高中数学2.2.1对数与对数运算(2)教案新人教版必修1

合集下载

2.2.1_对数与对数运算(2)_课件(人教A版必修1)

2.2.1_对数与对数运算(2)_课件(人教A版必修1)

)
12 解析:原式=log6 12-log62=log6 =log6 3. 2
答案:C
• 4.若logab·log3a=4,则b的值为________. • • • • • 答案:81 5.已知a2=m,a3=n,求2logam+logan. 解:由a2=m,a3=n, 得logam=2,logan=3, ∴2logam+logan=2×2+3=7.
(3)在使用换底公式时, 底数的取值不唯一, 应根 据实际情况选择. (4)重视以下结论的应用: ① logac· ca = 1 ; ② logab· bc· ca = 1 ; ③ log log log m loganb = logab. n
m
思考感悟 m nbm= logab(a>0 (1)loga n ∈N*)成立吗? (2)(logax)n=logaxn 正确吗? 提示:(1)成立.由换底公式可得 loganbm= mlgb m = log b. nlga n a 且 a≠1,b>0,m、n
n个
(2)不正确. ∵(logax)n=(logax· ax· logax), logaxn log „· 而 =nlogax=logax+logax+„+logax,∴一般两式不相等.
互 动 课 堂
典 例 导 悟
类型一 对数运算性质的运用 [例 1] 求下列各式的值. 1 (1)4lg2+3lg5-lg ; 5 1 1+ lg9-lg240 2 (2) ; 2 36 1- lg27+lg 3 5 3 (3)lg +lg70-lg3; 7 (4)lg22+lg5· lg20-1.
n个
自 我 检 测 1.若 a>0,a≠1,x>0,y>0,x>y,下列式子 中正确的个数是( )

教学:高中数学 2.2.1 对数与对数运算教案 新人教A版必修1

教学:高中数学 2.2.1 对数与对数运算教案 新人教A版必修1

2.2.1 对数与对数运算第一课时 对数的概念 三维目标定向 〖知识与技能〗理解对数的概念,掌握对数恒等式及常用对数的概念,领会对数与指数的关系。

〖过程与方法〗 从指数函数入手,引出对数的概念及指数式与对数式的关系,得到对数的三条性质及对数恒等式。

〖情感、态度与价值观〗增强数学的理性思维能力及用普遍联系、变化发展的眼光看待问题的能力,体会对数的价值,形成正确的价值观。

教学重难点:指、对数式的互化。

教学过程设计 一、问题情境设疑引例1:已知2524,232==,如果226x =,则x = ? 引例2、改革开放以来,我国经济保持了持续调整的增长,假设2006年我国国内生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国内生产总值比2006年翻两番?分析:设经过x 年国内生产总值比2006年翻两番,则有a a x4%)81(=+,即1.08 x = 4。

这是已知底数和幂的值,求指数的问题,即指数式ba N =中,求b 的问题。

能否且一个式子表示出来?可以,下面我们来学习一种新的函数,他可以把x 表示出来。

二、核心内容整合1、对数:如果)10(≠>=a a N a x且,那么数x 叫做以a 为底N 的对数,记作Nx a log =。

其中a 叫做对数的底数,N 叫做真数。

根据对数的定义,可以得到对数与指数间的关系:当 a > 0且1a ≠时,Nx N a a x log =⇔=(符号功能)——熟练转化如:1318log 131801.101.1=⇔=x x ,4 2 = 16 ⇔ 2 = log 4 162、常用对数:以10为底10log N写成lg N ;自然对数:以e 为底log e N写成ln N (e = 2.71828…)3、对数的性质:(1)在对数式中N = a x > 0(负数和零没有对数);(2)log a 1 = 0 , log a a = 1(1的对数等于0,底数的对数等于1);(3)如果把b a N =中b 的写成log a N ,则有N a N a =log (对数恒等式)。

