初等模型
数学建模培训讲义-建模概论与初等模型

模型建立 建立t与n的函数关系有多种方法:
1. 右轮盘转过第 i 圈的半径为r+wi, m圈的总长度 等于录象带在时间t内移动的长度vt, 所以
m kn
模型建立
2. 考察右轮盘面积的 变化,等于录象带厚度 3. 考察t到t+dt录象带在 乘以转过的长度,即 右轮盘缠绕的长度,有
[(r wkn)2 r 2 ] wvt (r wkn)2kdn vdt
• 亲自动手,认真作几个实际题目
数学建模的论文结构
1、摘要——问题、模型、方法、结果
2、问题重述
3、模型假设
4、分析与建立模型
5、模型求解
6、模型检验
7、模型推广
8、参考文献
9、附录
谢 谢!
二、初等模型
例1 哥尼斯堡七桥问题
符号表示“一笔画问题”(抽象分析法) 游戏问题图论(创始人欧拉) 完美的回答连通图中至多两结点的度数为奇
3. 对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,
使椅子的任何位置至少有三只脚同时着地。
A
y A
椅脚连线为正方形ABCD(如右图).
模 型
t ——椅子绕中心点O旋转角度
构 f(t)——A,C两脚与地面距离之和 D
B
t
x
成 g(t)——B,D两脚与地面距离之和
O
B
f(t), g(t) 0
D
C
模型构成 由假设1,f和g都是连续函数 A
实际上, 由于测试有误差, 最好用足够多的数据作拟合。
若现有一批测试数据:
t 0 20 40 60 n 0000 1153 2045 2800 t 100 120 140 160 n 4068 4621 5135 5619
第一节初等模型

第一节初等模型解决实际问题,应尽可能用简单而且初等的方法建模,方法简单而初等,容易被更多的人理解接受和采用,就更有价值。
下面举的例子,虽然不是很复杂,但告诉我们,只要仔细地观察生活,你就会发现,在我们周围处处存在着可用数学解决的问题。
一、代数法建模[例8.1.1] 椅子问题在我们周围的日常生活中,到处都会遇到数学问题,就看我们是否留心观察和善于联想,比如有这样一个问题(你或许认为这个问题与数学毫不相干):4条腿长度相等的椅子放在起伏不平的地面上,4条腿能否一定同时着地?模型假设:(1)椅子的四条腿一样长,4脚的连线是正方形。
(2)地面是数学上的光滑曲面,即沿任意方向,切面能连续移动。
建模的关键在于恰当地寻找表示椅子位置的变量,并把要证明的“着地”这个结论归结为某个简单的数学关系。
假定椅子中心不动,4条腿着地点视为几何学上的点,用A、B、C、D表示,将AC、BD连线看作x轴、y轴,建立如图8.1.1所示的坐标系。
引入坐标系后,将几何问题代数化,即用代数方法去研究这个几何问题。
图8.1.1人们习惯于,当一次放不平稳椅子时,总是转动一下椅子(这里假定椅子中心不动),因而将转动椅子联想到坐标轴的旋转。
设为对角线AC转动后与初始位置x轴夹角,如果定义距离为椅脚到地面的竖直长度。
则“着地”就是椅脚与地面的距离等于零,由于椅子位于不同位置,椅脚与地面距离不同,因而这个距离为的函数,设──A、C两脚与地面距离之和;──B、D两脚与地面距离之和。
因地面光滑,显然,连续,而椅子在任何位置总有三只脚可同时“着地”,即对任意的,,总有一个为零,有。
不失一般性,设于是椅子问题抽象成如下数学问题:假设:,是的连续函数,且对任意,。
求证:存在,使得。
证明:令,则将椅子转动,对角线互换,由和,有,,从而。
而在上连续,由介值定理,必存在使得。
即。
又因对任意,从而。
即在方向上椅子四条腿能同时“着地”。
椅子问题的解决是学习运用类比法的一个很好实例,从中可受到一定启发,学习到一些建模技巧:转动椅子与坐标轴旋转联系起来;用一元变量表示转动位置;巧妙地将“距离”用的函数表示,而且只设两个函数,(注意椅子有4只脚!);由三点定一平面得到;利用转动并采用了介值定理使得问题解决得非常巧妙而简单。
姜启源《数学模型》第四版第二章初等模型-PPT文档资料-课件-PPT文档资料

