2019年江苏省南通市如东县中考数学一模试卷(解析版)
江苏省南通市中考数学模拟试卷(word版,含解析)

南通市2019年初中毕业、升学考试试卷解析数 学一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1. 2的相反数是A .2-B .21-C .2D .21 考点:相反数的定义解析: 2的相反数是2- ,选A2. 太阳半径约为696000km ,将696000用科学记数法表示为A .696×103B .69.6×104C .6.96×105D .0.696×106考点:科学记数法解析:将696000用科学记数法表示为6.96×105,选C 3. 计算x x 23-的结果是 A .26xB .x 6 C .x25 D .x1考点:分式的减法 解析:x x 23-=x1,选D 4. 下面的几何图形:其中是轴对称图形但不是中心对称图形的共是A . 4个B .3个C .2个D .1个考点:轴对称图形,中心对称图形,正方形、正多边形和等腰三角形的性质 解析:是轴对称图形但不是中心对称图形有等腰三角形、正五边形,共两个,选C 5. 若一个多边形的外角和与它的内角和相等,则这个多边形是A .三角形B .四边形C .五边形D .六边形考点:多边形的内角和解析:多边形的外角和为360,多边形的外角和与它的内角和相等,则内角和为360,为四边形,等腰三角形正方形正五边形圆选B 6. 函数y =112--x x 中,自变量x 的取值范围是 A .21≤x 且1≠x B .21≥x 且1≠xC .21>x 且1≠x D .21<x 且1≠x 考点:二次根式的意义,分式的意义,函数自变量的取值范围解析:由⎩⎨⎧≠-≥-01012x x ,解得21≥x 且1≠x ,选B7. 如图为了测量某建筑物MN 的高度,在平地上A 处测得建筑物 顶端M 的仰角为30°,沿N 点方向前进16 m 到达B 处,在B 处 测得建筑物顶端M 的仰角为45°,则建筑物MN 的高度等于A .8(3+1)mB . 8 (3—1) mC . 16 (3+1) mD .16(3-1)m考点:锐角三角函数 解析:由1645tan 30tan =- MN MN ,得)13(81316+=-=MN m ,选A 8. 如图所示的扇形纸片半径为5 cm ,用它围成一个圆锥的侧面,该圆锥的高是4 cm ,则该圆锥的底面周长是A .π3 cmB .π4 cmC .π5 cmD .π6 cm考点:扇形、弧长公式,圆周长,圆锥侧面展开图解析:圆锥底面圆的半径为34522=-cm ,该圆锥的底面周长是π6cm 9. 如图,已知点)1,0(A ,点B 是x 轴正半轴上一动点,以AB 为边作等腰 直角三角形ABC ,使点C 在第一象限,90=∠BAC .设点B 的横坐标为x ,点C 的纵坐标为y ,则表示y 与x 的函数关系的图像大致是考点:函数图象,数形结合思想解析:过C 点作y CD ⊥轴,易得ACD ∆≌BAO ∆全等;OB AD =∴ 设点B 的横坐标为x ,点C 的纵坐标为y ;则x y =-1(0>x );1+=x y (0>x ),故选A10.平面直角坐标系xOy 中,已知)0,1(-A 、)0,3(B 、)1,0(-C 三点,),1(m D 是一个动点,当 (第8题)(第9题)(第9题)ACD ∆周长最小时,ABD ∆的面积为A .31 B .32 C .34 D .38 考点:最短路径问题解析:D 为直线1=x 上一动点,点A 、B 关于直线1=x 对称,连接BC 直线BC 方程为:131-=x y ,右图为ACD∆周长最小,)32,1(-D 此时 ABD ∆的面积为3443221=⨯⨯,选C二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答.题卡相应位置......上) 11.计算25x x ⋅= ▲ . 考点:幂的运算 解析:25x x ⋅=7x12.已知,如图,直线AB ,CD 相交于点O ,OE ⊥AB ,∠COE =60°,则∠BOD 等于 ▲ 度. 考点:相交线,对顶角,垂直,余角解析:OE ⊥AB ,∠COE =60°,则∠BOD=∠AOC=3013.某几何体的三视图如图所示,则这个几何体的名称是 ▲ . 考点:三视图,圆柱解析:由几何体的三视图可知,该几何体为圆柱14.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,A 的值是 ▲ . 考点:直角三角形斜边中线等于斜边的一半,锐角三角函数 解析:直角三角形斜边中线等于斜边的一半,CD =2,则AB=4,cos A =43=AB AC15.已知一组数据5,10,15,x ,9的平均数是8,那么这组数据的中位数是 ▲ . 考点:平均数,中位数EDC B AOABDC(第14题)解析:85915105=++++x ,1=x ,这组数据的中位数是916.设一元二次方程0132=--x x 的两根分别是1x ,2x ,则)3(22221x x x x -+= ▲考点:一元二次方程根的概念,一元二次方程根与系数的关系解析:2x 是一元二次方程0132=--x x 的根,∴013222=--x x ,13222=-x x ,则3)3(2122221=+=-+x x x x x x17.如图,BD 为正方形ABCD 的对角线,BE 平分DBC ∠,交DC 于点E ,将BCE ∆绕点C 顺时针旋转90得到DCF ∆,若CE=1cm 考点:角平分线的性质,勾股定理,正方形 解析:BE 平分DBC ∠,则GE=CE=1cm DG=GE=1cm ;2=DE cm,BC=CD=1)2(+cm;)22(+=∴BF cm18.平面直角坐标系xOy 中,已知点),(b a 在直线222++=m mx y 04)21(2222=+++-+b m bm b a ,则=m ▲ .考点:配方法;求根公式解析:已知点),(b a 在直线222++=m mx y (0>m )上,222++=∴m ma b (*)代入04)21(2222=+++-+b m bm b a 整理得:0)()2(22=++-m a m b 解得⎩⎨⎧=-=m b ma 2回代到 (*)式得22222++-=m m m ,即0222=-+m m ,解得31±-=m ,又0>m ,13-=∴m三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分)(1)计算4)5()1(202--+-+-;(2) 解方程组:⎩⎨⎧-=-=+52392y x y x考点:(1)非零数的零次幂等于1,实数运算 (2)二元一次方程的解法 解析:(1)原式=22112=-++(2)①+②,得:1,44==x x ;代入①,得4=y ,⎩⎨⎧==∴4,1y x 20.(本小题满分8分)(第17题)解不等式组⎩⎨⎧+>++<-71533315x x x x ,并写出它的所有所有整数解.考点:一元一次不等式组解析:解:由①,得2<x ,由②,得4->x ;所以不等式组的解集为24<<-x ;它的整数解1,0,1,2,3---21.(本小题满分9分)某水果批发市场新进一批水果,有苹果、西瓜、桃子和香蕉四个品种,统计后将结果绘制成条形图(如图).已知西瓜的重量占这批水果总重量的40%. 回答下列问题:(1)这批水果总重量为 ▲ kg ; (2)请将条形图补充完整;(3)若用扇形图表示统计结果,则桃子 所对应扇形的圆心角为 ▲ 度. 考点:条形图、扇形图,条形图的画法,统计 解析:(1)4000(2)1200200100016004000=---补全统计图如下:(3)9022.(本小题满分7分)在不透明的袋子里装有红色、绿色小球各一个,除颜色外无其他差别.随机摸出一个小球后,放回并摇匀,再随即摸出一个,求两次都摸到红色小球的概率. 考点:树形图,随机事件等可能性 解析:画出树形图如下:从树形图看出,所有可能出现的结果共有4种,两次都摸到红色小球的情况有1种.重量(kg 重量(kg第一次第二次 红绿 绿红绿∴两次都摸到红色小球的概率为4123.(本小题满分8分) 列方程解应用题:某列车平均提速h km /60,用相同的时间,该列车提速前行使km 200,提速后比提速前多行使km 100,求提速前该列车的平均速度.考点:二元一次方程应用题解析:设提速前该列车的平均速度为v h km /,行使的相同时间为t h由题意得:⎩⎨⎧=+=300)60(,200t v vt 解得:⎪⎩⎪⎨⎧==35120t v答:提速前该列车的平均速度为h km / 120 24.(本小题满分9分)已知:如图,AM 为⊙O 的切线,A 为切点,过⊙O 上一点B 作AM BD ⊥于点D ,BD 交⊙O 于C ,OC 平分AOB ∠(1)求AOB ∠的度数;(2)若⊙O 的半径为2 cm ,求线段CD 的长.考点:圆的切线,角平分线,直线平行,三角形的内角和。
江苏省南通市2019-2020学年中考数学一模考试卷含解析

江苏省南通市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是抛物线y 1=ax 2+bx+c (a≠0)图象的一部分,其顶点坐标为A (﹣1,﹣3),与x 轴的一个交点为B (﹣3,0),直线y 2=mx+n (m≠0)与抛物线交于A ,B 两点,下列结论:①abc >0;②不等式ax 2+(b ﹣m )x+c ﹣n <0的解集为﹣3<x <﹣1;③抛物线与x 轴的另一个交点是(3,0);④方程ax 2+bx+c+3=0有两个相等的实数根;其中正确的是( )A .①③B .②③C .③④D .②④2.如图,⊙O 的半径为1,△ABC 是⊙O 的内接三角形,连接OB 、OC ,若∠BAC 与∠BOC 互补,则弦BC 的长为( )A .3B .23C .33D .1.533.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( )A .3.386×108B .0.3386×109C .33.86×107D .3.386×1094.如图,Rt AOB V 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A .B .C .D .5.已知关于x 的不等式组﹣1<2x+b <1的解满足0<x <2,则b 满足的条件是( )A.0<b<2 B.﹣3<b<﹣1 C.﹣3≤b≤﹣1 D.b=﹣1或﹣3 6.如图,在平行四边形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④B.②和③C.③和④D.②和④7.如图,AB∥CD,FE⊥DB,垂足为E,∠1=60°,则∠2的度数是()A.60°B.50°C.40°D.30°8.下列各数3.1415926,227-,39,π,16,5中,无理数有()A.2个B.3个C.4个D.5个9.2014 年底,国务院召开了全国青少年校园足球工作会议,明确由教育部正式牵头负责校园足球工作.2018 年2 月 1 日,教育部第三场新春系列发布会上,王登峰司长总结前三年的工作时提到:校园足球场地,目前全国校园里面有 5 万多块,到2020 年要达到85000 块.其中85000 用科学记数法可表示为()A.0.85 ⨯ 105B.8.5 ⨯ 104C.85 ⨯ 10-3D.8.5 ⨯ 10-410.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b211.关于x的不等式组312(1)x mx x-<⎧⎨->-⎩无解,那么m的取值范围为( )A.m≤-1 B.m<-1 C.-1<m≤0D.-1≤m<012.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是().A.线段EF的长逐渐增大B.线段EF的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =6cm ,动点P 从点A 出发,沿AB 方向以每秒2cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒lcm 的速度向终点C 运动,将△PQC沿BC 翻折,点P 的对应点为点P′,设Q 点运动的时间为t 秒,若四边形QP′CP 为菱形,则t 的值为_____.14.化简二次根式3a -的正确结果是_____.15.若从 -3,-1,0,1,3这五个数中随机抽取一个数记为a ,再从剩下的四个数中任意抽取一个数记为b ,恰好使关于x ,y 的二元一次方程组21x y b ax y -=⎧⎨+=⎩有整数解,且点(a ,b)落在双曲线3y x =-上的概率是_________.16.对于函数n m y x x =+,我们定义11n m y nx mx --'=+(m 、n 为常数).例如42y x x =+,则342y x x '=+.已知:()322113y x m x m x =+-+.若方程0y '=有两个相等实数根,则m 的值为__________. 17.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出2个球,都是黄球的概率为 .18.计算:38-﹣|﹣2|+(13)﹣1=_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知:AD 和 BC 相交于点 O ,∠A=∠C ,AO=2,BO=4,OC=3,求 OD 的长.20.(6分)已知,关于x 的方程x 2+2x-k=0有两个不相等的实数根.(1)求k 的取值范围;(2)若x 1,x 2是这个方程的两个实数根,求121211x x x x +++的值; (3)根据(2)的结果你能得出什么结论?21.(6分)已知关于x 的方程x 2﹣6mx+9m 2﹣9=1.(1)求证:此方程有两个不相等的实数根;(2)若此方程的两个根分别为x1,x2,其中x1>x2,若x1=2x2,求m的值.22.(8分)我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图1中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=22时,a=,b=;如图2,当∠ABE=10°,c=4时,a=,b=;归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图1证明你发现的关系式;拓展应用(1)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=25,AB=1.求AF的长.23.(8分)观察下列等式:22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③…第④个等式为;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.24.(10分)如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A(2,1).