高考数学一轮复习 第9章 计数原理概率随机变量及其分布 第1节 分类加法计数原理与分步乘法计数原理课时分层

合集下载

人教A版高中数学 高三一轮 第九章 计数原理与概率、随机变量及其分布 9.1 分类加法计数原理与分步乘法计数

人教A版高中数学 高三一轮 第九章 计数原理与概率、随机变量及其分布 9.1 分类加法计数原理与分步乘法计数

高三一轮复习第九章计数原理与概率、随机变量及其分布9.1分类加法计数原理与分步乘法计数原理【教学目标】1.理解分类加法计数原理和分步乘法计数原理.2.能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.【重点难点】1.教学重点:能利用两个原理解决一些简单的实际问题;2.教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;【教学策略与方法】自主学习、小组讨论法、师生互动法【教学过程】考点一:分类加法计数原理1.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x +b=0有实数解的有序数对(a,b)的个数为() A.14 B.13C.12 D.10 【解析】①当a=0时,方程为2x+b=0,此时一定有解,此时b=-1,0,1,2,有4种可能;②当a≠0时,则Δ=4-4ab≥0,ab≤1,若a=-1时,b=-1,0,1,2,有4种不同的选法;若a=1时,b=-1,0,1,有3种可能;若a=2时,b=-1,0,有2种可能.∴有序数对(a,b)共有4+4+3+2=13(个).故选B. 【答案】 B2.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种【解析】赠送一本画册,3本集邮册.需从4人中选取一人赠送画册,其余送邮册,有C14种方法.赠送2本画册,2本集邮册,只需从4人中选出2人送画册,其余2人送邮册,有C24种方法.由分类加法计数原理,不同的赠送方法有C14+C24=10(种).【答案】 B归纳:分类计数原理中分类标准的确定分类标准是运用分类计数原理的难点所在,应抓住题目中的关键词、关键元素、关键位置.1.根据题目特点恰当选择一个分类标准,分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法.2.分类时,类与类之间是独立的,每类做法中的每种方法都能完成这件事.考点二:分步乘法计数原理(1)(用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为________.(2)有六名同学报名参加三个智力竞赛项目,在下列情如图,矩形的对角线把矩形分成A,种不同颜色给四部分涂色,每部分涂。