决定信道长度和线密度大小的主要因素是所用 激光的波长,和驱动光盘的机械形式.
调查和分析 数据容量 • 信道长度
• 线密度 激光波长
• 激光波长 • 驱动形式
• 当光盘运转时激光束要能识别出信道上的凹坑 所携带的信息,必须精确地聚焦.
• 光的衍射使激光束在光盘上形成圆状的光斑.
• 为了提高存储数据的线密度,应该使光斑尽量小, 而光斑的大小与激光波长成正比.
每一圈螺旋线上存储 同等数量的数据信息
各圈螺旋线上数据 的线密度不变
容量取决于最内圈的长 度、线密度以及总圈数
容量取决于固定的线 密度和螺旋线总长度
从光盘的容量比较,CLV优于CAV.
数据读取时间: CLV每圈转速不同,当读出磁头在内外 圈移动时,需要等待光盘加速或减速,而CAV不需要.
对音乐、影像、计算机文件等按顺序播放的信息,多用CLV; 对词典、数据库、人机交互等常要随机查找的信息,多用CAV.
蓝色(DVD) 0.41
28,055,895 22,445
603
CD信道长度在5km以上,容量约680 MB; DVD容量在 GB量级.
影像时间按照每秒钟占用0.62 MB计算 .
模型求解
CAV(恒定角速度)光盘
LCAV
2R1
R2 R1 d
R
2 2
2d
R1=R2/2时LCAV最大
CCAVLCAV
激光器 激光波长 (μm)
shk1, k2
hl d
建模 记单层玻璃窗传导的热量Q2 室
T T
Q2 k1
1Hale Waihona Puke 22dQ1
k1
T1 T2 d(s2)
内 T1
双层与单层窗传导的热量之比
数据建模:初等模型

2、洪德(dHondt)规则
分配办法是:把各党代表的选民数分别被1、2、3、… 除,按所有商数的大小排序,席位按此次序分配。由于A 党代表的选民数的三分之一比D党代表的选民的人数还多, 那么给A党3席、给D党0席也是合理的。
A党 199,000(1) 99,500 (4) 66,333 (5) B党 127,500(2) 63,750 42,500 C党 62,000 41,333 D党 24,750 16,500 124,000(3) 49,500
p1/n1– p2/n2=5 但后者对A的不公平 程度已大大降低!
“公平”分配方 将绝对度量改为相对度量 法
若 p1/n1> p2/n2 ,定义
p1 / n1 p2 / n2 rA (n1 , n2 ) ~ 对A的相对不公平度 p2 / n2
类似地定义 rB(n1,n2)
公平分配方案应 使 rA , rB 尽量小
比 例 加 惯 例
人数 (%) 比例 甲 乙 丙 103 51.5来自63 34 31.5 17.0
总和 200
100.0
20.0
20
对 比例 结果 丙 10.815 11 系 6.615 7 公 3.570 3 平 吗 21.000 21
“公平”分配方 衡量公平分配的数量指标 法 人数 席位
A方 B方 p1 p2 n1 n2
初等模型
如果研究对象的机理比较简单,一般用静态、线 性、确定性模型描述就能达到建模目的时,我们 基本上可以用初等数学的方法来构造和求解模型。 通过若干实例我们能够看到,用很简单的数学方 法已经可以解决一些饶有趣味的实际问题。 需要强调的是,衡量一个模型的优劣全在于它的 应用效果,而不是采用了多么高深的数学方法。 进一步说,如果对于某个实际问题我们用初等的 方法和所谓高等的方法建立了两个模型,它们的 应用效果相差无几,那么受到人们欢迎并采用的, 一定是前者而非后者。
数学建模初等模型ppt课件