(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的函数表达式;(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.25.(10分)如图,已知AB为⊙O的直径,AC是⊙O的弦,D是弧BC的中点,过点D作⊙O的切线,分别交AC、AB的延长线于点E和点F,连接CD、BD.(1)求证:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的长.26.(12分)某街道需要铺设管线的总长为9000m,计划由甲队施工,每天完成150m.工作一段时间后,y m与甲队工作时间x(天)因为天气原因,想要40天完工,所以增加了乙队.如图表示剩余管线的长度()之间的函数关系图象.(1)直接写出点B的坐标;(2)求线段BC所对应的函数解析式,并写出自变量x的取值范围;(3)直接写出乙队工作25天后剩余管线的长度.27.(12分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B 点的切线交OP于点C.求证:∠CBP=∠ADB.若OA=2,AB=1,求线段BP的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】①错误.由题意a >1.b >1,c <1,abc <1;②正确.因为y 1=ax 2+bx+c (a≠1)图象与直线y 2=mx+n (m≠1)交于A ,B 两点,当ax 2+bx+c <mx+n 时,-3<x <-1;即不等式ax 2+(b-m )x+c-n <1的解集为-3<x <-1;故②正确;③错误.抛物线与x 轴的另一个交点是(1,1);④正确.抛物线y 1=ax 2+bx+c (a≠1)图象与直线y=-3只有一个交点,方程ax 2+bx+c+3=1有两个相等的实数根,故④正确.【详解】解:∵抛物线开口向上,∴a >1,∵抛物线交y 轴于负半轴,∴c <1,∵对称轴在y 轴左边,∴-2b a<1, ∴b >1,∴abc <1,故①错误.∵y 1=ax 2+bx+c (a≠1)图象与直线y 2=mx+n (m≠1)交于A ,B 两点,当ax 2+bx+c <mx+n 时,-3<x <-1;即不等式ax 2+(b-m )x+c-n <1的解集为-3<x <-1;故②正确,抛物线与x 轴的另一个交点是(1,1),故③错误,∵抛物线y 1=ax 2+bx+c (a≠1)图象与直线y=-3只有一个交点,∴方程ax 2+bx+c+3=1有两个相等的实数根,故④正确.故选:D .本题考查二次函数的性质、二次函数与不等式,二次函数与一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.2.A【解析】分析:作OH⊥BC于H,首先证明∠BOC=120,在Rt△BOH中,BH=OB•sin60°=1×3,即可推出BC=2BH=3,详解:作OH⊥BC于H.∵∠BOC=2∠BAC,∠BOC+∠BAC=180°,∴∠BOC=120°,∵OH⊥BC,OB=OC,∴BH=HC,∠BOH=∠HOC=60°,在Rt△BOH中,BH=OB•sin60°=1×32=32,∴3.故选A.点睛:本题考查三角形的外接圆与外心、锐角三角函数、垂径定理等知识,解题的关键是学会添加常用辅助线.3.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:数字338 600 000用科学记数法可简洁表示为3.386×108故选:A本题考查科学记数法—表示较大的数.4.D【解析】【分析】Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t 之间的函数关系式,由函数解析式来选择图象.【详解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=12×OD×CD=12t2(0≤t≤3),即S=12t2(0≤t≤3).故S与t之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;故选D.【点睛】本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.5.C【解析】【分析】根据不等式的性质得出x的解集,进而解答即可.【详解】∵-1<2x+b<1∴1122b bx---<<,∵关于x的不等式组-1<2x+b<1的解满足0<x<2,∴12122bb--⎧≥⎪⎪⎨-⎪≤⎪⎩,解得:-3≤b≤-1,故选C.【点睛】此题考查解一元一次不等式组,关键是根据不等式的性质得出x的解集.6.D【解析】∵四边形ABCD是平行四边形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②与④不一定成立,∵当四边形是菱形时,②和④成立.故选D.7.D【解析】【分析】由EF⊥BD,∠1=60°,结合三角形内角和为180°即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.【详解】解:在△DEF中,∠1=60°,∠DEF=90°,∴∠D=180°-∠DEF-∠1=30°.∵AB∥CD,∴∠2=∠D=30°.故选D.【点睛】本题考查平行线的性质以及三角形内角和为180°,解题关键是根据平行线的性质,找出相等、互余或互补的角.8.B【解析】【分析】根据无理数的定义即可判定求解.【详解】在3.1415926,227-π4=,3.1415926,227-是有理数,π3个, 故选:B .【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:2ππ,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.B【解析】【分析】根据科学记数法的定义,科学记数法的表示形式为a×10 n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,等于这个数的整数位数减1.【详解】解:85000用科学记数法可表示为8.5×104, 故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.B【解析】【分析】根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b )1=a 1±1ab+b 1.可巧记为:“首平方,末平方,首末两倍中间放”可得答案.【详解】A 选项:4x 3•1x 1=8x 5,故原题计算正确;B 选项:a 4和a 3不是同类项,不能合并,故原题计算错误;C 选项:(-x 1)5=-x 10,故原题计算正确;D 选项:(a-b )1=a 1-1ab+b 1,故原题计算正确;故选:B .【点睛】考查了整式的乘法,关键是掌握整式的乘法各计算法则. 11.A 【解析】【分析】先求出每一个不等式的解集,然后再根据不等式组无解得到有关m 的不等式,就可以求出m 的取值范围了.【详解】()03121x m x x -<⎧⎪⎨->-⎪⎩①②,解不等式①得:x<m , 解不等式②得:x>-1,由于原不等式组无解,所以m≤-1, 故选A.【点睛】本题考查了一元一次不等式组无解问题,熟知一元一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键. 12.C 【解析】 【分析】因为R 不动,所以AR 不变.根据三角形中位线定理可得EF=12AR ,因此线段EF 的长不变. 【详解】 如图,连接AR ,∵E 、F 分别是AP 、RP 的中点, ∴EF 为△APR 的中位线, ∴EF=12AR ,为定值. ∴线段EF 的长不改变. 故选:C . 【点睛】本题考查了三角形的中位线定理,只要三角形的边AR 不变,则对应的中位线的长度就不变. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.1 【解析】作PD ⊥BC 于D ,PE ⊥AC 于E ,如图,AP=2t ,BQ=tcm ,(0≤t <6) ∵∠C=90°,AC=BC=6cm , ∴△ABC 为直角三角形, ∴∠A=∠B=45°,∴△APE 和△PBD 为等腰直角三角形, ∴PE=AE=22AP=tcm ,BD=PD , ∴CE=AC ﹣AE=(6﹣t )cm , ∵四边形PECD 为矩形, ∴PD=EC=(6﹣t )cm , ∴BD=(6﹣t )cm ,∴QD=BD ﹣BQ=(6﹣1t )cm ,在Rt △PCE 中,PC 1=PE 1+CE 1=t 1+(6﹣t )1,在Rt △PDQ 中,PQ 1=PD 1+DQ 1=(6﹣t )1+(6﹣1t )1, ∵四边形QPCP′为菱形, ∴PQ=PC ,∴t 1+(6﹣t )1=(6﹣t )1+(6﹣1t )1, ∴t 1=1,t 1=6(舍去), ∴t 的值为1. 故答案为1.【点睛】此题主要考查了菱形的性质,勾股定理,关键是要熟记定理的内容并会应用 . 14.﹣a -【解析】30a -≥Q ,0a ∴≤ .32a a a a -=-⋅=-- .15.320【解析】分析:根据题意可以写出所有的可能性,然后将所有的可能性代入方程组21x y b ax y -=⎧⎨+=⎩和双曲线3y x =-,找出符号要求的可能性,从而可以解答本题.详解:从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a ,再从剩下的四个数中任意抽取一个数记为b ,则(a ,b )的所有可能性是:(﹣3,﹣1)、(﹣3,0)、(﹣3,1)、(﹣3,3)、 (﹣1,﹣3)、(﹣1,0)、(﹣1,1)、(﹣1,3)、 (0,﹣3)、(0,﹣1)、(0,1)、(0,3)、 (1,﹣3)、(1,﹣1)、(1,0)、(1,3)、(3,﹣3)、(3,﹣1)、(3,0)、(3,1),将上面所有的可能性分别代入关于x ,y 的二元一次方程组21x y b ax y -=⎧⎨+=⎩有整数解,且点(a ,b )落在双曲线3y x =-上的是:(﹣3,1),(﹣1,3),(3,﹣1),故恰好使关于x ,y 的二元一次方程组21x y b ax y -=⎧⎨+=⎩有整数解,且点(a ,b )落在双曲线3y x =-上的概率是:320.故答案为320. 点睛:本题考查了列表法与树状图法,解题的关键是明确题意,写出所有的可能性. 16.12【解析】分析:根据题目中所给定义先求y ',再利用根与系数关系求m 值.详解:由所给定义知,2221y x m x m '=+-+,若22210x m x m +-+=,22414m m =--⨯n ()=0,解得m=12. 点睛:一元二次方程的根的判别式是()200ax bx c a ++=≠,△=b 2-4ac,a,b,c 分别是一元二次方程中二次项系数、一次项系数和常数项. △>0说明方程有两个不同实数解, △=0说明方程有两个相等实数解, △<0说明方程无实数解.实际应用中,有两种题型(1)证明方程实数根问题,需要对△的正负进行判断,可能是具体的数直接可以判断,也可能是含字母的式子,一般需要配方等技巧.17.310【解析】 【分析】让黄球的个数除以球的总个数即为所求的概率. 【详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出2个球是黄球的概率是310. 故答案为:310. 【点睛】本题考查了概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比. 18.﹣1 【解析】 【分析】根据立方根、绝对值及负整数指数幂等知识点解答即可. 【详解】 原式= -2 -2+3= -1 【点睛】本题考查了实数的混合运算,解题的关键是掌握运算法则及运算顺序.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.OD=6. 【解析】 【分析】(1)根据有两个角相等的三角形相似,直接列出比例式,求出OD 的长,即可解决问题. 【详解】在△AOB 与△COD 中,A CAOB COD ∠=∠⎧⎨∠=∠⎩, ∴△AOB ~△COD ,∴OA OBOC OD =, ∴243OD=, ∴OD=6. 【点睛】该题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是准确找出图形中的对应元素,正确列出比例式;对分析问题解决问题的能力提出了一定的要求. 20.(1)k >-1;(2)2;(3)k >-1时,121211x xx x +++的值与k 无关. 【解析】 【分析】(1)由题意得该方程的根的判别式大于零,列出不等式解答即可.(2)将要求的代数式通分相加转化为含有两根之和与两根之积的形式,再根据根与系数的关系代数求值即可.(3)结合(1)和(2)结论可见,k >-1时,121211x xx x +++的值为定值2,与k 无关. 【详解】(1)∵方程有两个不等实根, ∴△>0,即4+4k >0,∴k >-1 (2)由根与系数关系可知 x 1+x 2=-2 ,x 1x 2=-k ,∴121211x x x x +++ 122112(1)(1)(1)(1)x x x x x x +++=++12121212212221x x x x x x x x k k++=+++--==--(3)由(1)可知,k >-1时,121211x xx x +++的值与k 无关. 【点睛】本题考查了一元二次方程的根的判别式,根与系数的关系等知识,熟练掌握相关知识点是解答关键. 21. (1)见解析;(2)m=2 【解析】 【分析】(1)根据一元二次方程根的判别式进行分析解答即可;(2)用“因式分解法”解原方程,求得其两根,再结合已知条件分析解答即可.【详解】(1)∵在方程x 2﹣6mx+9m 2﹣9=1中,△=(﹣6m )2﹣4(9m 2﹣9)=26m 2﹣26m 2+26=26>1. ∴方程有两个不相等的实数根;(2)关于x 的方程:x 2﹣6mx+9m 2﹣9=1可化为:[x ﹣(2m+2)][x ﹣(2m ﹣2)]=1, 解得:x=2m+2和x=2m-2, ∵2m+2>2m ﹣2,x 1>x 2, ∴x 1=2m+2,x 2=2m ﹣2, 又∵x 1=2x 2,∴2m+2=2(2m ﹣2)解得:m=2. 【点睛】(1)熟知“一元二次方程根的判别式:在一元二次方程20?(0)ax bx c a ++=≠中,当240b ac ->时,原方程有两个不相等的实数根,当240b ac -=时,原方程有两个相等的实数根,当240b ac -<时,原方程没有实数根”是解答第1小题的关键;(2)能用“因式分解法”求得关于x 的方程x 2﹣6mx+9m 2﹣9=1的两个根是解答第2小题的关键.22.(1)25,25;213,27;(2)2a +2b =52c ;(1)AF=2. 