计数原理-备战高考数学(理)一轮复习考点

计数原理-备战高考数学(理)一轮复习考点

计数原理【命题趋势】两个基本计数原理是高考必考内容,有时会单独考查,有时会出现在解答题的过程之中,我们必须掌握.(1)理解分类加法计数原理和分步乘法计数原理.(2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.排列组合是高考中的必考内容,必须掌握.有时会是单独一道小题,有时会是在概率统计解答题中涉及,分值至少5分.(1)理解排列、组合的概念.(2)能利用计数原理推导排列数公式、组合数公式.(3)能解决简单的实际问题.二项式定理和排列组合在高考中一般交替考查,二者必出其一,二项式定理好拿分,熟练掌握即可.(1)能用计数原理证明二项式定理.(2)会用二项式定理解决与二项展开式有关的简单问题.【重要考向】考向一分类加法、乘法计数原理考向二两个计数原理的综合应用考向三排列与组合的综合应用考向四二项展开式通项的应用考向一分类加法、乘法计数原理(1)分类加法计数原理的特点:①根据问题的特点能确定一个适合于它的分类标准.②完成这件事的任何一种方法必须属于某一类.(2)使用分类加法计数原理遵循的原则:有时分类的划分标准有多个,但不论是以哪一个为标准,都应遵循“标准要明确,不重不漏”的原则.(3)应用分类加法计数原理要注意的问题:①明确题目中所指的“完成一件事”是什么事,完成这件事可以有哪些办法,怎样才算是完成这件事.②完成这件事的n类方法是相互独立的,无论哪种方案中的哪种方法都可以单独完成这件事,而不需要再用到其他的方法.③确立恰当的分类标准,准确地对“这件事”进行分类,要求每一种方法必属于某一类方案,不同类方案的任意两种方法是不同的方法,也就是分类时必须既不重复也不遗漏. (4)应用分步乘法计数原理要注意的问题:①明确题目中所指的“完成一件事”是什么事,单独用题目中所给的某一步骤的某种方法是不能完成这件事的,也就是说必须要经过几步才能完成这件事.②完成这件事需要分成若干个步骤,只有每个步骤都完成了,才算完成这件事,缺少哪一步骤,这件事都不可能完成.③根据题意正确分步,要求各步之间必须连续,只有按照这几步逐步地去做,才能完成这件事,各步骤之间既不能重复也不能遗漏. (5)两个计数原理的区别与联系定义:若数列 {a n } 满足所有的项均由 ﹣1,1 构成且其中-1有m 个,1有p 个 (m +p ≥3) ,则称 {a n } 为“ (m,p) ﹣数列”.(1)a i ,a j ,a k (i <j <k) 为“ (3,4) ﹣数列” {a n } 中的任意三项,则使得 a i a j a k =1 的取法有多少种? (2)a i ,a j ,a k (i <j <k) 为“ (m,p) ﹣数列” {a n } 中的任意三项,则存在多少正整数 (m,p) 对使得 1≤m ≤p ≤100, 且 a i a j a k =1 的概率为 12 .【答案】 (1)解:三个数乘积为1有两种情况:“ ﹣1,﹣1,1 ”,“ 1,1,1 ”,其中“ ﹣1,﹣1,1 ”共有: C 32C 41=12 种, “ 1,1,1 ”共有: C 43=4 种,利用分类计数原理得:a i ,a j ,a k (i <j <k) 为“ (3,4) ﹣数列” {a n } 中的任意三项, 则使得 a i a j a k =1 的取法有: 12+4=16 种.(2)解:与(1)同理,“ ﹣1,﹣1,1 ”共有 C m 2C p 1种, “ 1,1,1 ”共有 C P 3 种,而在“ (m,p) ﹣数列”中任取三项共有 C m+p3种, 根据古典概型有:C m 2C p 1+C p 3C m+p3=12 ,再根据组合数的计算公式能得到: (p ﹣m)(p 2﹣3p ﹣2mp +m 2﹣3m ﹣2)=0 , ①p =m 时,应满足 {1≤m ≤p ≤100m +p ≥3p =m ,∴(m,p)=(k,k),k ∈{2,3,4,…,100} ,共 99 个,②p 2﹣3p ﹣2mp +m 2﹣3m ﹣2=0 时,应满足 {1<m ≤p <100m +p ≥3p 2−3p −2mp +m 2−3m −2=0 , 视 m 为常数,可解得 p =(2m+3)±√24m+12,∵m ≥1, ∴√2m +1≥5 , 根据 p ≥m 可知, p =(2m+3)+√24m+12,∵m ≥1 , ∴√2m +1≥5 , 根据 p ≥m 可知, p =(2m+3)+√24m+12,(否则 p ≤m ﹣1 ),下设 k =√2m +1 ,则由于 p 为正整数知 k 必为正整数, ∵1≤m ≤100 , ∴5≤k ≤49 ,化简上式关系式可以知道: m =k 2−124=(k−1)(k+1)24,∴k ﹣1,k +1 均为偶数,∴设k=2t+1,(t∈N∗),则2≤t≤24,∴m=k2−124=t(t+1)6,由于t,t+1中必存在偶数,∴只需t,t+1中存在数为3的倍数即可,∴t=2,3,5,6,8,9,11,…,23,24,∴k=5,11,13,…,47,49.检验:p=(2m+3)+√24m+12=(k−1)(k+1)24≤48+5024=100,符合题意,∴共有16个,综上所述:共有115个数对(m,p)符合题意.【考点】古典概型及其概率计算公式,分类加法计数原理,组合及组合数公式【解析】(1)易得使得a i a j a k=1的情况只有“ ﹣1,﹣1,1”,“ 1,1,1”两种,再根据组合的方法求解两种情况分别的情况数再求和即可.(2)易得“ ﹣1,﹣1,1”共有C m2C p1种,“ 1,1,1”共有C P3种.