,100L mH L H C nF μ===示波器频谱仪数据表格:(L1, L2, C2)(L1,L2,C2)OU•(V)iU•(mV)增益A 相位差谐振频率f0测量值理论值测量值(kHz)理论值(kHz)(5mH,100uH,200nF) 4.497V 89.938mV 50.001 50 180 5.039kHz 4.983 (5mH,100uH,100nF) 4.504V 90.070 mV 50.005 50 180 7.010kHz7.047(2mH,100uH,100nF) 4.483V 224.150mV 20.000 20 180 10.951kHz10.983实验数据与理论值间的差异分析:误差均较小, 主要由于电路不够稳定以及读数精度造成。
lc振荡器 实验报告

lc振荡器实验报告LC振荡器实验报告引言振荡器是电子学中常见的一个电路,它能够产生连续的交流信号。
LC振荡器是一种基本的振荡器电路,由电感(L)和电容(C)组成。
本实验旨在通过搭建LC振荡器电路并观察其振荡现象,深入理解振荡器的原理与特性。
实验材料与方法实验所需材料有:电感、电容、电阻、信号发生器、示波器、电压表、电线等。
实验步骤:1. 将电感、电容和电阻按照电路图连接好;2. 将信号发生器的输出端与电路的输入端相连;3. 将示波器的探头分别连接到电路的输出端和电压表的输出端;4. 打开信号发生器和示波器,调整信号发生器的频率和示波器的时间基准;5. 观察示波器上的波形,并记录相关数据;6. 根据实验数据分析振荡器的特性。
实验结果与讨论在实验过程中,我们通过调整信号发生器的频率和示波器的时间基准,观察到了LC振荡器的振荡现象。
在正确连接电路的前提下,当信号发生器输出的频率与振荡器的共振频率相等时,振荡器能够产生稳定的振荡信号。
我们记录了不同频率下的振荡现象,并通过示波器观察到了正弦波形。
在共振频率附近,我们观察到了振荡信号的幅值最大,而在共振频率两侧,幅值逐渐减小。
这是因为在共振频率处,电感和电容之间的能量转移达到最大,而在共振频率两侧,能量转移不完全,导致振荡信号的幅值减小。
我们还通过改变电容和电感的数值,观察到了振荡器的频率变化。
根据振荡器的公式,频率与电容和电感的数值成反比关系。
因此,通过调整电容和电感的数值,我们可以改变振荡器的频率。
此外,我们还观察到了振荡器的启动条件。
在实验中,我们发现当信号发生器的频率与振荡器的共振频率相差较大时,振荡器无法启动。
只有当两者的频率足够接近,振荡器才能启动并产生稳定的振荡信号。
这是因为振荡器需要通过电容和电感之间的能量转移来维持振荡,而频率差异过大会导致能量转移不完全,无法形成稳定的振荡。
结论通过本次实验,我们成功搭建了LC振荡器电路,并观察到了振荡现象。
实验2 正弦波振荡器(LC振荡器和晶体振荡器)

实验2 正弦波振荡器(LC振荡器和晶体振荡器)一.实验目的1.掌握电容三点式LC振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能;2.掌握LC振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。
二.实验内容1.用示波器观察LC振荡器和晶体振荡器输出波形,测量振荡器输出电压峰-峰值,并以频率计测量振荡频率;2.测量LC振荡器的幅频特性;3.测量电源电压变化对振荡器的影响;4.观察并测量静态工作点变化对晶体振荡器工作的影响。
三.实验步骤1.实验准备插装好LC振荡器和晶体振荡器模块,接通实验箱电源,按下模块上电源开关,此时模块上电源指示灯点亮。
2.LC 振荡实验(为防止晶体振荡器对LC振荡器的影响,应使晶振停振,即将3W03顺时针调到底。
)(1)西勒振荡电路幅频特性的测量3K01拨至LC振荡器,示波器接3TP02,频率计接振荡器输出口3P02。
调整电位器3W02,使输出最大。
开关3K05拨至“P”,此时振荡电路为西勒电路。
四位拨动开关3SW01分别控制3C06(10P)、3C07(50P)、3C08(100P)、3C09(200P)是否接入电路,开关往上拨为接通,往下拨为断开。
四个开关接通的不同组合,可以控制电容的变化。
例如开关“1”、“2”往上拨,其接入电路的电容为10P+50P=60P。
按照表2-1电容的变化测出与电容相对应的振荡频率和输出电压(峰-峰值V P-P),并将测量结果记于表中。
表2-1根据所测数据,分析振荡频率与电容变化有何关系,输出幅度与振荡频率有何关系,并画出振荡频率与输出幅度的关系曲线。
注:如果在开关转换过程中使振荡器停振无输出,可调整3W01,使之恢复振荡。
(2)克拉泼振荡电路幅频特性的测量将开关3K05拨至“S”,振荡电路转换为克拉泼电路。
按照上述(1)的方法,测出振荡频率和输出电压,并将测量结果记于表2-1中。
正弦波振荡器实验报告