问题分析 通常 ~ 三只脚着地 放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚
模 连线呈正方形;
型 假
• 地面高度连续变化,可视为数学上的连续
设 曲面;
• 地面相对平坦,使椅子在任意位置至少三
只脚同时着地。
理学院 4
模型构成
xx
用数学语言把椅子位置和四只脚着地的关系表示出来
质, 必存在0 , 使h(0)=0, 即f(0) = g(0) . 因为f() • g()=0, 所以f(0) = g(0) = 0.
评注和思考 建模的关键 ~ 和 f(), g()的确定
假设条件的本质与非本质 考察四脚呈长方形的椅子
理学院 7
xx
2.1.2 分蛋糕问题
妹妹过生日,妈妈做了一块边界形状任意的 蛋糕,哥哥也想吃,妹妹指着蛋糕上的一点 对哥哥说,你能过这一点切一刀,使得切下 的两块蛋糕面积相等,就把其中的一块送给 你。哥哥利问题用归高结等为数如学下知一识道证解明决题了:这个问题,
11
理学院
xx
数学模型为
10
y y1 y2 10 x 41.6 10 x 5 2.4 15 41.6
0 x4
4 x 15 15 x
0.8
t 2.5
计算起来很简单。
理学院 12
xx
2.1.4 蚂蚁逃跑问题
数学建模
(Mathematical Modeling)
1
xx
第二章 初等模型
理学院 2
黑
第二章 初等模型
龙
江
生活中的问题
科
技
极限、最值、积分问题的初等模型
中考数学十大模型

中考数学十大模型中考数学是学生的必修课程之一,对于许多学生来说,数学是一个困难的学科。
然而,在中考数学考试中,有一些常见的数学模型可以帮助学生更好地理解和掌握数学知识。
下面将介绍中考数学中的十大模型。
1.几何模型:在中考数学中,几何是一个非常重要的部分。
通过几何模型,学生可以更好地理解和运用几何知识,如三角形、四边形、圆等。
几何模型可以帮助学生更好地理解空间关系和形状属性。
2.代数模型:代数是中考数学中的另一个重要部分。
通过代数模型,学生可以更好地理解和运用代数知识,如方程、不等式、函数等。
代数模型可以帮助学生更好地解决实际问题和提高数学计算能力。
3.统计模型:统计是数学中的一个重要分支,通过统计模型,学生可以更好地理解和运用统计知识,如概率、样本调查、数据分析等。
统计模型可以帮助学生更好地理解数据和做出正确的决策。
生可以更好地理解和运用函数知识,如线性函数、二次函数、指数函数等。
函数模型可以帮助学生更好地描述和分析实际问题。
5.图形模型:在中考数学中,图形是一个常见的题型,通过图形模型,学生可以更好地理解和分析各种图形,如折线图、饼状图、柱状图等。
图形模型可以帮助学生更准确地表示和比较数据。
6.初等模型:初等数学是中考数学的基础,通过初等模型,学生可以更好地掌握基本的数学运算和基本的数学概念,如加减乘除、分数、百分数等。
初等模型可以帮助学生建立数学基础,为进一步学习数学打下坚实的基础。
7.空间模型:空间是几何的重要组成部分,通过空间模型,学生可以更好地理解和运用空间知识,如平行线、垂直线、平行四边形等。
空间模型可以帮助学生更好地理解几何问题和解决实际问题。
8.时间模型:时间是统计中的重要概念,通过时间模型,学生可以更好地理解和运用时间知识,如时间单位、时间比较、时间序列等。
时间模型可以帮助学生更好地描述和分析时间数据。
生可以更好地理解和运用测量知识,如长度、面积、体积等。
测量模型可以帮助学生更准确地测量物体的大小和形状。
数学建模初等模型

数学建模初等模型
数学建模是将现实世界的问题抽象化为数学模型,并利用数学方法和技巧来分析和解决这些问题的过程。
在数学建模中,初等模型是指使用基本的数学概念和方法来描述和解决问题的模型。
常见的初等模型包括线性模型、指数模型、对数模型、多项式模型等。
线性模型是最简单的初等模型之一,它假设变量之间的关系是线性的,可以用直线来表示。
指数模型描述的是变量之间的指数关系,对数模型则描述的是变量之间的对数关系。
多项式模型可以用多项式函数来描述变量之间的关系。
使用初等模型进行数学建模时,我们需要确定问题中的关键变量和它们之间的关系,然后建立数学方程或函数来表示这些关系。
通过对这些方程或函数进行求解和分析,我们可以得到问题的解答或结论。
初等模型的优点是简单易懂,容易理解和应用。
它适用于一些简单的实际问题,例如人口增长、物体运动、投资收益等。
但初等模型也有一些限制,它对问题的描述和解决方法有一定的限制性,不能很好地处理复杂的问题。
总之,初等模型是数学建模中的一种简单模型,通过使用基本的数学
概念和方法来描述和解决问题。
它易于理解和应用,适用于一些简单的实际问题。
但在处理复杂问题时,可能需要借助更高级的数学模型和技巧来进行建模和分析。
浙江大学数学建模——初等模型(杨起帆)