再根据古典概型的方法可知C m2C p1+C p3C m+p3=12,利用组合数的计算公式可得(p﹣m)(p2﹣3p﹣2mp+m2﹣3m﹣2)=0,当p=m时根据题意有(m,p)=(k,k),k∈{2,3,4,…,100},共99个;当p2﹣3p﹣2mp+m2﹣3m﹣2=0时求得p=(2m+3)±√24m+12,再根据1≤m≤p≤100,换元根据整除的方法求解满足的正整数对即可.某商场举行元旦促销回馈活动,凡购物满1000元,即可参与抽奖活动,抽奖规则如下:在一个不透明的口袋中装有编号为1、2、3、4、5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次(每次摸出的小球均不放回口袋),编号依次作为一个三位数的个位、十位、百位,若三位数是奇数,则奖励50元,若三位数是偶数,则奖励100m元(m为三位数的百位上的数字,如三位数为234,则奖励100×2= 200元).(1)求抽奖者在一次抽奖中所得三位数是奇数的概率;(2)求抽奖者在一次抽奖中获奖金额X的概率分布与期望E(X).【答案】(1)解:因为总的基本事件个数n1=A53=60,摸到三位数是奇数的事件数n2=A31A42=36,所以P1=3660=35;所以摸到三位数是奇数的概率35.(2)解:获奖金额 X 的可能取值为50、100、200、300、400、500, P(X =50)=35 , P(X =100)=1×3×260=110, P(X =200)=1×3×160=120,P(X =300)=1×3×260=110 , P(X =400)=1×3×160=120 , P(X =500)=1×3×260=110 ,获奖金额 X 的概率分布为均值 E(X)=50×35+100×110+200×120+300×110+400×120+500×110=150 元. 所以期望是150元.【考点】古典概型及其概率计算公式,离散型随机变量及其分布列,离散型随机变量的期望与方差,分步乘法计数原理【解析】(1)首先利用排列求出摸三次的总的基本事件个数: n 1=A 53=60 ;然后利用分步计数原理求出个位的排法、十位百位的排法求出三位数是奇数的基本事件个数,再利用古典概型的概率计算公式即可求解.(2)获奖金额X 的可能取值为50、100、200、300、400、500,求出各个随机变量的分布列,利用均值公式即可求解考向二 两个计数原理的综合应用(1)利用两个原理解决涂色问题解决着色问题主要有两种思路:一是按位置考虑,关键是处理好相交线端点的颜色问题;二是按使用颜色的种数考虑,关键是正确判断颜色的种数.解决此类应用题,一般优先完成彼此相邻的三部分或两部分,再分类完成其余部分.要切实做到合理分类,正确分步,才能正确地解决问题. (2)利用两个原理解决集合问题解决集合问题时,常以有特殊要求的集合为标准进行分类,常用的结论有123,,,,{}n a a a a 的子集有2n 个,真子集有21n个.对有 n(n ≥4) 个元素的总体 {1,2,3,⋅⋅⋅,n} 进行抽样,先将总体分成两个子总体 {1,2,3,⋅⋅⋅,m} 和 {m +1,m +2,⋅⋅⋅,n} ( m 是给定的正整数,且 2≤m ≤n −2 ),再从每个子总体中各随机抽取2个元素组成样本.用 P ij 表示元素 i 和 j 同时出现在样本中的概率. (1)求 P 1n 的表达式(用m ,n 表示); (2)求所有 P ij (1≤i <j ≤n) 的和.【答案】 (1)解:由题意,从m 和 m −m 个式子中随机抽取2个,分别有 C m 2 和 C n−m2 个基本事件, 所以 P 1n 的表达式为 P 1n =m−1C m2⋅n−m−1C n−m2=4m(n−m) .(2)解:当 i,j 都在 {1,2,⋅⋅⋅,m} 中时,可得 P ij =1C m2 ,而从 {1,2,⋅⋅⋅,m} 中选两个数的不同方法数为 C m 2 ,则 P ij 的和为1;当 i,j 同时在 {m +1,m +2,⋅⋅⋅,n} 中时,同理可得 P ij 的和为1; 当 i 在 {1,2,⋅⋅⋅,m} 中, j 在 {m +1,m +2,⋅⋅⋅,n} 中时, P ij =4m(n−m) ,而从 {1,2,⋅⋅⋅,m} 中选取一个数,从 {m +1,m +2,⋅⋅⋅,n} 中选一个数的不同方法数为 m(n −m) , 则 P ij 的和为4,所以所有 P ij 的和为 1+1+4=6 .【考点】相互独立事件的概率乘法公式,古典概型及其概率计算公式,计数原理的应用,组合及组合数公式【解析】(1)根据组合数的公式,以及古典概型的概率计算公式和相互独立事件的概率计算公式,即可求解;(2)当 i,j 都在 {1,2,⋅⋅⋅,m} 中时求得 P ij 的和为1,当 i,j 同时在 {m +1,m +2,⋅⋅⋅,n} 中时,求得 P ij 的和为1,当 i 在 {1,2,⋅⋅⋅,m} 中, j 在 {m +1,m +2,⋅⋅⋅,n} 中时得到 P ij 的和为4,即可求解.6男4女站成一排,求满足下列条件的排法各有多少种?(用式子表达) (1)男甲必排在首位; (2)男甲、男乙必排在正中间; (3)男甲不在首位,男乙不在末位; (4)男甲、男乙必排在一起; (5)4名女生排在一起; (6)任何两个女生都不得相邻; (7)男生甲、乙、丙顺序一定.