【解析】试题分析:(1)∵AF ⊥BE ,∠ABE=25°,∴AP=BP=AB=2,∵AF ,BE 是△ABC 的中线,∴EF ∥AB ,EF=AB=,∴∠PFE=∠PEF=25°,∴PE=PF=1,在Rt △FPB 和Rt △PEA 中,AE=BF==,∴AC=BC=2,∴a=b=2,如图2,连接EF ,同理可得:EF=×2=2,∵EF ∥AB ,∴△PEF ~△ABP ,∴,在Rt △ABP 中,AB=2,∠ABP=10°,∴AP=2,PB=2,∴PF=1,PE=,在Rt △APE 和Rt △BPF 中,AE=,BF=,∴a=2,b=2,故答案为2,2,2,2;(2)猜想:a 2+b 2=5c 2,如图1,连接EF ,设∠ABP=α,∴AP=csinα,PB=ccosα,由(1)同理可得,PF=PA=,PE==,AE 2=AP 2+PE 2=c 2sin 2α+,BF 2=PB 2+PF 2=+c 2cos 2α,∴=c 2sin 2α+,=+c 2cos 2α,∴+=+c 2cos 2α+c 2sin 2α+,∴a 2+b 2=5c 2;(1)如图2,连接AC ,EF 交于H ,AC 与BE 交于点Q ,设BE 与AF 的交点为P ,∵点E 、G 分别是AD ,CD 的中点,∴EG ∥AC ,∵BE ⊥EG ,∴BE ⊥AC ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC=2,∴∠EAH=∠FCH,∵E,F分别是AD,BC的中点,∴AE=AD,BF=BC,∴AE=BF=CF=AD=,∵AE∥BF,∴四边形ABFE是平行四边形,∴EF=AB=1,AP=PF,在△AEH 和△CFH中,,∴△AEH≌△CFH,∴EH=FH,∴EQ,AH分别是△AFE的中线,由(2)的结论得:AF2+EF2=5AE2,∴AF2=5﹣EF2=16,∴AF=2.考点:相似形综合题.23.(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,证明详见解析.【解析】【分析】(1)根据①②③的规律即可得出第④个等式;(2)第n个等式为(n+1)2﹣2n=n2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.【详解】(1)∵22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③∴第④个等式为52﹣2×4=42+1,故答案为:52﹣2×4=42+1,(2)第n个等式为(n+1)2﹣2n=n2+1.(n+1)2﹣2n=n2+2n+1﹣2n=n2+1.【点睛】本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.24.(1) B(-1.2);(2) y=57x?66x;(3)见解析.【解析】【分析】(1)过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,则可证明△ACO≌△ODB,则可求得OD和BD的长,可求得B点坐标;(2)根据A、B、O三点的坐标,利用待定系数法可求得抛物线解析式;(3)由四边形ABOP 可知点P 在线段AO 的下方,过P 作PE ∥y 轴交线段OA 于点E ,可求得直线OA 解析式,设出P 点坐标,则可表示出E 点坐标,可表示出PE 的长,进一步表示出△POA 的面积,则可得到四边形ABOP 的面积,再利用二次函数的性质可求得其面积最大时P 点的坐标. 【详解】(1)如图1,过A 作AC ⊥x 轴于点C ,过B 作BD ⊥x 轴于点D ,∵△AOB 为等腰三角形, ∴AO=BO , ∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°, ∴∠AOC=∠OBD , 在△ACO 和△ODB 中AOC OBD ACO ODB AO BO ===∠∠⎧⎪∠∠⎨⎪⎩∴△ACO ≌△ODB (AAS ), ∵A (2,1),∴OD=AC=1,BD=OC=2, ∴B (-1,2);(2)∵抛物线过O 点,∴可设抛物线解析式为y=ax 2+bx ,把A 、B 两点坐标代入可得4212a b a b +⎧⎨-⎩==,解得5676a b ⎧⎪⎪⎨⎪-⎪⎩==,∴经过A 、B 、O 原点的抛物线解析式为y=56x 2-76x ; (3)∵四边形ABOP , ∴可知点P 在线段OA 的下方, 过P 作PE ∥y 轴交AO 于点E ,如图2,设直线AO解析式为y=kx,∵A(2,1),∴k=12,∴直线AO解析式为y=12x,设P点坐标为(t,56t2-76t),则E(t,12t),∴PE=12t-(56t2-76t)=-56t2+53t=-56(t-1)2+56,∴S△AOP=12PE×2=PE═-56(t-1)2+56,由A(2,1)可求得5∴S△AOB=12AO•BO=52,∴S四边形ABOP=S△AOB+S△AOP=-56(t-1)2+56+52=()2510163t--+,∵-56<0,∴当t=1时,四边形ABOP的面积最大,此时P点坐标为(1,-13),综上可知存在使四边形ABOP的面积最大的点P,其坐标为(1,-13).【点睛】本题为二次函数的综合应用,主要涉及待定系数法、等腰直角三角形的性质、全等三角形的判定和性质、三角形的面积以及方程思想等知识.在(1)中构造三角形全等是解题的关键,在(2)中注意待定系数法的应用,在(3)中用t表示出四边形ABOP的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.(1)见解析;(2)1【解析】【分析】(1)连接AD,如图,利用圆周角定理得∠ADB=90°,利用切线的性质得OD⊥DF,则根据等角的余角相等得到∠BDF=∠ODA,所以∠OAD=∠BDF,然后证明∠COD=∠OAD得到∠CAB=2∠BDF;(2)连接BC交OD于H,如图,利用垂径定理得到OD⊥BC,则CH=BH,于是可判断OH为△ABC的中位线,所以OH=1.5,则HD=1,然后证明四边形DHCE为矩形得到CE=DH=1.【详解】(1)证明:连接AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∵EF为切线,∴OD⊥DF,∵∠BDF+∠ODB=90°,∠ODA+∠ODB=90°,∴∠BDF=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD=∠BDF,∵D是弧BC的中点,∴∠COD=∠OAD,∴∠CAB=2∠BDF;(2)解:连接BC交OD于H,如图,∵D是弧BC的中点,∴OD⊥BC,∴CH=BH,∴OH为△ABC的中位线,∴113 1.522OH AC==⨯=,∴HD=2.5-1.5=1,∵AB为⊙O的直径,∴∠ACB=90°,∴四边形DHCE为矩形,∴CE=DH=1.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理.26.(1)(10,7500)(2)直线BC的解析式为y=-250x+10000,自变量x的取值范围为10≤x≤40.(3)1250米.【解析】【分析】(1)由于前面10天由甲单独完成,用总的长度减去已完成的长度即为剩余的长度,从而求出点B的坐标;(2)利用待定系数法求解即可;(3)已队工作25天后,即甲队工作了35天,故当x=35时,函数值即为所求.【详解】(1)9000-150×10=7500.∴点B的坐标为(10,7500)(2)设直线BC的解析式为y=kx+b,依题意,得:解得:∴直线BC的解析式为y=-250x+10000,∵乙队是10天之后加入,40天完成,∴自变量x的取值范围为10≤x≤40.(3)依题意,当x=35时,y=-250×35+10000=1250.∴乙队工作25天后剩余管线的长度是1250米.【点睛】本题考查了一次函数的应用,理解题意观察图象得到有用信息是解题的关键.27.(1)证明见解析;(2)BP=1.【解析】分析:(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据切线的性质得到∠OBC=90°,然后利用等量代换进行证明;(2)证明△AOP∽△ABD,然后利用相似比求BP的长.详(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC为切线,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∴△AOP∽△ABD,∴AP AOAD AB=,即1241BP+=,∴BP=1.点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和相似三角形的判定与性质.。
2019年江苏省南通市中考数学试卷解析版

2019年江苏省南通市中考数学试卷解析版一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)下列选项中,比﹣2℃低的温度是()A.﹣3℃B.﹣1℃C.0℃D.1℃【解答】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2,所以比﹣2℃低的温度是﹣3℃.故选:A.2.(3分)化简√12的结果是()A.4√3B.2√3C.3√2D.2√6【解答】解:√12=2×3=2√3,故选:B.3.(3分)下列计算,正确的是()A.a2•a3=a6B.2a2﹣a=a C.a6÷a2=a3D.(a2)3=a6【解答】解:∵a2•a3=a5,∴选项A不符合题意;∵2a2﹣a≠a,∴选项B不符合题意;∵a6÷a2=a4,∴选项C不符合题意;∵(a2)3=a6,∴选项D符合题意.故选:D.4.(3分)如图是一个几何体的三视图,该几何体是()A.球B.圆锥C.圆柱D.棱柱【解答】解:由于主视图和左视图为正方形可得此几何体为柱体,由俯视图为圆形可得为圆柱.故选:C .5.(3分)已知a ,b 满足方程组{3a +2b =42a +3b =6,则a +b 的值为( ) A .2 B .4 C .﹣2 D .﹣4【解答】解:{3a +2b =4①2a +3b =6②, ①+②得:5a +5b =10,则a +b =2,故选:A .6.(3分)用配方法解方程x 2+8x +9=0,变形后的结果正确的是( )A .(x +4)2=﹣9B .(x +4)2=﹣7C .(x +4)2=25D .(x +4)2=7【解答】解:方程x 2+8x +9=0,整理得:x 2+8x =﹣9,配方得:x 2+8x +16=7,即(x +4)2=7,故选:D .7.(3分)小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB ⊥OA ,使AB =3(如图).以O 为圆心,OB 长为半径作弧,交数轴正半轴于点P ,则点P 所表示的数介于( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间【解答】解:由勾股定理得,OB =√22+32=√13,∵9<13<16,∴3<√13<4,∴该点位置大致在数轴上3和4之间.故选:C .8.(3分)如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C =70°,则∠AED 度数为( )A .110°B .125°C .135°D .140°【解答】解:∵AB ∥CD ,∴∠C +∠CAB =180°,∵∠C =70°,∴∠CAB =110°,∵AE 平分∠CAB ,∴∠CAE =12∠CBA =55°,∴∠AED =∠C +∠CAE =70°+55°=125°,故选:B .9.(3分)如图是王阿姨晚饭后步行的路程s (单位:m )与时间t (单位:min )的函数图象,其中曲线段AB 是以B 为顶点的抛物线一部分.下列说法不正确的是( )A .25min ~50min ,王阿姨步行的路程为800mB .线段CD 的函数解析式为s =32t +400(25≤t ≤50)C .5min ~20min ,王阿姨步行速度由慢到快D .曲线段AB 的函数解析式为s =﹣3(t ﹣20)2+1200(5≤t ≤20)【解答】解:A 、25min ~50min ,王阿姨步行的路程为2000﹣1200=800m ,故A 没错;B 、设线段CD 的函数解析式为s =kt +b ,把(25,1200),(50,2000)代入得,{1200=25k +b 2000=50k +b解得:{k =32b =400, ∴线段CD 的函数解析式为s =32t +400(25≤t ≤50),故B 没错;C 、在A 点的速度为5255=105m /min ,在B 点的速度为1200−52520−5=67515=45m /min ,故C 错误;D 、当t =20时,由图象可得s =1200m ,将t =20代入s =﹣3(t ﹣20)2+1200(5≤t ≤20)得s =1200,故D 没错.故选:C .10.(3分)如图,△ABC 中,AB =AC =2,∠B =30°,△ABC 绕点A 逆时针旋转α(0°<α<120°)得到△AB ′C ′,B ′C ′与BC ,AC 分别交于点D ,E .设CD +DE =x ,△AEC ′的面积为y ,则y 与x 的函数图象大致( )A .B .C .D.【解答】解:∵△ABC绕点A逆时针旋转α,设AB′与BC交于点F,则∠BAB′=∠CAC′=α,∠B=∠C′=30°,AB=AC=AC′,∴△ABF≌△AC′E(AAS),∴BF=C′E,AE=AF,同理△CDE≌△B′DF(AAS),∴B′D=CD,∴B′D+DE=CD+ED=x,AB=AC=2,∠B=30°,则△ABC的高为1,等于△AEC′的高,BC=2√3=B′C′,y=12EC′×△AEC′的EC′边上的高=12(2√3−x)=−12x+√3,故选:B.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)计算:22﹣(√3−1)0=3.【解答】解:原式=4﹣1=3.故答案为:3.12.(3分)5G信号的传播速度为300 000 000m/s,将300 000 000用科学记数法表示为3×108.【解答】解:将300 000 000用科学记数法表示为:3×108.故答案为:3×108.13.(3分)分解因式:x 3﹣x = x (x +1)(x ﹣1) .【解答】解:x 3﹣x ,=x (x 2﹣1),=x (x +1)(x ﹣1).故答案为:x (x +1)(x ﹣1).14.(3分)如图,△ABC 中,AB =BC ,∠ABC =90°,F 为AB 延长线上一点,点E 在BC上,且AE =CF ,若∠BAE =25°,则∠ACF = 70 度.【解答】解:在Rt △ABE 与Rt △CBF 中,{AE =CF AB =BC, ∴Rt △ABE ≌Rt △CBF (HL ).∴∠BAE =∠BCF =25°;∵AB =BC ,∠ABC =90°,∴∠ACB =45°,∴∠ACF =25°+45°=70°;故答案为:70.15.