人教版高中数学必修一《对数与对数运算》教案设计

人教版高中数学必修一《对数与对数运算》教案设计

2.2.1 对数与对数运算一、教材分析本节是高中数学新人教版必修1的第二章2.2对数函数的内容二、三维目标1.知识与技能(1).理解对数的概念,了解对数与指数的关系;(2).理解和掌握对数的性质;(3).掌握对数式与指数式的关系。

2.过程与方法(1)通过实例认识对数模型,体会引入对数的必要性;(2)通过观察分析得出对数的概念及对数式与指数式的互化;(3)通过分组探究进行活动,掌握对数的重要性质。

3.情感、态度与价值观(1)通过本节的学习体验数学的严谨性,培养细心观察、认真分析分析、严谨认真的良好思维习惯和不断探求新知识的精神;(2)感知从具体到抽象、从特殊到一般、从感性到理性认知过程;(3)体验数学的科学功能、符号功能和工具功能,培养直觉观察、探索发现、科学论证的良好的数学思维品质.三、教学重点教学重点:(1)对数的定义;(2)指数式与对数式的互化四、教学难点教学难点:推导对数性质五、教学策略讲练结合掌握对数的双基,即对数产生的意义、概念等基础知识,求对数及对数式与指数式间转化等基本技能的掌握六、教学准备(对数教学目标)—对数的文化意义、对数概念(讲一讲)—对数式与指数式转化(做一做)—例题(讲一讲)、习题(做一做)—两种特殊的对数(讲一讲)—求值(做一做)—评价、小结—作业。

八、板书设计第二章基本初等函数(I)2.2 对数函数2.2.1 对数与对数运算九、教学反思对数的教学采用讲练结合的教学模式。

教学中,以双基为教学主题,采用讲讲练练的教学程序,运用指数式与对数式的转化策略,通过教师的讲,数学家对对数的痴迷激发学生好奇,从实际问题导入对数概念、对数符号,理解对数的意义,通过典型例题的讲授,充分揭示对数式与指数式间的关系,掌握求对数值的方法,通过学生典型习题的练,使学生进一步理解对数式与指数式间的关系,掌握求对数的一些方法,在讲练结合中实现教学目标。

高中数学人教版必修1课件:2.2.1对数与对数运算运算性质

高中数学人教版必修1课件:2.2.1对数与对数运算运算性质
复习回顾
1.定义:一般地,如果 a x N a 0, a 1
那么数 x叫做 以a为底 N的对数,记作 loga N x
a叫做对数的底数,N叫做真数。
2.对数的基本性质:
① 零和负数没有对数. ② loga1= 0 ③ logaa = 1
3.对数恒等式:aloga N N
2.2.1对数与对数运算(2)
(2)
log M aN
loga M
loga N;
ቤተ መጻሕፍቲ ባይዱ两数商的对数,等于对数的差;
(3) loga M n n loga M (n R).
幂的对数等于幂指数乘以底数的对数.
例1 用logax,logay,logaz表示下列各式:
(1)
xy loga z
;
(2)
loga
x2
3
y. z
解 : 1原式 loga xy loga z
对数运算
学习目标:
1.掌握对数的运算性质。 2.能熟练运用运算性质解题。
重、难点:
对数的运算性质的理解与应用。
(自主学习P64~65,记忆对数运算性质) 对数运算性质:
如果a>0,且a≠1,M>0,N>0 ,那么:
(1) loga (M N ) loga M loga N;
两数积的对数,等于对数的和;
loga x loga y loga z
2原式 loga x2 y loga 3 z
1
loga x2 loga y 2 loga 3 z
2 loga
x
1 2
loga
y
1 3
log
a
z
例2 求下列各式的值:
(1)log2(47×25); (2) lg 5 100 ;

对数与对数运算教案-人教版高中数学必修一第二章2.2.1 第二课时

对数与对数运算教案-人教版高中数学必修一第二章2.2.1 第二课时

第二章基本初等函数(Ⅰ)2.2 对数函数2.2.1.对数与对数运算第二课时对数运算1 教学目标1.1 知识与技能:[1]掌握对数的运算性质,能正确地利用对数的运算性质进行对数运算;[2]掌握对数换底公式的运用 .能用换底公式将一般对数转化为自然对数或常用对数。