若设k=0.05并仍设 t=4秒,则可求 得h≈73.6米。
进一步深入考虑
多测几次,取平均
听到回将声e-再kt用按泰跑勒表公,式计展算开得并到令的k时→间值0+中包,含即了可 反应时间
不妨设得平出均前反面应不时考间虑为空0气.1阻秒力,时假的如结仍果设。t=4秒,扣除反
应时间后应 为3.9秒,代入 式①,求得h≈69.9米。
汇合点即可p必求位出于P点此的圆坐上标。和
θ2 的值。
y(ta1)nxb(护卫舰的路线本方模程型)虽简单,但分析
y(ta2n )xb(航母的路线方极程清)晰且易于实际应用
§2.2 双层玻璃的功效
在寒冷的北方, 许多住房的 玻璃窗都是双层 玻璃的,现在我们来建立一个简单 的数学模 型,研究一不下妨双可层以玻提璃出到以底下有假多设:大的功效。 比较两座其1他、条设件室完内热全量相的同流的失房是屋热,传导它们 的 差异仅仅在引 流窗起。户的不,同不。存在户内外的空气对
A(0,b)
θ1
x2 (y b )2 a 2[x2 (y-b )2]
O B(0,-b)
θ2 护卫舰
可化为:
X
x2ya a2 2 1 1b2
4a2b2 (a21)2
令: ha21b,r 2ab a21 a21
则上式可简记成 :
x2(y-h)2r2
解得: Ta1 2 k1(lk1kl2)d/(T k12d)T2
k1T1(12 k1 ldk k1 2 ldk )T 21 dT2 k1d2T 1k 1lT2 k2d
f(h)
室 外
T2
室1 0.9内
类似有
k1
T1 T2 2d
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章
部分习题
3. 在2.5节中考虑8人艇分重量级组(桨手体重不超过86kg )和轻量级组(桨手体重不超过73kg )建立模型说明重量级组的成绩比轻量级组大约好5%
9. 用宽w 布条缠绕直径d 的圆形管道,要求布条
不重叠,问布条与管道轴线的夹角α应多大(如
图)。
若知道长度,需用多长的布条(可考虑两端
的影响)。
如果管道是其它形状呢
16. 雨滴的速度v 与空气密度ρ、粘滞系数μ和
重力加速度g 有关,其中粘滞系数的定义是:运
动物体在六题中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式
17. 原子弹爆炸时巨大的能量从爆炸点以冲击波形式向四周传播,据分析在时刻t 冲击波达到的半径r 与释放的能量e ,大气密度ρ,大气压强p 有关(设0=t 时0=r )用量纲分 析方法证明⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=32655
/12
ρφρe t p et r ,φ是未定函数 参考答案
3. 由模型假设3,划桨功率p 与体重ω成正比,而桨手数8=n 不变,所以2.5节(2)式改为()3/1/s v ω∝。
记重量级组和轻量级组的体重、艇速、比赛成绩和艇的浸没面积分别为
21212121,,,,,,,s s t t v v ωω,则3/1213/1121221⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==s s v v t t ωω。
估计21/s s 的大小:重量级组体
重大,会使浸没面积增加,单艇身略大,又会使浸没面积减少,因而21/s s 不会超过1.05。
代入861=ω,732=ω可得96.0/21≈t t .
9. 将管道展开如图,可得απωcos d =,若d 一定,0,;2/,0→→→→απωπαωd 若管道长度为l ,不考虑两端的影响时布条长度显然为ωπ/dl ,若考虑两端的影响,则应加上
αωπsin /d ,对于其他形状管道,只需将d π改为相应的周长即可
16. 设()[]11,0,,,--==T ML g v f μμρ 解得(),,0,2/12/1121--==g vr F πππ 2/112/12/32g r --=μρπ于是()μρϕ/2/12/3g r rg v =,ϕ是未定函数.
17. 设()0,,,,=t r p e f ρ 解得(),,0,251121--==t r e F ρπππ 65322t p e --=ρπ于是
⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=32655/12
ρϕρe t p et r。