正弦波振荡器实验报告
实验目的:验证正弦波振荡器的工作原理,并探究其参数对振荡频率的影响。
实验原理:
正弦波振荡器是一种能够产生稳定振荡信号的电路。
其基本原理是通过反馈回路将一部分输出信号重新引入到输入端,形成自激振荡。
常见的正弦波振荡器电路有震荡放大器电路和LC 震荡电路等。
实验器材:
- 正弦波振荡器电路板
- 函数发生器
- 示波器
- 电阻、电容等元器件
实验步骤:
1. 将正弦波振荡器电路与函数发生器、示波器连接起来。
2. 调节函数发生器产生一个适当的输入信号,通过示波器观察输出信号的波形。
3. 根据需要,可以调节电阻、电容等元器件的数值,观察输出信号波形的变化。
4. 记录各个参数对输出信号频率的影响。
实验结果:
根据实验步骤进行操作后,记录输出信号的波形和频率,以及各个参数的数值。
根据实验数据绘制实验曲线。
实验讨论:
根据实验结果分析各个参数对输出信号频率的影响,并探究为什么正弦波振荡器能够产生稳定振荡信号。
结论:
正弦波振荡器能够产生稳定振荡信号,并且其频率可以通过控制元器件的数值来调节。
实验结果与原理相符合,说明正弦波振荡器的工作原理有效。
实验2正弦波振荡器(LC振

实验2 正弦波振荡器(LC振荡器和晶体振荡器)一.实验目的1.掌握电容三点式LC振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能;2.掌握LC振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。
二.实验内容1.用示波器观察LC振荡器和晶体振荡器输出波形,测量振荡器输出电压峰-峰值,并以频率计测量振荡频率;2.测量LC振荡器的幅频特性;3.测量电源电压变化对振荡器的影响;4.观察并测量静态工作点变化对晶体振荡器工作的影响。
三.实验步骤1.实验准备插装好LC振荡器和晶体振荡器模块,接通实验箱电源,按下模块上电源开关,此时模块上电源指示灯点亮。
2.LC 振荡实验(为防止晶体振荡器对LC振荡器的影响,应使晶振停振,即将3W03顺时针调到底。
)(1)西勒振荡电路幅频特性的测量3K01拨至LC振荡器,示波器接3TP02,频率计接振荡器输出口3P02。
调整电位器3W02,使输出最大。
开关3K05拨至“P”,此时振荡电路为西勒电路。
四位拨动开关3SW01分别控制3C06(10P)、3C07(50P)、3C08(100P)、3C09(200P)是否接入电路,开关往上拨为接通,往下拨为断开。
四个开关接通的不同组合,可以控制电容的变化。
例如开关“1”、“2”往上拨,其接入电路的电容为10P+50P=60P。
按照表2-1电容的变化测出与电容相对应的振荡频率和输出电压(峰-峰值V P-P),并将测量结果记于表中。
表2-1根据所测数据,分析振荡频率与电容变化有何关系,输出幅度与振荡频率有何关系,并画出振荡频率与输出幅度的关系曲线。
注:如果在开关转换过程中使振荡器停振无输出,可调整3W01,使之恢复振荡。
(2)克拉泼振荡电路幅频特性的测量将开关3K05拨至“S”,振荡电路转换为克拉泼电路。
按照上述(1)的方法,测出振荡频率和输出电压,并将测量结果记于表2-1中。
正弦波振荡器实验报告