[3]对数及其运算性质的综合应用1.2过程与方法:[1]通过对数的运算性质的探索及推导过程,培养学生的“合情推理能力”、“等价转化”和“演绎归纳”的数学思想方法,以及创新意识.1.3 情感态度与价值观:[1]通过对数的运算法则的学习,培养学生的严谨的思维品质 .[2]在学习过程中培养学生探究的意识.[3]让学生理解运算法则之间的内在联系,培养分析、解决问题的能力.通过“合情推理”、“等价转化”和“演绎归纳”的思想运用,培养学生对立统一、相互联系,相互转化以及“特殊—一般”的辩证唯物主义观点,以及大胆探索,实事求是的科学精神.2教学重点/难点/易考点2.1 教学重点[1]重点:对数式运算性质及时推导过程;[2]对数换底公式。

[3]对数及其运算性质的综合应用2.2 教学难点[1]难点:对数运算性质的发现过程及其证明;[2]对数换底公式的证明和应用。

3 专家建议启发学生从对数运算性质入手,了解对数在数学史上的重要作用,了解对数对大数运算的简化作用,降低运算的数量级,掌握一定量的对数计算基本模型,在熟练运用对数运算性质的基础上以对数的思维模式去考虑和处理问题,加深对于运算性质和换底公式的理解和运用,掌握对数运算的特殊性,为下一节学习对数函数打好基础.高考中对数的考查方式一般以选择题或填空题的形式出现。

4 教学方法实验探究——归纳总结——补充讲解——练习提高5 教学用具多媒体。

6 教学过程6.1 引入新课【师】同学们好。

从今天我们开始进入新一节内容的学习:对数与对数运算。

【板书】2.2.1.对数与对数运算第二课时【师】我们知道了对数的基本定义和性质,请认真回忆一下!【板书或投影】对数基本知识点1、对数的定义b N a =log其中 ),1()1,0(+∞∈ a 与 ),0(+∞∈N (负数与零没有对数);b ∈(文字表述:N 为正数,a 为非1正数,b 为任意实数)两类特殊对数:(1)常用对数:以10为底,记作lgN .(2)自然对数:以无理数e=2.71828……为底,记作lnN .2、三组互化式)10( log ≠>=⇔=a a b N N a a b 且lg 10b N N b =⇔=ln b N N e b =⇔=3、两个恒值(1) 01log =a (2) 1log =a a4、两个嵌套式(迭代式)(1)对数恒等式N a N a =log(2))10( log ≠>=a a b a b a 且5.指数运算法则,(R n m a a a n m n m ∈=⋅+),()(R n m a a mn n m ∈=)()(R n b a ab n n n ∈⋅=【生】对数定义式是......,指数式与对数式的转化......,对数恒等式,自然对数、常用对数【师】注意每个字母的取值X 围:底数,10≠>a a 且,真数N>0;再回忆一下指数运算的几个式子【板书或投影】)10( log ≠>=⇔=a a b N N a a b 且指数的运算性质n m n m a a a +=⋅; n m n m a a a -=÷mn n m a a =)( ; m nm na a = 6.2 新知介绍[1] 对数的运算性质【师】下面请同学们自行推导对数的运算性质!(5 分钟)【板演/PPT 】教师演示对数运算性质三式的证明。

高中数学人教版必修1教案2.2.1 对数与对数运算(2)

高中数学人教版必修1教案2.2.1 对数与对数运算(2)