(3分)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有x 个人共同出钱买鸡,根据题意,可列一元一次方程为 9x ﹣11=6x +16 .【解答】解:设有x 个人共同买鸡,根据题意得:9x ﹣11=6x +16.故答案为:9x ﹣11=6x +16.16.(3分)已知圆锥的底面半径为2cm ,侧面积为10πcm 2,则该圆锥的母线长为 5 cm .【解答】解:设圆锥的母线长为Rcm ,圆锥的底面周长=2π×2=4π,则12×4π×R =10π,解得,R =5(cm )故答案为:5.17.(3分)如图,过点C (3,4)的直线y =2x +b 交x 轴于点A ,∠ABC =90°,AB =CB ,曲线y =k x (x >0)过点B ,将点A 沿y 轴正方向平移a 个单位长度恰好落在该曲线上,则a 的值为 4 .【解答】解:作CD ⊥x 轴于D ,BF ⊥x 轴于F ,过B 作BE ⊥CD 于E ,∵过点C (3,4)的直线y =2x +b 交x 轴于点A ,∴4=2×3+b ,解得b =﹣2,∴直线为y =2x ﹣2,令y =0,则求得x =1,∴A (1,0),∵BF ⊥x 轴于F ,过B 作BE ⊥CD 于E ,∴BE ∥x 轴,∴∠ABE =∠BAF ,∵∠ABC =90°,∴∠ABE +∠EBC =90°,∵∠BAF +∠ABF =90°,∴∠EBC =∠ABF ,在△EBC 和△FBA 中{∠EBC =∠ABF ∠BEC =∠BFA =90°BC =AB∴△EBC ≌△FBA (AAS ),∴CE =AF ,BE =BF ,设B(m,km ),∵4−km=m﹣1,m﹣3=k m,∴4﹣(m﹣3)=m﹣1,解得m=4,k=4,∴反比例函数的解析式为y=4 x,把x=1代入得y=4,∴a=4﹣0=4,∴a的值为4.故答案为4.18.(3分)如图,▱ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则PB+√32PD的最小值等于3√3.【解答】解:如图,过点P作PE⊥AD,交AD的延长线于点E,∵AB∥CD∴∠EDP=∠DAB=60°,∴sin∠EDP=EPDP=√32∴EP =√32PD∴PB +√32PD =PB +PE∴当点B ,点P ,点E 三点共线且BE ⊥AD 时,PB +PE 有最小值,即最小值为BE , ∵sin ∠A =BE AB =√32 ∴BE =3√3故答案为3√3三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)解不等式4x−13−x >1,并在数轴上表示解集.【解答】解:4x ﹣1﹣3x >3,4x ﹣3x >3+1,x >4,将不等式的解集表示在数轴上如下:20.(8分)先化简,再求值:(m +4m+4m )÷m+2m 2,其中m =√2−2. 【解答】解:原式=m 2+4m+4m ÷m+2m 2 =(m+2)2m •m 2m+2 =m 2+2m ,当m =√2−2时,原式=m (m +2)=(√2−2)(√2−2+2)=2﹣2√221.(8分)如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B .连接AC 并延长到点D ,使CD =CA .连接BC 并延长到点E ,使CE =CB .连接DE ,那么量出DE 的长就是A ,B 的距离.为什么?【解答】解:量出DE 的长就等于AB 的长,理由如下:在△ABC 和△DEC 中,{BC =CE∠ACB =∠DCE CA =CD,∴△ABC ≌△DEC (SAS ),∴AB =DE .22.(9分)第一盒中有2个白球、1个黄球,第二盒中有1个白球、1个黄球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,求取出的2个球中有1个白球、1个黄球的概率.【解答】解:画树状图为:共有6种等可能的结果数,其中取出的2个球中有1个白球、1个黄球的结果数为3, 所以取出的2个球中有1个白球、1个黄球的概率=36=12.23.(8分)列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”.为传承优秀传统文化,某校购进《西游记》和《三国演义》若干套,其中每套《西游记》的价格比每套《三国演义》的价格多40元,用3200元购买《三国演义》的套数是用2400元购买《西游记》套数的2倍,求每套《三国演义》的价格.【解答】解:设每套《三国演义》的价格为x 元,则每套《西游记》的价格为(x +40)元,依题意,得:3200x =2×2400x+40, 解得:x =80,经检验,x =80是所列分式方程的解,且符合题意.答:每套《三国演义》的价格为80元.24.(10分)8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).平均分方差中位数众数合格率优秀率一班7.2 2.117692.5%20%二班 6.85 4.288885%10%根据图表信息,回答问题:(1)用方差推断,二班的成绩波动较大;用优秀率和合格率推断,一班的阅读水平更好些;(2)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些.为什么?【解答】解:(1)从方差看,二班成绩波动较大,从众数、中位数上看,一班的成绩较好,故答案为:二,一.(2)乙同学的说法较合理,众数和中位数是反映一组数据集中发展趋势和集中水平,由于二班的众数、中位数都比一班的要好.25.(9分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1,以边AC上一点O 为圆心,OA为半径的⊙O经过点B.(1)求⊙O的半径;(2)点P为劣弧AB中点,作PQ⊥AC,垂足为Q,求OQ的长;(3)在(2)的条件下,连接PC,求tan∠PCA的值.【解答】解:(1)作OH⊥AB于H.在Rt△ACB中,∵∠C=90°,∠A=30°,BC=1,∴AB=2BC=2,∵OH⊥AB,∴AH=HB=1,∴OA=AH÷cos30°=2√3 3.(2)如图2中,连接OP,P A.设OP交AB于H.∵PÂ=PB̂,∴OP⊥AB,∴∠AHO=90°,∵∠OAH=30°,∴∠AOP=60°,∵OA=OP,∴△AOP是等边三角形,∵PQ⊥OA,∴OQ=QA=12OA=√33.(3)连接PC.在Rt△ABC中,AC=√3BC=√3,∵AQ=QO=12AO=√33.∴QC=AC﹣AQ=√3−√33=2√33,∵△AOP是等边三角形,PQ⊥OA,∴PQ=1,∴tan∠ACP=PQCQ=12√33=√32.26.(10分)已知:二次函数y=x2﹣4x+3a+2(a为常数).(1)请写出该二次函数的三条性质;(2)在同一直角坐标系中,若该二次函数的图象在x≤4的部分与一次函数y=2x﹣1的图象有两个交点,求a的取值范围.【解答】解:(1)∵二次函数y=x2﹣4x+3a+2=(x﹣2)2+3a﹣2,∴该二次函数开口向上,对称轴为直线x=2,顶点坐标为(2,3a﹣2),其性质有:①开口向上,②有最小值3a﹣2,③对称轴为x=2.(2)∵二次函数的图象在x≤4的部分与一次函数y=2x﹣1的图象有两个交点,∴x2﹣4x+3a+2=2x﹣1,整理为:x2﹣6x+3a+3=0,∴△=36﹣4(3a+3)>0,解得a<2,把x=4代入y=2x﹣1,解得y=2×4﹣1=7,把(4,7)代入y=x2﹣4x+3a+2得7=16﹣16+3a+2,解得a=5 3,故该二次函数的图象在x≤4的部分与一次函数y=2x﹣1的图象有两个交点,a的取值为53≤a <2.27.(13分)如图,矩形ABCD 中,AB =2,AD =4.E ,F 分别在AD ,BC 上,点A 与点C关于EF 所在的直线对称,P 是边DC 上的一动点.(1)连接AF ,CE ,求证四边形AFCE 是菱形;(2)当△PEF 的周长最小时,求DP CP 的值;(3)连接BP 交EF 于点M ,当∠EMP =45°时,求CP 的长.【解答】证明:(1)如图:连接AF ,CE ,AC 交EF 于点O∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,AD ∥BC∴∠AEO =∠CFO ,∠EAO =∠FCO ,∵点A 与点C 关于EF 所在的直线对称∴AO =CO ,AC ⊥EF∵∠AEO =∠CFO ,∠EAO =∠FCO ,AO =CO∴△AEO ≌△CFO (AAS )∴AE =CF ,且AE ∥CF∴四边形AFCE 是平行四边形,且AC ⊥EF∴四边形AFCE 是菱形;(2)如图,作点F 关于CD 的对称点H ,连接EH ,交CD 于点P ,此时△EFP 的周长最小,∵四边形AFCE 是菱形∴AF =CF =CE =AE ,∵AF 2=BF 2+AB 2,∴AF 2=(4﹣AF )2+4,∴AF =52∴AE =52=CF∴DE =32∵点F ,点H 关于CD 对称∴CF =CH =52∵AD ∥BC∴DP CP =DE CH =35 (3)如图,延长EF ,延长AB 交于点N ,过点E 作EH ⊥BC 于H ,交BP 于点G ,过点B 作BO ⊥FN 于点O ,由(2)可知,AE =CF =52,BF =DE =32∵EH ⊥BC ,∠A =∠ABC =90°∴四边形ABHE 是矩形∴AB =EH =2,BH =AE =52∴FH =1∴EF =√EH2+FH 2=√5, ∵AD ∥BC∴△BFN ∽△AEN∴BN AN =BF AE =FN EN ∴BN BN+2=35=NF+√5∴BN =3,NF =3√52∴AN =5,NE =5√52∵∠N =∠N ,∠BON =∠A =90°∴△NBO ∽△NEA∴BN EN=BO AE =NO AN ∴5√52=BO 52=NO 5∴BO =3√55,NO =6√55∵∠EMP =∠BMO =45°,BO ⊥EN∴∠OBM =∠BMO =45° ∴BO =MO =3√55∴ME =EN ﹣NO ﹣MO =7√510 ∵AB ∥EH ∴△BNM ∽△GEM∴BNEG =NM EM ∴3EG =9√557√510 ∴EG =76∴GH =EH ﹣EG =56∵EH ∥CD∴△BGH ∽△BPC∴GH PC =BH BC ∴56PC =524 ∴CP =4328.(13分)定义:若实数x ,y 满足x 2=2y +t ,y 2=2x +t ,且x ≠y ,t 为常数,则称点M (x ,y )为“线点”.例如,点(0,﹣2)和(﹣2,0)是“线点”.已知:在直角坐标系xOy 中,点P (m ,n ).(1)P 1(3,1)和P 2(﹣3,1)两点中,点 P 2 是“线点”;(2)若点P 是“线点”,用含t 的代数式表示mn ,并求t 的取值范围;(3)若点Q (n ,m )是“线点”,直线PQ 分别交x 轴、y 轴于点A ,B ,当|∠POQ ﹣∠AOB |=30°时,直接写出t 的值.【解答】解:(1)∵当M 点(x ,y ),若x ,y 满足x 2﹣2y =t ,y 2﹣2x =t 且x ≠y ,t 为常数,则称点M 为“线点”,又∵P 1(3,1),则32﹣2×1=7,(1)2﹣2×3=﹣5,7≠﹣5,∴点P 1不是线点;∵P 2(﹣3,1),则(﹣3)2﹣2×1=7,12﹣2×(﹣3)=7,7=7,∴点P 2是线点,故答案为:P 2;(2)∵点P (m ,n )为“线点”,则m 2﹣2n =t ,n 2﹣2m =t ,∴m 2﹣2n ﹣n 2+2m =0,m 2﹣2n +n 2﹣2m =2t ,∴(m ﹣n )(m +n +2)=0,∵m ≠n ,∴m +n +2=0,∴m +n =﹣2,∵m 2﹣2n +n 2﹣2m =2t ,∴(m +n )2﹣2mn ﹣2(m +n )=2t ,即:(﹣2)2﹣2mn +2×2=2t ,∴mn =4﹣t ,∵m ≠n ,∴(m ﹣n )2>0,∴m 2﹣2mn +n 2>0,∴(m +n )2﹣4mn >0,∴(﹣2)2﹣4mn >0,∴mn <1,∵mn =4﹣t ,∴t >3;(3)设PQ 直线的解析式为:y =kx +b ,则{n =mk +b m =nk +b, 解得:k =﹣1,∵直线PQ 分别交x 轴,y 轴于点A 、B ,∴∠AOB =90°,∴△AOB 是等腰直角三角形,∵|∠AOB ﹣∠POQ |=30°,∴∠POQ =120°或60°,∵P (m ,n ),Q (n ,m ),∴P 、Q 两点关于y =x 对称,①若∠POQ =120°时,如图1所示:作PC ⊥x 轴于C ,QD ⊥y 轴于D ,作直线MN ⊥AB .∵P、Q两点关于y=x对称,∴∠PON=∠QON=12∠POQ=60°,∵△AOB是等腰直角三角形,∴∠AON=BON=45°,∴∠POC=∠QOD=15°,在OC上截取OT=PT,则∠TPO=∠TOP=15°,∴∠CTP=30°,∴PT=2PC=2n,TC=√3n,∴﹣m=√3n+2n,由(2)知,m+n=﹣2,解得:m=﹣1−√3,n=√3−1,由(2)知:mn=4﹣t,t>3,∴(﹣1−√3)(﹣1+√3)=4﹣t,解得:t=6,②若∠POQ=60°时,如图2所示,作PD⊥x轴于D,QC⊥y轴于C,作直线MN⊥AB.∵P 、Q 两点关于y =x 对称,∴∠PON =∠QON =12∠POQ =30°,∵△AOB 是等腰直角三角形,∴∠AON =BON =45°,∴∠POD =∠QOC =15°,在OD 上截取OT =PT ,则∠TPO =∠TOP =15°, ∴∠DTP =30°,∴PT =2PD =﹣2n ,TD =−√3n ,∴﹣m =−√3n ﹣2n ,由(2)知,m +n =﹣2,解得m =﹣1−√33,n =﹣1+√33,由(2)知:mn =4﹣t ,t >3,∴(﹣1−√33)(﹣1+√33)=4﹣t ,解得:t =103,综上所述,t 的值为:6或103.。
2019南通数学中考真题(解析版)(2021年整理精品文档)

2019南通数学中考真题(解析版)(可编辑修改word版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019南通数学中考真题(解析版)(可编辑修改word版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019南通数学中考真题(解析版)(可编辑修改word版)的全部内容。
2019南通数学中考真题(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共10小题)1。
下列选项中,比﹣2℃低的温度是()A.﹣3℃B.﹣1℃C.0℃D.1℃2.化简的结果是()A.4B.2C.3D.23。
下列计算,正确的是()A.a2•a3=a6B.2a2﹣a=a C.a6÷a2=a3D.(a2)3=a64.如图是一个几何体的三视图,该几何体是( )A.球B.圆锥C.圆柱D.棱柱5.已知a,b满足方程组,则a+b的值为()A.2 B.4 C.﹣2 D.﹣46。