【答案】 解:(1)男甲必排在首位,则其他人任意排,故有A 99种, (2)男甲、男乙必排在正中间,则其他人任意排,故有A 22A 77种,(3)男甲不在首位,男乙不在末位,利用间接法,故有A 1010﹣2A 99+A 88种,(4)男甲、男乙必排在一起,利用捆绑法,把甲乙两人捆绑在一起看作一个复合元素和另外全排,故有A 22A 88种,(5)4名女生排在一起,利用捆绑法,把4名女生捆绑在一起看作一个复合元素和另外全排,故有A 44A 77种,(6)任何两个女生都不得相邻,利用插空法,故有A 66A 74种, (7)男生甲、乙、丙顺序一定,利用定序法,A 1010A 33=A 107种【考点】计数原理的应用【解析】(1)男甲必排在首位,则其他人任意排,问题得以解决. (2)男甲、男乙必排在正中间,则其他人任意排,问题得以解决, (3)男甲不在首位,男乙不在末位,利用间接法,故问题得以解决, (4)男甲、男乙必排在一起,利用捆绑法,问题得以解决, (5)4名女生排在一起,利用捆绑法,问题得以解决, (6)任何两个女生都不得相邻,利用插空法,问题得以解决, (7)男生甲、乙、丙顺序一定,利用定序法,问题得以解决.考向三 排列与组合的综合应用先选后排法是解答排列、组合应用问题的根本方法,利用先选后排法解答问题只需要用三步即可完成. 第一步:选元素,即选出符合条件的元素;第二步:进行排列,即把选出的元素按要求进行排列;第三步:计算总数,即根据分步乘法计数原理、分类加法计数原理计算方法总数.7名学生,按照不同的要求站成一排,求下列不同的排队方案有多少种. (1)甲、乙两人必须站两端; (2)甲、乙两人必须相邻.【答案】 (1)甲、乙为特殊元素,先将他们排在两头位置,有 A 22 种站法,其余5人全排列,有 A 55种站法.故共 A 22⋅A 55 有=240种不同站法.(2)(捆绑法):把甲、乙两人看成一个元素,首先与其余5人相当于六个元素进行全排列,然后甲、乙两人再进行排列,所以共 A 66⋅A 22 有=1440种站法.【考点】排列、组合的实际应用,排列、组合及简单计数问题 【解析】(1)运用捆绑法直接求解即可; (2)运用特殊元素分析法直接求解即可.一个笼子里关着10只猫,其中有7只白猫,3只黑猫.把笼门打开一个小口,使得每次只能钻出1只猫.猫争先恐后地往外钻.如果 10 只猫都钻出了笼子,以X 表示7只白猫被3只黑猫所隔成的段数.例如,在出笼顺序为“□■□□□□■□□■”中,则 X =3 . (1)求三只黑猫挨在一起出笼的概率; (2)求X 的分布列和数学期望.【答案】 (1)解:设“三只黑猫挨在一起出笼”为事件A ,将三只黑猫捆绑在一起,与其它7只白猫形成 8 个元素, 所以, P(A)=A 33A 88A 1010=115,因此,三只黑猫挨在一起出笼的概率为 115 ;(2)解:由题意可知,随机变量X 的取值为1、2、3、4, 其中 X =1 时,7只白猫相邻,则 P(X =1)=A 77A 44A 1010=130 ,P(X =2)=(A 32C 21C 21C 61+6A 33+A 32C 61)A 77A 1010=310 ,P(X =3)=(A 31C 21A 62+A 32A 62)A 77A 1010=12 ;P(X =4)=A 63A 77A 1010=16, 所以,随机变量 X 的分布列如下表所示:因此, E(X)=1×130+2×310+3×12+4×16=145.【考点】古典概型及其概率计算公式,离散型随机变量的期望与方差,排列及排列数公式,排列、组合的实际应用【解析】(1)利用捆绑法计算三只黑猫挨在一起出笼的情况种数,再利用古典概型的概率公式可求得所求事件的概率;(2)由题意可知,随机变量X 的可能取值有1、2、3、4,利用排列组合思想求出随机变量X 在不同取值下的概率,可得出随机变量X 的分布列,利用数学期望公式可求得随机变量X 的数学期望.考向四 二项展开式通项的应用求二项展开式的特定项问题,实质是考查通项的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(0,1,2,,k n ).(1)第m 项::此时k +1=m ,直接代入通项.(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程. (3)有理项:令通项中“变元”的幂指数为整数建立方程.已知 f(n)=a 1+a 2C n 1+⋯+arC n r−1+⋯a n+1C n n(n ∈N ∗).(1)若 a n =n −1 ,求 f(n) ;(2)若 a n =3n−1 ,求 f(20) 除以5的余数【答案】 (1)因为 f(n)=0C n 0+1⋅C n 1+2C n 2+3⋅C n 3⋯+nC n n . 所以 f(n)=nC n n +(n −1)C n n−1+(n −2)C n n−2+⋯+1⋅C n 1+0⋅C n0 2f(n)=nC n 0+nC n 1+nC n 2+⋯+nC n n =n(C n 0+C n 1+C n 2+⋯+C n n)=n ⋅2n ,∴f(n)=n ⋅2n−1(2)因为 f(n)=30C n 0+31C n 1+32C n 2+⋯+3n C n n =(1+3)n =4n .f(20)=420=(5−1)20=C 200520−C 201519+C 202518−⋯+C 201852−C 201951+C 202050 除以5余数为1,所以 f(20) 除以5的余数为1. 【考点】二项式系数的性质,二项式定理的应用【解析】(1) 因为f(n)=a 1+a 2C n 1+⋯+arC n r−1+⋯a n+1C n n(n ∈N ∗),再结合a n =n −1 , 得出f(n)=0C n 0+1⋅C n 1+2C n 2+3⋅C n 3⋯+nC n n ,再利用倒序求和法,所以 f(n)=nC n n +(n −1)C n n−1+(n −2)C n n−2+⋯+1⋅C n 1+0⋅C n 0 , 再利用两式求和法结合二项式的系数的性质,得出 f(n) 。