第二课时一.教学目标:1.知识与技能①通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,求值、化简,并掌握化简求值的技能.②运用对数运算性质解决有关问题.③培养学生分析、综合解决问题的能力.培养学生数学应用的意识和科学分析问题的精神和态度.2. 过程与方法①让学生经历并推理出对数的运算性质.②让学生归纳整理本节所学的知识.3. 情感、态度、和价值观让学生感觉对数运算性质的重要性,增加学生的成功感,增强学习的积极性.二.教学重点、难点重点:对数运算的性质与对数知识的应用难点:正确使用对数的运算性质三.学法和教学用具学法:学生自主推理、讨论和概括,从而更好地完成本节课的教学目标.教学用具:投影仪四.教学过程1.设置情境复习:对数的定义及对数恒等式log b a N b a N =⇔= (a >0,且a ≠1,N >0),指数的运算性质.;m n m n m n m n a a a a a a +-⋅=÷=();m n m n mn n ma a a a == 2.讲授新课探究:在上课中,我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算性质,得出相应的对数运算性质吗?如我们知道m n m n a a a +⋅=,那m n +如何表示,能用对数式运算吗?如:,,m n m n m n a a a M a N a +⋅===设。

于是,m n MN a += 由对数的定义得到 log ,log m n a a M a m M N a n N =⇔==⇔=log m n a MN a m n MN +=⇔+=log log log ()a a a M N MN ∴+=放出投影即:同底对数相加,底数不变,真数相乘提问:你能根据指数的性质按照以上的方法推出对数的其它性质吗?(让学生探究,讨论)如果a >0且a ≠1,M >0,N >0,那么:(1)log log log a a a MN M N =+(2)log log log a a a M M N N=- (3)log log ()n a a M n Mn R =∈ 证明:(1)令,m nM a N a == 则:m n m n M a a a N-=÷= l o g a M m n N ∴-= 又由,m n M a N a ==log ,log a a m M n N ∴== 即:log log log a a aM M N m n N -=-= (3)0,log ,N n n a n N M M a ≠==时令则l o g ,bn a b n M M a ==则Nb n na a ∴= Nb ∴= 即log log log a a a M M N N=- 当n =0时,显然成立.l o g l o gn a a M n M ∴= 提问:1. 在上面的式子中,为什么要规定a >0,且a ≠1,M >0,N >0?1. 你能用自己的语言分别表述出以上三个等式吗?例题:1. 判断下列式子是否正确,a >0且a ≠1,x >0且a ≠1,x >0,x >y ,则有(1)log log log ()a a a x y x y ⋅=+ (2)log log log ()a a a x y x y -=-(3)log log log a a a x x y y=÷ (4)log log log a a a xy x y =- (5)(log )log n a a x n x = (6)1log log a ax x =-(7)1log log n a a x x n= 例2:用log a x ,log a y ,log a z 表示出(1)(2)小题,并求出(3)、(4)小题的值.(1)log a xy z (2)23log 8a x y (3)75log (42)z ⨯ (4)5lg 100 分析:利用对数运算性质直接计算:(1)log log log log log log aa a a a a xy xy z x y z z =-=+- (2)222333log log log log log log a a a a a a x y x y z x y z z =-=+-=112log log log 23a a a x y z +- (3)7575222log (42)log 4log 214519⨯=+=+=(4)2552lg 100lg105== 点评:此题关键是要记住对数运算性质的形式,要求学生不要记住公式.让学生完成P 68练习的第1,2,3题提出问题:你能根据对数的定义推导出下面的换底公式吗?a >0,且a ≠1,c >0,且e ≠1,b >0log log log c a c b b a= 先让学生自己探究讨论,教师巡视,最后投影出证明过程.设log ,log ,,M N c c M a N b a c b c ====则 且11,()N N M M M a c a a b ====N 所以c 即:log log ,log c a c b N N b M M a==又因为 所以:log log log c a c b b a = 小结:以上这个式子换底公式,换的底C 只要满足C >0且C ≠1就行了,除此之外,对C 再也没有什么特定的要求.提问:你能用自己的话概括出换底公式吗?说明:我们使用的计算器中,“log ”通常是常用对数. 因此,要使用计算器对数,一定要先用换底公式转化为常用对数. 如:2lg 3log 3lg 2= 即计算32log 的值的按键顺序为:“log ”→“3”→“÷”→“log ”→“2” →“=” 再如:在前面要求我国人口达到18亿的年份,就是要计算 1.0118log 13x = 所以 1.0118lg 18lg18lg13 1.2553 1.13913log 13lg1.01lg1.010.043x --===≈ =32.883733()≈年练习:P 68 练习4让学生自己阅读思考P 66~P 67的例5,例6的题目,教师点拨.3、归纳小结(1)学习归纳本节(2)你认为学习对数有什么意义?大家议论.4、作业(1)书面作业:P74 习题2.2 第3、4题 P 75 第11、12题2、思考:(1)证明和应用对数运算性质时,应注意哪些问题?(2)222log (3)(5)log (3)log (5)---+-等于吗?。