用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣9 B.(x+4)2=﹣7 C.(x+4)2=25 D.(x+4)2=77.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED度数为()A.110°B.125°C.135°D.140°9。
2019年如东中考模拟考试数学试卷1

2019年初三年级第一次模拟调研测试数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上)1.下列各数中,小于-4的是A.-3 B.-5 C.0 D.12.下列各式计算的结果为a5的是A.a3+a2 B.a10÷a2C.a·a4D.(-a3)2 3.2019年3月5日,李克强总理在《政府工作报告》中指出,2018年中国精准脱贫有力推进,农村贫困人口减少1386万.将数据“1386万”用科学记数法表示应为A.1.386×108B.1.386×103C.13.86×107D.1.386×1074.下面的几何图形中,是轴对称图形但不是中心对称图形的是A.等边三角形B.圆C.平行四边形D.正六边形5.如图,直线AD//BC,若∠1=40°,∠BAC=80°,则∠2的度数为A.70°B.60°C.50°D.40°(第5题)A D21CB数学试卷第1 页(共6 页)6.如图,某工厂加工一批无底帐篷,设计者给出了帐篷的三视图(图中尺寸单位:m).根据三视图可以得出每顶帐篷的表面积为A.6π m2B.9π m2C.12π m2D.18π m27.若关于x的不等式x<a恰有2个正整数解,则a的取值范围为A.2<a≤3 B.2≤a<3C.0<a<3 D.0<a≤28.如图,在平面直角坐标系中,直线y=-2x+4与x轴交于点A,与y交于点B,与直线y=kx交于点C(4,n),则tan∠OCB的值为A.13BCD.389.如图,甲、丙两地相距500 km,一列快车从甲地驶往丙地,途中经过乙地;一列慢车从乙地驶往丙地,两车同时出发,同向而行,折线ABCD表示两车之间的距离y(km)与慢车行驶的时间为x(h)之间的函数关系.根据图中提供的信息,下列说法不正确的是A.甲、乙两地之间的距离为200 km;B.快车从甲地驶到丙地共用了2.5 h;C.快车速度是慢车速度的1.5倍;D.快车到达丙地时,慢车距丙地还有50 km.10.如图,⊙O的直径AB的长为10,点P在BA的延长线上,PC是⊙O的切线,切点为C,∠ACB的平分线交⊙O于点D,交AB于点E,若PE的长为12,则CE的长为A.BC.D(第8题)题)(第9甲丙乙(第10题)数学试卷第2 页(共6 页)。
江苏省南通市如东县2019年中考数学模拟试卷(解析版)

江苏省南通市如东县2019年中考数学模拟试卷一.选择题(满分30分,每小题3分)1.下列说法正确的是()A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.﹣1的倒数是﹣12.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人3.下列计算正确的是()A.a2+a3=a5B.a6÷a3=a3C.a2•a3=a6D.(a3)2=a94.下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个5.函数y=中,自变量x的取值范围是()A.x≠2B.x≥2C.x>2D.x≥﹣26.如图所示的圆柱体从正面看得到的图形可能是()A.B.C.D.7.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是()A.8B.9C.10D.128.一个扇形的弧长为4π,半径长为4,则该扇形的面积为()A.4πB.6πC.8πD.12π9.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t(分钟)之间的函数关系的是()A.B.C.D.10.如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③二.填空题(共8小题,满分24分,每小题3分)11.计算:=.12.因式分解:2a2﹣2=.13.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=度.14.5个正整数,中位数是4,唯一的众数是6,则这5个数和的最大值为.15.如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M 处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达.(结果保留根号)16.如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB=°.17.设a、b是一元二次方程x2+2x﹣7=0的两个根,则a2+3a+b=.18.已知函数y=﹣x2+2x+1,当﹣1≤x≤a时,函数的最大值是2,则实数a的取值范围是.三.解答题(共11小题,满分88分)19.(5分)计算:(3.14﹣π)0+|1﹣|+(﹣)﹣1﹣2sin60°.20.(5分)解方程组:.21.(6分)解不等式组:,并写出它的所有整数解.22.(8分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?23.(8分)如图,在正方形网格中画有一个圆心为O的半圆,请按要求准确作图.(1)请在图1中仅用无刻度的直尺连线将半圆的面积三等份;(2)请在图2网格中以O为圆心,用直尺与圆规画一个与已知半圆半径不等但面积相等的扇形.24.(8分)如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;(1)求反比例函数的表达式;(2)根据图象直接写出﹣x>的解集;(3)将直线l1:y=x沿y向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.25.(8分)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE =AF.(1)求证:四边形ADEF是平行四边形;(2)若∠ABC=60°,BD=4,求平行四边形ADEF的面积.26.为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.27.(12分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?28.(14分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.29.(14分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.参考答案一.选择题1.下列说法正确的是()A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.﹣1的倒数是﹣1【分析】根据倒数的定义可知.解:A、负数有倒数,例如﹣1的倒数是﹣1,选项错误;B、正数的倒数不一定比自身小,例如0.5的倒数是2,选项错误;C、0没有倒数,选项错误;D、﹣1的倒数是﹣1,正确.故选:D.【点评】本题主要考查了倒数的定义及性质.乘积是1的两个数互为倒数,除0以外的任何数都有倒数,倒数等于它本身的数是±1.2.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人【分析】根据科学记数法的定义及表示方法进行解答即可.解:∵530060是6位数,∴10的指数应是5,故选:B.【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.3.下列计算正确的是()A.a2+a3=a5B.a6÷a3=a3C.a2•a3=a6D.(a3)2=a9【分析】根据合并同类项的法则,同底数幂的除法法则,同底数幂的乘法法则以及幂的乘方与积的乘方法则解答.解:A、a2与a3不是同类项,不能合并,故本选项错误;B、原式=a6﹣3=a3,故本选项正确;C、原式=a2+3=a5,故本选项错误;D、原式=a3×2=a6,故本选项错误;故选:B.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.解:第一个图形,既是中心对称图形,又是轴对称图形,故错误;第二个图形,是轴对称图形,不是中心对称图形,故错误;第三个图形,是轴对称图形,不是中心对称图形,故错误;第四、五个是中心对称图形而不是轴对称图形,故正确.故选:B.【点评】掌握好中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180度后与原图重合.5.函数y=中,自变量x的取值范围是()A.x≠2B.x≥2C.x>2D.x≥﹣2【分析】根据被开方数大于等于0列式计算即可得解.解:由题意得,x﹣2≥0,解得x≥2.故选:B.【点评】本题考查了函数自变量的取值范围,解决本题的关键是二次根式的被开方数是非负数.6.如图所示的圆柱体从正面看得到的图形可能是()A.B.C.D.【分析】根据圆柱从正面看的平面图形是矩形进行解答即可.解:一个直立在水平面上的圆柱体,从正面看是一个矩形,故选:B.【点评】本题考查了简单几何体的三视图,关键是掌握所看的位置,以及注意所有的看到的棱都应表现在三视图中.7.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是()A.8B.9C.10D.12【分析】设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选:A.【点评】此题主要考查了多边形的内角与外角,关键是掌握多边形的相邻的内角与外角互补.8.一个扇形的弧长为4π,半径长为4,则该扇形的面积为()A.4πB.6πC.8πD.12π=lR即可得出答案.【分析】根据扇形的面积公式S扇形=lR=×4π×4=8π.解:S扇形故选:C.【点评】本题考查了扇形面积的计算,比较简单,解答本题的关键是熟练掌握扇形面积的计算公式.9.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t(分钟)之间的函数关系的是()A.B.C.D.【分析】根据小李距家3千米,路程随着时间的增大而增大确定合适的函数图象即可.解:∵小李距家3千米,∴离家的距离随着时间的增大而增大,∵途中在文具店买了一些学习用品,∴中间有一段离家的距离不再增加,综合以上C符合,故选:C.【点评】本题考查了函数图象,比较简单,了解横、总坐标分别表示什么是解题的关键.10.如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③【分析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△P AM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确由②MP•MD=MA•ME∠PMA=∠DME∴△PMA∽△EMD∴∠APD=∠AED=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.【点评】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.二.填空题(共8小题,满分24分,每小题3分)11.计算:=3.【分析】先根据同分母分式加法法则计算,再因式分解、约分即可得.解:原式====3,故答案为:3.【点评】本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则.12.因式分解:2a2﹣2=2(a+1)(a﹣1).【分析】原式提取2,再利用平方差公式分解即可.解:原式=2(a2﹣1)=2(a+1)(a﹣1).故答案为:2(a+1)(a﹣1).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.13.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=80度.【分析】设∠EPC=2x,∠EBA=2y,根据角平分线的性质得到∠CPF=∠EPF=x,∠EBF=∠FBA=y,根据外角的性质得到∠1=∠F+∠ABF=42°+y,∠2=∠EBA+∠E=2y+∠E,由平行线的性质得到∠1=∠CPF=x,∠2=∠EPC=2x,于是得到方程2y+∠E =2(42°+y),即可得到结论.解:设∠EPC=2x,∠EBA=2y,∵∠EBA、∠EPC的角平分线交于点F∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,∵∠1=∠F+∠ABF=40°+y,∠2=∠EBA+∠E=2y+∠E,∵AB∥CD,∴∠1=∠CPF=x,∠2=∠EPC=2x,∴∠2=2∠1,∴2y+∠E=2(40°+y),∴∠E=80°.故答案为:80.【点评】本题考查了平行线的性质以及三角形的外角的性质:三角形的外角等于两个不相邻的内角的和,正确设未知数是关键.14.5个正整数,中位数是4,唯一的众数是6,则这5个数和的最大值为21.【分析】根据中位数和众数的定义分析可得答案.解:因为五个正整数从小到大排列后,其中位数是4,这组数据的唯一众数是6,所以这5个数据分别是x,y,4,6,6,其中x=1或2,y=2或3.所以这5个数的和的最大值是2+3+4+6+6=21.故答案为:21.【点评】主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.15.如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达.(结果保留根号)【分析】如图,过点P作PQ⊥AB交AB延长线于点Q,过点M作MN⊥AB交AB延长线于点N,通过解直角△AQP、直角△BPQ求得PQ的长度,即MN的长度,然后通过解直角△BMN求得BM的长度,则易得所需时间.解:如图,过点P作PQ⊥AB交AB延长线于点Q,过点M作MN⊥AB交AB延长线于点N,在直角△AQP中,∠P AQ=45°,则AQ=PQ=60×1.5+BQ=90+BQ(海里),所以BQ=PQ﹣90.在直角△BPQ中,∠BPQ=30°,则BQ=PQ•tan30°=PQ(海里),所以PQ﹣90=PQ,所以PQ=45(3+)(海里)所以MN=PQ=45(3+)(海里)在直角△BMN中,∠MBN=30°,所以BM=2MN=90(3+)(海里)所以=(小时)故答案是:.【点评】本题考查的是解直角三角形的应用,此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.16.