正弦波振荡器实验报告正弦波振荡器实验报告引言:正弦波振荡器是电子学中常见的一种电路,它能够产生稳定的正弦波信号。
在本次实验中,我们将通过搭建一个简单的正弦波振荡器电路,来探索正弦波振荡器的工作原理以及其在电子学中的应用。
一、实验目的本实验的主要目的有以下几点:1. 了解正弦波振荡器的基本原理;2. 学习如何搭建一个简单的正弦波振荡器电路;3. 观察并测量正弦波振荡器输出的波形特性;4. 分析正弦波振荡器的频率稳定性和幅度稳定性。
二、实验器材和原理1. 实验器材:- 信号发生器- 电容- 电感- 晶体管- 电阻- 示波器- 电压表- 电流表2. 实验原理:正弦波振荡器的基本原理是利用反馈回路中的放大器和RC(电阻-电容)网络来实现自激振荡。
在本次实验中,我们将使用一个简单的放大器电路和RC网络来构建正弦波振荡器。
三、实验步骤1. 搭建电路:根据实验原理,我们将放大器电路和RC网络按照图中的连接方式搭建起来。
确保电路连接正确且稳定。
2. 调节电路参数:通过调节电容、电感和电阻的数值,使得电路能够产生稳定的正弦波信号。
调节电路参数时,可以使用示波器来观察输出波形,并通过电压表和电流表来测量电路中的电压和电流数值。
3. 观察和测量输出波形:连接示波器,并调节示波器的设置,使其能够显示电路输出的正弦波信号。
观察输出波形的频率、幅度以及波形的稳定性。
4. 分析波形特性:通过改变电路参数,观察和测量不同条件下的输出波形特性。
分析正弦波振荡器的频率稳定性和幅度稳定性,并记录实验数据。
四、实验结果和数据分析在本次实验中,我们成功搭建了一个正弦波振荡器电路,并通过示波器观察到了稳定的正弦波输出。
通过测量电路中的电压和电流数值,我们得到了一系列实验数据。
根据实验数据,我们可以分析正弦波振荡器的频率稳定性和幅度稳定性。
频率稳定性是指正弦波振荡器输出信号的频率是否能够保持在一个稳定的数值范围内。
幅度稳定性是指输出信号的振幅是否能够保持稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验2 正弦波振荡器(LC振荡器和晶体振荡器)
一.实验目的
1.掌握电容三点式LC振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能;
2.掌握LC振荡器幅频特性的测量方法;
3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;
4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。
二.实验内容
1.用示波器观察LC振荡器和晶体振荡器输出波形,测量振荡器输出电压峰-峰值,并以频率计测量振荡频率;
2.测量LC振荡器的幅频特性;
3.测量电源电压变化对振荡器的影响;
4.观察并测量静态工作点变化对晶体振荡器工作的影响。
三.实验步骤
1.实验准备
插装好LC振荡器和晶体振荡器模块,接通实验箱电源,按下模块上电源开关,此时模块上电源指示灯点亮。
2.LC 振荡实验(为防止晶体振荡器对LC振荡器的影响,应使晶振停振,即将3W03顺时针调到底。
)
(1)西勒振荡电路幅频特性的测量
3K01拨至LC振荡器,示波器接3TP02,频率计接振荡器输出口3P02。
调整电位器3W02,使输出最大。
开关3K05拨至“P”,此时振荡电路为西勒电路。
四位拨动开关3SW01分别控制3C06(10P)、3C07(50P)、3C08(100P)、3C09(200P)是否接入电路,开关往上拨为接通,往下拨为断开。
四个开关接通的不同组合,可以控制电容的变化。
例如开关“1”、“2”往上拨,其接入电路的电容为10P+50P=60P。
按照表2-1电容的变化测出与电容相对应的振荡频率和输出电压(峰-峰值V P-P),并将测量结果记于表中。
表2-1
根据所测数据,分析振荡频率与电容变化有何关系,输出幅度与振荡频率有何关系,并
画出振荡频率与输出幅度的关系曲线。
注:如果在开关转换过程中使振荡器停振无输出,可调整3W01,使之恢复振荡。
(2)克拉泼振荡电路幅频特性的测量
将开关3K05拨至“S”,振荡电路转换为克拉泼电路。
按照上述(1)的方法,测出振荡频率和输出电压,并将测量结果记于表2-1中。
根据所测数据,分析振荡频率与电容变化有何关系,输出幅度与振荡频率有何关系,并画出振荡频率与输出幅度的关系曲线。
(3)测量电源电压变化对振荡器频率的影响
分别将开关3K05打至(S)和(P)位置,改变电源电压E C,测出不同E C下的振荡频率。
并将测量结果记于表2-2中。
其方法是:频率计接振荡器输出3P01,调整电位器3W02使输出最大,用示波器监测,测好后去掉。
选定回路电容为100P。
即3SW01“3”往上拨。
用三用表直流电压档测3TP01测量点电压,按照表2-2给出的电压值Ec,调整3W01电位器,分别测出与电压相对应的频率。
表中△f为改变Ec时振荡频率的偏移,假定Ec=10.5V时,△f=0,则△f=f-f10.5V。
根据所测数据,分析电源电压变化,对振荡频率有何影响。
3.晶体振荡器实验
(1)3K01拨至“晶体振荡器”,将示波器探头接到3TP02端,观察晶体振荡器波形,如果没有波形,应调整3W03电位器。
然后用频率计测量其输出端频率,看是否与晶体频率一致。
(2)示波器接3TP02端,频率计接3P02输出铆孔,调节3W03以改变晶体管静态工作点,观察振荡波形及振荡频率有无变化。
4.实验报告要求
(1)根据测试数据,分别绘制西勒振荡器,克拉泼振荡器的幅频特性曲线,并进行分
析比较;
(2)根据测试数据,计算频率稳定度,分别绘制克拉泼振荡器、西勒振荡器的
曲线;
(3)根据实验,分析静态工作点对晶体振荡器工作的影响;
(4)总结由本实验所获得的体会。
(1)(2)
随着电容的增大,两电路频率与输出电压均降低
(3)
静态工作点的改变会引起电流的改变,使振荡器的放大器环节倍数改变,影响输出度,可能会造成输出波形失真或者振荡器停振。
(4)这次实验,学习了正弦波振荡电路的频率,输出电压随频率变化的关系,电源电压对频率的影响。
使用和调节了示波器,锻炼了动手能力和实际操作能力。