高一(人教A版)第二章数学课件:2.2.1对数与对数运算(第2课时对数及运算)

高一(人教A版)第二章数学课件:2.2.1对数与对数运算(第2课时对数及运算)

x loga|x| (3)loga|xy|=loga|x|· loga|y|;(4)log y= . loga|y|
a
A.1 C.3
B.2 D.4
2014-6-4
研修班
22
【错解】 D
【错因】 产生错解的主要原因是没有准确掌握对数的运算性质.
(1)logax2=2logax,不能保证x>0; (3)(4)虽保证了真数大于零,但是公式应用有误.
在使用换底公式时,底数的取值不唯一,应根据实际情况选择. (3)关于换底公式的另外两个结论: ①logac·logca=1;②logab·logbc·logca=1.
2014-6-4
研修班
21
设x,y为非零实数,a>0,a≠1,则下列式子中正确的个数为(
)
(1)logax2=2logax;(2)logax2=2loga|x|;
(1) (2) (3) loga(MN)=logaM+log .aN loga(M/N)=
logaM-.logaN
logaMn= nlogaM (n∈R).
2.对数换底公式 logcb logab=log a (a>0,a≠1,b>0,c>0,c≠1); c 特别地:logab· logba=1(a>0,a≠1,b>0,b≠1).
2014-6-4 研修班 16
(1)本例的解法均利用了换底公式,关于换底公式: ①换底公式的主要用途在于将一般对数化为常用对数或自然对 数,然后查表求值,解决一般对数求值的问题. ②换底公式的本质是化同底,这是解决对数问题的基本方法. 解题过程中换什么样的底应结合题目条件,并非一定用常用对数、 自然对数. (2)求条件对数式的值,可从条件入手,从条件中分化出要求的 对数式,进行求值;也可从结论入手,转化成能使用条件的形式; 还可同时化简条件和结论,直到找到它们之间的联系.

新课标高中数学人教A版必修一全册教案2.2.1对数与对数运算(两课时)

新课标高中数学人教A版必修一全册教案2.2.1对数与对数运算(两课时)