如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB=40°.【分析】连接BD,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=40°,然后再利用圆周角定理得到∠ACB的度数.解:连接BD,如图,∵AD为△ABC的外接圆⊙O的直径,∴∠ABD=90°,∴∠D=90°﹣∠BAD=90°﹣50°=40°,∴∠ACB=∠D=40°.故答案为40.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.17.设a、b是一元二次方程x2+2x﹣7=0的两个根,则a2+3a+b=5.【分析】根据根与系数的关系可知a+b=﹣2,又知a是方程的根,所以可得a2+2a﹣7=0,最后可将a2+3a+b变成a2+2a+a+b,最终可得答案.解:∵设a、b是一元二次方程x2+2x﹣7=0的两个根,∴a+b=﹣2,∵a是原方程的根,∴a2+2a﹣7=0,即a2+2a=7,∴a2+3a+b=a2+2a+a+b=7﹣2=5,故答案为:5.【点评】本题主要考查了根与系数的关系,解题的关键是把a2+3a+b转化为a2+2a+a+b 的形式,结合根与系数的关系以及一元二次方程的解即可解答.18.已知函数y=﹣x2+2x+1,当﹣1≤x≤a时,函数的最大值是2,则实数a的取值范围是a≥1.【分析】根据题目中的函数解析式和二次函数的性质,可以求得a的取值范围,本题得以解决.解:∵函数y=﹣x2+2x+1=﹣(x﹣1)2+2,当﹣1≤x≤a时,函数的最大值是2,∴当x=1时,函数取得最大值,此时y=2,∴a≥1,故答案为:a≥1.【点评】本题考查二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.三.解答题(共11小题,满分88分)19.(5分)计算:(3.14﹣π)0+|1﹣|+(﹣)﹣1﹣2sin60°.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.解:原式=1+﹣1﹣4﹣=﹣4.【点评】此题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.20.(5分)解方程组:.【分析】方程组利用加减消元法求出解即可.解:,①+②×3得:10x=50,解得:x=5,把x=5代入②得:y=3,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(6分)解不等式组:,并写出它的所有整数解.【分析】先求出两个不等式的解集,再求其公共解,然后写出整数解即可.解:,解不等式①,得x>﹣3,解不等式②,得x≤2,所以不等式组的解集:﹣3<x≤2,它的整数解为﹣2,﹣1,0,1,2.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.(8分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售2400个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是60度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?【分析】(1)用C品牌的数量除以所占的百分比,计算机求出鸡蛋的总量,再用A品牌的百分比乘以360°计算即可求出圆心角的度数;(2)求出B品牌鸡蛋的数量,然后条形补全统计图即可;(3)用B品牌所占的百分比乘以1500,计算即可得解.解:(1)共销售绿色鸡蛋:1200÷50%=2400个,A品牌所占的圆心角:×360°=60°;故答案为:2400,60;(2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,补全统计图如图;(3)分店销售的B种品牌的绿色鸡蛋为:×1500=500个.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(8分)如图,在正方形网格中画有一个圆心为O的半圆,请按要求准确作图.(1)请在图1中仅用无刻度的直尺连线将半圆的面积三等份;(2)请在图2网格中以O为圆心,用直尺与圆规画一个与已知半圆半径不等但面积相等的扇形.【分析】(1)利用三角函数的定义可求出∠1=60°,这样可确定∠MON=∠1=60°,所以点M、N把半圆三等份,从而OM、ON将半圆的面积三等分;(2)先确定半圆的面积为2π,利用扇形面积公式,画出圆心角为90°,半径为2的扇形即可.解:(1)如图1,OM、ON为所作;(2)如图2,扇形AOB为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.24.(8分)如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;(1)求反比例函数的表达式;(2)根据图象直接写出﹣x>的解集;(3)将直线l1:y=x沿y向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.【分析】(1)直线l1经过点A,且A点的纵坐标是2,可得A(﹣4,2),代入反比例函数解析式可得k的值;(2)依据直线l1:y=﹣x与反比例函数y=的图象交于A,B两点,即可得到不等式﹣x>的解集为x<﹣4或0<x<4;(3)设平移后的直线l2与x轴交于点D,连接AD,BD,依据CD∥AB,即可得出△ABC 的面积与△ABD的面积相等,求得D(15,0),即可得出平移后的直线l2的函数表达式.解:(1)∵直线l1:y=﹣x经过点A,A点的纵坐标是2,∴当y=2时,x=﹣4,∴A(﹣4,2),∵反比例函数y =的图象经过点A ,∴k =﹣4×2=﹣8,∴反比例函数的表达式为y =﹣;(2)∵直线l 1:y =﹣x 与反比例函数y =的图象交于A ,B 两点,∴B (4,﹣2),∴不等式﹣x >的解集为x <﹣4或0<x <4;(3)如图,设平移后的直线l 2与x 轴交于点D ,连接AD ,BD ,∵CD ∥AB ,∴△ABC 的面积与△ABD 的面积相等,∵△ABC 的面积为30,∴S △AOD +S △BOD =30,即OD (|y A |+|y B |)=30,∴×OD ×4=30,∴OD =15,∴D (15,0),设平移后的直线l 2的函数表达式为y =﹣x +b ,把D (15,0)代入,可得0=﹣×15+b ,解得b =,∴平移后的直线l 2的函数表达式为y =﹣x +.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,函数图象上点的坐标特征,一次函数图象与几何变换以及三角形的面积.解决问题的关键是依据△ABC 的面积与△ABD 的面积相等,得到D 点的坐标为(15,0).25.(8分)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE =AF.(1)求证:四边形ADEF是平行四边形;(2)若∠ABC=60°,BD=4,求平行四边形ADEF的面积.【分析】(1)由BD是△ABC的角平分线,DE∥AB,易证得△BDE是等腰三角形,且BE=DE;又由BE=AF,可得DE=AF,即可证得四边形ADEF是平行四边形;(2)首先过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,由∠ABC=60°,BD 是∠ABC的平分线,可求得DG的长,继而求得DE的长,则可求得答案.(1)证明:∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∵DE∥AB,∴∠ABD=∠BDE,∴∠DBE=∠BDE,∴BE=DE;∵BE=AF,∴AF=DE;∴四边形ADEF是平行四边形;(2)解:过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°,∴DG=BD=×4=2,∵BE=DE,∴BH=DH=2,∴BE ==,∴DE =,∴四边形ADEF 的面积为:DE •DG =.【点评】此题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.注意掌握辅助线的作法.26.为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A ,B ,C 表示这三个材料),将A ,B ,C 分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是 ;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有9种等可能的结果数,再找出小红和小亮诵读两个不同材料的结果数,然后根据概率公式计算.解:(1)小红诵读《论语》的概率=;故答案为.(2)画树状图为:共有9种等可能的结果数,其中小红和小亮诵读两个不同材料的结果数为6,所以小红和小亮诵读两个不同材料的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.27.(12分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?【分析】(1)根据“总利润=单件利润×销售量”列出函数解析式,由“确保盈利”可得x的取值范围.(2)将所得函数解析式配方成顶点式可得最大值.解:(1)根据题意得y=(70﹣x﹣50)(300+20x)=﹣20x2+100x+6000,∵70﹣x﹣50>0,且x≥0,∴0≤x<20;(2)∵y=﹣20x2+100x+6000=﹣20(x﹣)2+6125,∴当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.【点评】本题主要考查二次函数的应用,解题的关键是根据题意确定相等关系,并据此列出函数解析式.28.(14分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC=∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.【分析】(1)证明∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,即可推出∠AHC=∠ACG;(2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;(3)①△AGH的面积不变.理由三角形的面积公式计算即可;②分三种情形分别求解即可解决问题;解:(1)∵四边形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=45°,∴AC==4,∵∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,∴∠AHC=∠ACG.故答案为=.(2)结论:AC2=AG•AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=135°,∴△AHC∽△ACG,=,∴AC2=AG•AH.(3)①△AGH的面积不变.理由:∵S=•AH•AG=AC2=×(4)2=16.△AGH∴△AGH的面积为16.②如图1中,当GC=GH时,易证△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴==,∴AE=AB=.如图2中,当CH=HG时,易证AH=BC=4,∵BC∥AH,∴==1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.5°.在BC上取一点M,使得BM=BE,∴∠BME=∠BEM=45°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.5°,∴CM=EM,设BM=BE=x,则CM=EM=x,∴x+x=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4,综上所述,满足条件的m的值为或2或8﹣4.【点评】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.29.(14分)已知,抛物线y=a x2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),。
2019年南通市中考数学一模试卷(含答案)

一、选择题
1.在“朗读者”节目的影响下,某中学开展了“好 书伴我成长”读书活动.为了解 5 月份八年 级 300 名学生读书情况,随机调查了八年级 50 名学生读书的册数,统计数据如下表所 示:
册数 0
1
2
3
4
人数 4
12
16
17
1
关于这组数据,下列说法正确的是( )
A.
B.
C.Leabharlann D.8.矩形 ABCD 与 CEFG,如图放置,点 B,C,E 共线,点 C,D,G 共线,连接 AF,取 AF 的中点 H,连接 GH.若 BC=EF=2,CD=CE=1,则 GH=( )
A.1
B. 2 3
C. 2 2
D. 5 2
9.某服装加工厂加工校服 960 套的订单,原计划每天做 48 套.正好按时完成.后因学校
江抓着风筝线的一端站在 D 处,他从牵引端 E 测得风筝 A 的仰角为 67°,同一时刻小芸在
附近一座距地面 30 米高(BC=30 米)的居民楼顶 B 处测得风筝 A 的仰角是 45°,已知小江
与居民楼的距离 CD=40 米,牵引端距地面高度 DE=1.5 米,根据以上条件计算风筝距地
面的高度(结果精确到 0.1 米,参考数据:sin67°≈ 12 ,cos67°≈ 5 ,tan67°≈ 12 ,
A.中位数是 2
B.众数是 17
C.平均数是 2
D.方差是 2
2.如图,在 ABC 中, ACB 90 ,分别以点 A 和点 C 为圆心,以大于 1 AC 的长为 2
半径作弧,两弧相交于点 M 和点 N ,作直线 MN 交 AB 于点 D ,交 AC 于点 E ,连接
南通市如皋市2019年中考数学一模试卷含答案解析