2.2.1对数与对数运算第一课时(一)教学目标1.知识技能:①理解对数的概念,了解对数与指数的关系;②理解和掌握对数的性质;③掌握对数式与指数式的关系.2.过程与方法:通过与指数式的比较,引出对数定义与性质.3.情感、态度、价值观(1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力.(2)通过对数的运算法则的学习,培养学生的严谨的思维品质.(3)在学习过程中培养学生探究的意识.(4)让学生理解平均之间的内在联系,培养分析、解决问题的能力.(二)教学重点、难点(1)重点:对数式与指数式的互化及对数的性质(2)难点:推导对数性质的(三)教学方法启发式启发学生从指数运算的需求中,提出本节的研究对象——对数,从而由指数与对数的关系认识对数,并掌握指数式与对数式的互化、而且要明确对数运算是指数运算的逆运算.引导学生在指数式与对数式的互化过程中,加深对于定义的理解,为下一节学习对数的运算性质打好基础.(四)教学过程如何解决?分别等于多少?合作探究对数式与指数式的互化在对数的概念中,要注意:对数式对数底数对数.对数的性质:备选例题例1 将下列指数式与对数式进行互化. (1)64)41(=x(2)51521=-(3)327log 31-= (4)664log -=x【分析】利用a x = N ⇔x = log a N ,将(1)(2)化为对数式,(3)(4)化为指数式. 【解析】(1)∵64)41(=x ,∴x =41log 64(2)∵51521=-,∴2151log 5-= (3)∵327log 31-=,∴27)31(3=-(4)∵log x 64 = –6,∴x -6 = 64.【小结】对数的定义是对数形式与指数形式互化的依据,同时,教材的“思考”说明了这一点. 在处理对数式与指数式互化问题时,依据对数的定义a b = N ⇔b = log a N 进行转换即可.例2 求下列各式中的x . (1)32log 8-=x ;(2)4327log =x ;(3)0)(log log 52=x ; 【解析】(1)由32log 8-=x 得32332)2(8--==x = 2–2,即41=x . (2)由4327log =x ,得343327==x ,∴813)3(4343===x .(3)由log 2 (log 5x ) = 0得log 5x = 20 = 1. ∴x = 5.【小结】(1)对数式与指数式的互化是求真数、底数的重要手段.(2)第(3)也可用对数性质求解.如(3)题由log 2(log 5x ) = 0及对数性质log a 1=0. 知log 5x = 1,又log 55 = 1. ∴x = 5.第二课时(一)教学目标1.知识与技能:理解对数的运算性质.2.过程与方法:通过对数的运算性质的探索及推导过程,培养学生的“合情推理能力”、“等价转化”和“演绎归纳”的数学思想方法,以及创新意识.3.情感、态态与价值观通过“合情推理”、“等价转化”和“演绎归纳”的思想运用,培养学生对立统一、相互联系,相互转化以及“特殊—一般”的辩证唯物主义观点,以及大胆探索,实事求是的科学精神.(二)教学重点、难点1.教学重点:对数运算性质及其推导过程.2.教学难点: 对数的运算性质发现过程及其证明.(三)教学方法针对本节课公式多、思维量大的特点,采取实例归纳,诱思探究,引导发现等方法.(四)教学过程复习:对数的定义及对数恒等式教师启发引导.如:.由对数的定义得到方法推出对数的其它性质吗?(让学生探究,讨论)师点拨.么:证明:合作探究:如下结论)值范围有什么限制条件?.(生交流讨论)备选例题例1 计算下列各式的值: (1)245lg 8lg 344932lg21+-; (2)22)2(lg 20lg 5lg 8lg 325lg +⋅++. 【解析】(1)方法一:原式=2122325)57lg(2lg 34)7lg 2(lg 21⨯+--=5lg 217lg 2lg 27lg 2lg 25++--=5lg 212lg 21+=21)5lg 2(lg 21=+.方法二:原式=57lg 4lg 724lg+- =475724lg⨯⨯=21)52lg(=⨯. (2)原式=2lg5 + 2lg2 + lg5 (2lg2 + lg5) + (lg2)2 =2lg10 + (lg5 + lg2)2 = 2 + (lg10)2 = 2 + 1 = 3.【小结】易犯lg52 = (lg5)2的错误.这类问题一般有两种处理方法:一种是将式中真数的积、商、方根运用对数的运算法则将它们化为对数的和、差、积、商,然后化简求值;另一种方法是将式中的对数的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂、方根,然后化简求值. 计算对数的值时常用到lg2 + lg5 = lg10 = 1.例2:(1)已知lg2 = 0.3010,lg3 = 0.4771,求lg 45; (2)设log a x = m ,log a y = n ,用m 、n 表示][log 344yxa a ⋅;(3)已知lg x = 2lg a + 3lg b – 5lg c ,求x .【分析】由已知式与未知式底数相同,实现由已知到未知,只须将未知的真数用已知的真数的乘、除、幂表示,借助对数运算法则即可解答.【解析】(1)1190lg 45lg 222== 1[lg9lg10lg 2]2=+- 1[2lg31lg 2]2=+- =-+=2lg 21213lg 0.4771+0.5 – 0.1505 = 0.8266(2)log a 1113412log log log a a a a x y =+-.1213141log 121log 3141m n y x a a -+=-+=(3)由已知得:532532lglg lg lg lg cb ac b a x =-+=,∴532cb a x =.【小结】①比较已知和未知式的真数,并将未知式中的真数用已知式的真数的乘、除、乘方表示是解题的关键,并且应注意对数运算法则也是可逆的;②第(3)小题利用下列结论:同底的对数相等,则真数相等. 即log a N = log a M ⇒N = M .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学2.2.1对数与对数运算(2)教案新人教版必修1
内容:对数运算法则
教学目标:
知识与技能:
(1)通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,求值、化简,并掌握化简求值的技能。