2019年江苏省南通市如皋市中考数学一模试卷、选择题(本大题共 10题,每题3分,共30分•在每小题给出的四个选项中,恰有一项是符合 题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 15的相反数是(A . - 5B . 5C .D .-5 52.如图,直线a 丄直线c ,直线b 丄直线c ,若/仁70°,则/ 2=()A.7B . 2 三C . 2D . 17 .已知ab=4,若-2 w b <- 1,贝U a 的取值范围是( )A . a >- 4B . a >- 2C .- 4w a <- 1D . - 4< a <- 22a 2+a 2=3a 4B . a 5 6 * * * * ** a 2=a 3C . a 6?a 2=a 12D . (- a 6) 2 12=a4•长方体的主视图、俯视图如图所示,则其左视图面积为(A . 3B . 4C 12D . 16OF 列计算正确的是(3. D . 80°——4---------------1b ------ 4 -------- T主视图&如图,将△ ABC放在每个小正方形的边长为1的网格中,点 A , B , C均在格点上,贝U tanA的值是()A. B .』C. 2 D.,9.求一元二次方程X2+3X -仁0的解,除了课本的方法外,我们也可以采用图象的方法:在平面直角坐标系中,画出直线y=x+3和双曲线y=的图象,贝U两图象交点的横坐标即该方程的解. 类似地,I我们可以判断方程X3-X-仁0的解的个数有()A . 0个B . 1个C . 2个D . 3个10 .如图,△ ABD 内接于O O,点C 在线段AD 上,AC=2CD,点E 在-上, / ECD= / ABD , EC=1 ,则AE等于()(2)化简3K +1-x+1)^二、填空题(本大题共 8题,每题3分,共24分•不需写出解答过程,请把答案直接填写在答题卡 相应位置上)11. 2019年1月19日国家统计局公布:2019年南通市生产总值 GDP 达6120亿,同比增长 9%,居全国第24名.6120亿用科学记数法可表示为 ________________ . 12•已知/ A=55 °则/ A 的余角等于 ________________ 度.113•函数y==二 中,自变量x 的取值范围是 __________________ . 14•已知多边形的每个内角都等于 135°求这个多边形的边数是 ________________ •(用两种方法解决问题)15•如图,直线y=3x 和y=kx+2相交于点P (a , 3),则不等式3x >kx+2的解集为 ____________________ •16 .已知一个圆锥的侧面积是 2冗cm 2,它的侧面展开图是一个半圆,则这个圆锥的高为 ______________cm (结果保留根号).17•如图,菱形 ABCD 中,AB=4,/ B=60 ° E , F 分别是 BC , DC 上的点,/ EAF= 60°连接EF ,则△ AEF 的面积最小值是 ________________•2 2 2 218 •若实数a 、b 满足a +ab+b =1,且t=ab - a - b ,则t 的取值范围是 _________________10题,共96分•请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19・(1)计算 2-1-丨—J : i + ( 一 -2) °+ T ;三、解答题(本大题共21 •为了了解某校学生对球类运动的爱好情况,采用抽样的方法,从足球、篮球、羽毛球、排球等 四个方面调查了若干名学生, 并绘制成不完整的条形图. 已知最喜欢篮球的人数占调查人数的32%,最喜欢排球的人数是最喜欢足球人数的1.5倍.(1) 最喜欢排球的人数是 ____________ ,被调查的学生数是 ______________ ; (2)将条形图补充完整;(3) 若用扇形图表示统计结果,则最喜欢羽毛球的人数所对应扇形的圆心角为 ____________ 度.22.如图,在A 岛周围25海里水域有暗礁,一轮船由西向东航行到 O 处时,发现A 岛在北偏东60 方向,轮船继续前行 20海里到达B 处发现A 岛在北偏东45。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年江苏省南通市如东县中考数学一模试卷一、选择题(本大题共10小题,共30.0分) 1. 下列各数中,小于-4的是( )A. B. C. 0 D. 12. 下列各式计算的结果为a 5的是( )A. B. C. D.3. 2019年3月5日,李克强总理在《政府工作报告》中指出,2018年中国精准脱贫有力推进,农村贫困人口减少1386万.将数据“1386万”用科学记数法表示应为( )A. B. C. D.4. 下面的几何图形中,是轴对称图形但不是中心对称图形的是( )A. 等边三角形B. 圆C. 平行四边形D. 正六边形5. 如图,直线AD ∥BC ,若∠1=40°,∠BAC =80°,则∠2的度数为( )A. B. C.D.6. 如图,某工厂加工一批无底帐篷,设计者给出了帐篷的三视图(图中尺寸单位:m ).根据三视图可以得出每顶帐篷的表面积为( ) A. B. C. D.7. 若关于x 的不等式x <a 恰有2个正整数解,则a 的取值范围为( )A. B. C. D.8. 如图,在平面直角坐标系中,直线y =-2x +4与x 轴交于点A ,与y 轴交于点B ,与直线y =kx 交于点C(4,n ),则tan ∠OCB 的值为( )A.B. C.D.9. 如图,甲、丙两地相距500km ,一列快车从甲地驶往丙地,途中经过乙地;一列慢车从乙地驶往丙地,两车同时出发,同向而行,折线ABCD 表示两车之间的距离y (km )与慢车行驶的时间为x (h )之间的函数关系.根据图中提供的信息,下列说法不正确的是( )A. 甲、乙两地之间的距离为200 kmB. 快车从甲地驶到丙地共用了 hC. 快车速度是慢车速度的 倍D. 快车到达丙地时,慢车距丙地还有50 km10. 如图,⊙O 的直径AB 的长为10,点P 在BA 的延长线上,PC 是⊙O的切线,切点为C ,∠ACB 的平分线交⊙O 于点D ,交AB 于点E ,若PE 的长为12,则CE 的长为( )A.B.C.D.二、填空题(本大题共8小题,共24.0分) 11. 计算: - =______.12.通常新手的成绩不稳定,根据表格中的信息,估计小张和小李两人中新手是______. 13. 如图,△ABC 中,DE ∥BC ,DE 分别交AB ,AC 于点D ,E .若 △△=,BC =10,则DE =______.14. 一个正多边形的内角和为720°,则这个正多边形的每一个外角等于______.15. 若关于x 的一元二次方程x 2-4x +m =0有实数根,则实数m 满足______. 16. 如图,△ABC 中,AB =AC =4 cm ,点D 在BA 的延长线上,AE 平分∠DAC ,按下列步骤作图.步骤1:分别以点B 和点C 为圆心,大于BC 的长为半径作弧,两弧相交于点F ,连接AF ,交BC 于点G ;步骤2:分别以点A 和点B 为圆心,大于AB 的长为半径作弧,两弧相交于点M 和点N ,作直线MN ,交AG 于点I ;步骤3:连接BI 并延长,交AE 于点Q .若 =,则线段AQ 的长为______cm .17. 如图,矩形ABCD 的对角线相交于点E ,点A (0,4),点B (2,0),若反比例函数y =(x >0)的图象经过C ,E 两点,则k 的值是______.18.平面直角坐标系xOy中,若P(m ,m 2+4m +3),Q (2n ,4n -8)是两个动点(m ,n 为实数),则PQ 长度的最小值为______. 三、计算题(本大题共1小题,共11.0分) 19. (1)计算(-1)3+(-)-2-|-5|+( -2)0;(2)先化简,再求值:5(x +2y )(x -2y )-(2x +y )2,其中x =2,y =-1.四、解答题(本大题共8小题,共85.0分)20.甲、乙两人分别从距目的地3km和5km的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前10min到达目的地.求甲、乙两人的速度.21.为了更好地开展体育运动,增强学生体质,学校准备购买一批运动鞋,供学生借用,为配合学校工作,学校体育部从全校各个年级随机抽查了若干名学生的鞋号,用表格整理数据(如下).请根据相关信息,解答下列问题:(1)将表格补充完整;(2)在所抽查的鞋号组成的数据中,众数是______,中位数是______;(3)若该校计划购买300双运动鞋,根据样本数据,鞋号37的运动鞋应购买多少双?22.如图,建筑物BC上有一旗杆AB,从与BC相距40m的D处观测旗杆顶部A 的仰角为50°,观测旗杆底部B的仰角为45°,求旗杆AB的高度.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)23.在一个不透明的盒中有m个黑球和1个白球,这些球除颜色外无其他差别.(1)若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到黑球的频率稳定在0.75左右,则m的值应是______;(2)在(1)的条件下,用m个黑球和1个白球进行摸球游戏.先从盒中随机摸取一个球,再从剩下的球中再随机摸取一个球,求事件“先摸到黑球,再摸到白球”的概率.24.如图,AB,BC,CD分别与⊙O相切于E,F,G,且AB∥CD,BO=2cm,CO=2cm.(1)求BC的长;(2)求图中阴影部分的面积.25.如图,矩形ABCD中,AB=6,BC=8,点E在BC边的延长线上,连接DE.过点B作DE的垂线,交CD于点M,交AD边的延长线于点N.(1)连接EN,若BE=BD,求证:四边形BEND为菱形;(2)在(1)的条件下,求BM的长;(3)设CE=x,BN=y,求y关于x的函数解析式,并直接写出x的取值范围.26.已知抛物线y=ax2+bx+c的顶点为(2,1),且过点(0,5).(1)求抛物线的解析式;(2)将抛物线先向左平移1个单位长度,再向下平移m(m>0)个单位长度后得新抛物线.①若新抛物线与x轴交于A,B两点(点A在点B的左侧),且OB=3OA,求m的值;②若P(x1,y1),Q(x2,y2)是新抛物线上的两点,当n≤x1≤n+1,x2≥4时,均有y1≤y2,求n的取值范围.27.平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“最佳三点矩形”.如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C的“最佳三点矩形”.如图2,已知M(4,1),N(-2,3),点P(m,n).(1)①若m=1,n=4,则点M,N,P的“最佳三点矩形”的周长为______,面积为______;②若m=1,点M,N,P的“最佳三点矩形”的面积为24,求n的值;(2)若点P在直线y=-2x+4上.①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;(3)若点P(m,n)在抛物线y=ax2+bx+c上,且当点M,N,P的“最佳三点矩形”面积为12时,-2≤m≤-1或1≤m≤3,直接写出抛物线的解析式.答案和解析1.【答案】B【解析】解:比-4小的数是-5.故选:B.利用负数的大小比较方法:负数小于0和正数,两个负数相比较,绝对值大的反而小,比较选择答案即可.此题考查有理数的大小比较,掌握比较的方法是解决问题的关键.2.【答案】C【解析】解:A、a3+a2,无法计算,故此选项错误;B、a10÷a2=a8,故此选项错误;C、a•a4=a5,正确;D、(-a3)2=a6,故此选项错误;故选:C.直接利用同底数幂的乘除运算法则以及合并同类项法则分别判断得出答案.此题主要考查了同底数幂的乘除运算以及合并同类项,正确掌握相关运算法则是解题关键.3.【答案】D【解析】解:1386万=1.386×107,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:A、等边三角形是轴对称图形,不是中心对称图形,符合题意;B、圆既是轴对称图形,也是中心对称图形,不合题意;C、平行四边形不是轴对称图形,是中心对称图形,不合题意;D、正六边形既是轴对称图形,也是中心对称图形,不合题意.故选:A.根据轴对称图形与中心对称图形的概念解答.本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【答案】B【解析】解:∵∠1=40°,∠BAC=80°,∴∠ABC=60°,又∵AD∥BC,∴∠2=∠ABC=60°,故选:B.依据三角形内角和定理,即可得到∠ABC=60°,再根据AD∥BC,即可得出∠2=∠ABC=60°.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.6.【答案】B【解析】解:根据三视图得圆锥的母线长为2m,底面圆的半径为3÷2=1.5m,所以圆锥的侧面积=×2π×1.5×2=3π,圆柱的侧面积=2π×1.5×2=6π,所以每顶帐篷的表面积=3π+6π=9π(m2).故选:B.根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m,底面圆的半径为3÷2=1.5m,圆锥的高为200cm,由于圆锥的侧面展开图为一扇形,圆柱的侧面展开图为矩形,则根据扇形的面积公式和矩形的面积公式分别进行计算,然后求它们的和积.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.7.【答案】A【解析】解:关于x的不等式x<a恰有2个正整数解,则正整数解是:1,2.则a的取值范围:2<a≤3.故选:A.首先确定不等式的正整数解,则a的范围即可求得.本题主要考查一元一次不等式组的整数解,根据a的取值范围正确确定a与2和3的关系是关键..8.【答案】A【解析】解:如图1所示,过点O作OG垂直AB于点G,过点C作CD垂直y轴于点D,令x=0,解得y=4,∴B(0,4),令y=0,解得x=2,∴A(2,0),当x=4时,y=4,∴n=4,C(4,4),∵tan∠OBA=,∴,设OG=x,则BG=2x,则有x2+(2x)2=42,解得x=,∴OG=,BG=,∵CD=4,DB=8,∴BC==4,∴CG=,∴tan∠OCB==.故选:A.过点O作OG垂直AB于点G,过点C作CD垂直y轴于点D,令x=0求得B(0,4),令y=0求得A(2,0),则tan∠OBA=,,设OG=x,则BG=2x,则有x2+(2x)2=42,解得x=,即OG=,BG=,根据CD=4,DB=8,勾股定理求BC==4,则tan∠OCB==.此题考查了一次函数的相关性质以及锐角三角函数的相关性质,构造直角三角形并计算相关长度为解题关键.9.【答案】C【解析】解:∵点A(0,200),∴甲、乙两地之间的距离为200km;故A选项正确;∵慢车速度:(500-200)÷3=100km/h,快车速度:(100×2+200)÷2=200km/h,∴快车速度是慢车速度的2倍;故C选项不正确;∵快车速度:(100×2+200)÷2=200km/h,∴快车从甲地驶到丙地共用了2.5h;故B选项正确;∵当快车到达丙地时,行驶了2.5h,∴慢车距丙地的距离为:500-2.5×100=50km;故D选项正确;故选:C.(1)因为两车同时出发,同向而行,所以A点就是甲、乙两地之间的距离为200千米;(2)图中B点为y=0,即快慢两车的距离为0,所以B点表示快慢两车相遇的时间.