(2)运用对数运算性质解决有关问题。

(3)培养学生分析、综合解决问题的能力。

过程与方法:
(1)让学生经历并推导出对数的运算性质。

(2)让学生归纳整理本节所学的知识。

情感态度与价值观:
让学生感觉对数运算性质的重要性,增加学生的成功感,增强学习的积极性。

教学重点:对数运算的性质与对数知识的应用。

教学难点:正确使用对数的运算性质。

教学过程:
一、复习回顾,新课引入:
(1)指数式与对数式的关系:
(1)指数式与对数式的关系
log b a a N N b =⇔=
(2)几个重要结论:
1)负数与零没有对数;2)“1”的对数等于0;3)底数的对数等于1;
4)对数恒等式:log a N a =N ;log N
a a =N
二、师生互动,新课讲解:
1、问:从指数与对数的关系以及指数运算性质,你能得出相应的对数运算性质吗? 回顾指数幂的运算性质:
n m n m a a a +=⋅,n m n m a a a -=÷,mn n m a a =)(.
师生讨论:把指对数互化的式子具体化:设m a M =,n a N =,于是有
mn n n
m n m a M a N M a MN ===-+,,.n N m M a a ==log ,log .
根据对数的定义有:n m a n
m a +=+log ,n m a n
m a -=-log ,mn a mn a =log .
于是有
2、对数的运算性质:
如果0>a ,且1≠a 时,M>0,N>0,那么:
(1)N M N M a a a log log )(log +=⋅;(积的对数等于两对数的和)
(2)N M N M a a a log log log -=;(商的对数等于两对数的差)
(3)M n M a n
a log log =(R n ∈).(幂的对数等于幂指数乘以底数的对数) 例1:(课本P65例3)用log a x ,log a y ,log a z 表示下列各式:

变式训练1:(课本P68练习 NO :1)
例2:(课本P65例4)求下列各式的值:
(1)75
2log (42)⨯;(2)5lg 100;(3)3log 33;(4)31
log 27
变式训练2:(课本P68 练习 NO :2;3)
例3:求下列各式的值:
(1)lg 20lg 2-; (2)7
lg142lg lg 7lg183-+-;(3)lg81
lg9;
三、课堂小结,巩固反思:
对数的运算性质:
如果0>a ,且1≠a 时,M>0,N>0,那么:
(1)N M N M a a a log log )(log +=⋅;(积的对数等于两对数的和)
(2)N M N M
a a a log log log -=;(商的对数等于两对数的差)
(3)M n M a n
a log log =(R n ∈).(幂的对数等于幂指数乘以底数的对数)
四、布置作业:
A 组:
1、(课本P74习题2.2 A 组NO :3)
2、(课本P74习题2.2 A 组NO :5)
3、(tb0115301)设a,b,c 均为正数,有下列四个等式:
(1) lg(a 2+b)=2lga+lgb ;(2) lg c b a
=lga-lgb-lgc ;(3) lg cd ab
=lga+lgb-lgc-lgd ;(4) lg 3a =3lga
其中正确的个数是(B )。

(A )0个 (B )1个 (C )2个 (D )3个
4、(tb0115202)计算:lg 22+lg4·lg50+lg 250
(答:4)
B 组: 1、(课本P74习题2.2 B 组NO :1)
2、(tb0115412)若ac+b d=5,bc+ad=3,则log 2(c 2-d 2)+log 2(a 2-b 2
)的值为(B )。

(A )8 (B )4 (C )3 (D )1。

相关文档
最新文档