由A点为两车的路程差,相遇时间为1小时,可知:快车速度-慢车速度=150,再由点D可知慢车3.5小时从乙地到达丙地;由此求出慢车速度,进一步求出快车速度;(3)C点表示就是当快车到达丙地时,慢车快车的距离即慢车与丙地的距离,由路程除以速度算出慢车到达丙地的时间(就是C点的纵坐标),以及慢车距离丙地的距离(就是C点的纵坐标),得出点C坐标,设出函数解析式,代入求得即可根据坐标求得自变量的取值范围.此题考查一次函数的综合运用,解答问题的关键是看清图象表示的意义,利用路程、时间、速度三者之间的关系解决问题.10.【答案】D【解析】解:连接OC,作CH⊥AB于H,如图,∵AB为直径,∴∠ACB=90°,即∠B+∠BAC=90°,∵PC是⊙O的切线,∴OC⊥PC,∴∠ACB=90°,即∠PCA+∠ACO=90°而BAC=∠ACO,∴∠PCA=∠B,∵CD平分∠ACB,∴∠ACD=∠BCD=45°,∵∠PCE=∠PCA+45°,∠PEC=∠B+∠BCE=∠B+45°,∴∠PCE=∠PEC,∴PC=PE=12,在Rt△PCO中,OP==13,∴OE=1,∵CH•PO=PC•CO,∴CH==,在Rt△OCH中,OH==,∴HE=OH-OE=-1=,在Rt△CEH中,CE==.故选:D.连接OC,作CH⊥AB于H,如图,利用圆周角定理得到∠ACB=90°,根据切线的性质得到OC⊥PC,证明∠PCA=∠B,再证明∠PCE=∠PEC得到PC=PE=12,利用勾股定理计算出OP=13,则OE=1,接着根据面积法计算出CH=,从而可计算出OH=,则HE=OH-OE=,然后利用勾股定理计算CE的长.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.11.【答案】【解析】解:原式=3-=2.故答案为:2.先将二次根式化为最简,然后合并同类二次根式即可得出答案.此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并,难度一般.12.【答案】小李【解析】解:观察表格可知,小李的成绩波动比较大,故小李是新手.故答案为:小李.结合图形,成绩波动比较大的就是新手.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.【答案】4【解析】解:∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∴=,∴DE=×10=4.故答案为4.先证明△ADE∽△ABC,根据相似三角形的性质得到()2=,则=,然后把BC=10代入可计算出DE.本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.灵活运用相似三角形的性质进行几何计算.14.【答案】60°【解析】解:设这个正多边形的边数为n,∵一个正多边形的内角和为720°,∴180(n-2)=720,解得:n=6,∴这个正多边形的每一个外角是:360°÷6=60°.故答案为:60°.首先设这个正多边形的边数为n,根据多边形的内角和公式可得180(n-2)=720,继而可求得答案.此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握方程思想的应用,注意熟记公式是关键.15.【答案】m≤4【解析】解:∵方程x2-4x+m=0有实数根,∴△=(-4)2-4m=16-4m≥0,解得:m≤4.故答案为:m≤4.根据方程有实数根结合根的判别式即可得出关于m的一元一次不等式,解不等式即可得出结论.本题考查了根的判别式,熟练掌握“当△≥0时,方程有实数根.”是解题的关键.16.【答案】【解析】解:由作法得MN垂直平分AB,则IA=IB;AF⊥BC于G,∵AB=AC,∴BG=CG,∵=,设AI=5x,则BI=5x,IG=3x,∴BG=4x,在Rt△ABG中,AB==4x,∴4x=4,解得x=1,∴BG=4,∵AE平分∠DAC,∴∠DAE=∠CAE,∵AB=AC,∴∠ABC=∠ACB,而∠DAC=∠ABC+∠ACB,∴∠DAE=∠ABC,∴AE∥BC,∴==,∴AQ=×4=.故答案为.由作法得MN垂直平分AB,AF⊥BC于G,则IA=IB,BG=CG,设AI=5x,则BI=5x,IG=3x,所以BG=4x,在Rt△ABG中聚划算出AB=4x,从而得到x=1,所以BG=4,接着证明AE∥BC,然后了平行线分线段成比例定理可计算出AQ的长.本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质和等腰三角形的性质.17.【答案】【解析】解:作CF⊥x轴于F,∵点A(0,4),点B(2,0),∴OA=4,OB=2,设C(2m ,),则E(m,),∵四边形ABCD是矩形,∴∠ABC=90°,∴∠ABO+∠CBF=90°,∵∠ABO+∠BAO=90°,∴∠BAO=∠CBF,∵∠AOB=∠CFB=90°,∴△AOB∽△BFC,∴=,即=∴m-1=,∴C(2m,m-1),∵E点是AC的中点,∴=+,解得m=k,∴C (k ,k-1),∴k•(k-1)=k,解得k=.故答案为.作CF⊥x轴于F,根据题意设C(2m ,),则E(m ,),由△AOB∽△BFC ,得到=,求得m-1=,得到C(2m,m-1),由E点是AC的中点,则=+,得到m=k,从而得到C(k ,k-1),根据反比例函数图象上点的坐标特征列出k•(k-1)=k,求得即可.本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了矩形的性质.18.【答案】2【解析】解:Q点在直线l:y=2x-8上,P在抛物线y=x2+4x+3上∴直线与x,y标轴交点分别为B(4,0),D(0,8),设与直线y=2x-8平行的直线为y=2x+b,当直线为y=2x+b与抛物线y=x2+4x+3有一个交点时,即2x+b=x2+4x+3,∴x2+2x+3-b=0,∴△=-8+4b=0,∴b=2,此时交点坐标为A(-1,0),过A作AC⊥直线l,∵AB=5,DB=4,∴sin∠ABC==,∴AC=2;故答案为2;Q点在直线y=2x-8上,当P到直线的距离最小即为所求;本题考查点与直线的位置关系;能够将Q点运动的轨迹找到,将问题转换为点与直线的距离是解题的关键.19.【答案】解:(1)原式=-1+9-5=4;(2)原式=5(x2-4y2)-(4x2+4xy+y2)=5x2-20y2-4x2-4xy-y2=x2-4xy-21y2,当x=2,y=-1时,原式=-9.【解析】(1)原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值;(2)原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.20.【答案】解:设甲的速度为3xkm/h,则乙的速度为4xkm/h,依题意,得:-=,解得x=,经检验,x=是原方程的解,且符合题意,∴3x=,4x=6.答:甲的速度为km /h ,乙的速度为6km /h . 【解析】设甲的速度为3xkm/h ,则乙的速度为4xkm/h ,根据时间=路程÷速度结合甲比乙提前10min 到达目的地,即可得出关于x 的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 21.【答案】7 50 16% 37 36.5【解析】(2)∵在这组样本数据中,37出现了15次,出现次数最多, ∴这组样本数据的众数为37;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36, ∴中位数为(36+37)÷2=36.5; 故答案为:37,36.5. (3)37号:300×30%=90(双), 答:鞋号37的运动鞋应购买90双.(1)首先根据34鞋号的有4人占8%求得总人数,然后求得相关数据即可;(2)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可; (3)根据题意列出算式,计算即可得到结果.考查了统计的知识以及用样本估计总体,弄清题意是解本题的关键.22.【答案】解:由题意,∠BDC =45°,∠ADC =50°,∠ACD =90°,CD =40 m . ∵在Rt △BDC 中,tan ∠BDC =. ∴BC =CD =40 m .∵在Rt △ADC 中,tan ∠ADC =.∴.∴AB ≈7.6(m ).答:旗杆AB 的高度约为7.6 m . 【解析】利用CD 及正切函数的定义求得BC ,AC 长,把这两条线段相减即为AB 长. 此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键. 23.【答案】3【解析】解:(1)解:根据题意得=0.75,解得:m=3,经检验:m=3是分式方程的解, 故答案为:3;(2)画树状图如下:从树状图可知,“先从盒子中随机取出一个球,再从剩下的球中再随机摸取一个球”共12种等可能的结果,其中“先摸到黑球,再摸到白球”的结果有3种, ∴P (先摸到黑球,再摸到白球)==.(1)在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到红球的频率稳定在0.75左右得到比例关系,列出方程求解即可. (2)列出树状图,利用概率公式求解即可.本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.24.【答案】解:(1)∵AB ,BC ,CD 分别与⊙O 相切于E ,F ,G ,∴∠OBF =∠EBF ,∠OCF =∠GCF , ∵AB ∥CD ,∴∠EBF +∠GCF =180°,∴∠OBF +∠OCF = ∠EBF +∠GCF =90°, ∴∠BOC =90°,∴BC===4cm;(2)连接OF,∵BC与⊙O相切于F,∴OF⊥BC,又∵S△BOC=BO•CO=BC•OF,∴2=×4×OF,∴OF=,∴S阴影=S△BOC-S△BOC内扇形=×2×2-=(2-)cm2.【解析】(1)根据切线的性质得到∠OBF=∠EBF,∠OCF=∠GCF,根据平行线的性质得到∠BOC=90°,根据勾股定理即可得到结论;(2)连接OF,根据切线的性质得到OF⊥BC,根据三角形的面积公式得到OF=,根据扇形的面积公式即可得到结论.本题考查了切线的性质,扇形的面积,勾股定理,正确的作出辅助线是解题的关键.25.【答案】解:(1)证明:∵BD=BE,BM⊥DE,∴∠DBN=∠EBN.∵四边形ABCD是矩形,∴AD∥BC.∴∠DNB=∠EBN.∴∠DBN=∠DNB.∴BD=DN.又∵BD=BE,∴BE=DN.又∵AD∥BC.∴四边形DBEN是平行四边形.又∵BD=BE,∴平行四边形DBEN是菱形.(2)∵四边形ABCD是矩形,∴∠A=∠BCD=90°,BC=AD=8,CD=AB=6.∴BE=BD==10.∴CE=BE-BC=2.∴在Rt△DCE中,DE==.由题意易得∠MBC=∠EDC,又∠DCE=∠BCD=90°.∴△BCM∽△DCE.∴.∴.∴BM=.(3)由题意易得∠BNA=∠EDC,∠A=∠DCE=90°∴△NAB∽△DCE,∴.∴.∴AN=.∴在Rt△ABN中,y═==.∵N在AD延长线上,∴AN>8,即:>,∴<综上所述:y═.其中0<x<.【解析】(1)由BD=BE,BM⊥DE依据三线合一可知∠DBN=∠EBN.由矩形性质可知AD∥BC.易得DN∥BE,DN=BE,所以四边形DBEN是平行四边形.根据菱形的判定定理可得结论.(2)由矩形性质和菱形性质用勾股定理可计算出BD=BE=10,DE=,再由△BCM∽△DCE,即可计算BM长.(3)由△NAB∽△DCE,可得AN=.再根据勾股定理可得BN=即可得到函数解析式.本题主要考查了矩形的性质、相似三角形的判定与性质、解方程等知识,对运算能力的要求比较高,灵活运用相似三角形和勾股定理求线段长是解题关键.26.【答案】解:(1)∵顶点为(2,1),∴y=ax2+bx+c=y=a(x-2)2+1(a≠0).又∵抛物线过点(0,5),∴a(0-2)2+1=5,∴a=1.∴y=(x-2)2+1;(2)抛物线y=(x-2)2+1先向左平移1个单位长度,再向下平移m个单位长度后得新抛物线y=(x-1)2+1-m=x-2x+2-m.①分情况讨论:如图1,若点A,B均在x轴正半轴上,设A(x,0),则B(3x,0),由对称性可知:=1,∴x=,A(,0).∴()2-2×+2-m.∴m=.如图2,若点A在x轴负半轴上,点B在x轴正半轴上,设A(x,0),则B(-3x,0),由对称性可知:=1,∴x=-1,A(-1,0).∴(-1)2-2×(-1)+2-m=0.∴m=5.综上:m=或m=5;②∵新抛物线开口向上,对称轴为直线x=1,∴当x=4和x=-2时,函数值相等.又∵当n≤x1≤n+1,x2≥4时,均有y1≤y2,∴结合图象,得.∴-2≤n≤3.【解析】(1)设抛物线解析式为顶点式y=a(x-2)2+1(a≠0),把点(0,5)代入求值;(2)根据二次函数图象几何变换规律得到新抛物线y=(x-1)2+1-m=x-2x+2-m.①利用抛物线解析式求得点A、B的坐标,根据抛物线的对称性质和方程思想求得m的值即可;②根据抛物线的对称性质知:当x=4和x=-2时,函数值相等.结合图象,得.解该不等式组得到:-2≤n≤3.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.27.【答案】18 18【解析】解:(1)①如图1,画出点M,N,P的“最佳三点矩形”,可知矩形的周长为6+6+3+3=18,面积为3×6=18;故答案为:18,18.②∵M(4,1),N(-2,3),∴|x M-x N|=6,|y M-y N|=2.又∵m=1,点M,N,P的“最佳三点矩形”的面积为24.∴此矩形的邻边长分别为6,4.∴n=-1或5.(2)如图2,①易得点M,N,P的“最佳三点矩形”面积的最小值为12;分别将y=3,y=1代入y=-2x+4,可得x分别为,;结合图象可知:≤m≤;②当点M,N,P的“最佳三点矩形”为正方形时,边长为6,分别将y=7,y=-3代入y=-2x+4,可得x分别为-,;∴点P的坐标为(-,7)或(,-3);(3)如图3,设抛物线的解析式为y=ax2+bx+c,经过点(-1,1),(1,1),(3,3),∴,第11页,共12页,∴,同理抛物线经过点(-1,3),(1,3),(3,1),可求得抛物线的解析式为y=-,∴抛物线的解析式y=x2+或y=-x2+.(1)①利用“最佳三点矩形”的定义求解即可,②利用“最佳三点矩形”的定义求解即可;(2)①利用“最佳三点矩形”的定义求得面积的最小值为12,②由“最佳三点矩形”的定义求得正方形的边长为6,分别将y=7,y=-3代入y=-2x+4,可得x分别为-,,点P的坐标为(-,7)或(,-3);(3)利用“最佳三点矩形”的定义画出图形,有两种可能,可分别求得解析式.本题主要考查了二次函数的综合题,涉及点的坐标,正方形及矩形的面积及待定系数法求函数解析式等知识,解题的关键是理解运用好“最佳三点矩形”的定义.第12页,共12页。