最新-2021版数学一轮高中全程复习方略课件:第九章 计数原理、概率、随机变量及其分布96 精品

最新-2021版数学一轮高中全程复习方略课件:第九章 计数原理、概率、随机变量及其分布96 精品

2.如图,在长方体 ABCD-A1B1C1D1 中,E,H 分别是棱 A1B1,D1C1 上的点(点 E 与 B1 不重合),且 EH∥A1D1,过 EH 的 平面与棱 BB1,CC1 相交,交点分别为 F,G.设 AB=2AA1=2a, EF=a,B1E=2B1F.在长方体 ABCD-A1B1C1D1 内随机选取一点, 则该点取自于几何体 A1ABFE-D1DCGH 内的概率为________.
5.(2017·重庆卷)某校早上
开始上课,假设该校学生
小张与小王在早上

之间到校,且每人在该时间段
的任何时刻到校是等可能的,则小张比小王至少早 5 分钟到校的
概率为________(用数字作答).
解析:设小张与小王的到校时间分别为
后第 x 分钟、
第 y 分钟,根据题意可画出图形,如图所示,则总事件所占的面
解 析 : 点 Q 取 自 △AED 或 △BEC 内 部 的 概 率 P = S△ASE矩D形+ABSC△DBEC=12.故选 A.
答案:A
3.已知函数 f(x)=x2-2x-3,x∈[-1,4],则 f(x)为增函数 的概率为( )
1234 A.5 B.5 C.5 D.5
解析:∵f(x)=x2-2x-3=(x-1)2-4,x∈[-1,4]. ∴f(x)在[1,4]上是增函数. ∴f(x)为增函数的概率为 P=4-4--11=35. 答案:C
因为2-2a22da=16a3-22 =83,所以阴影部分的面积为 4×2+83 32
=332,所以所求概率 P=4×3 4=23,故选 D. 答案:D
谢谢观看
下课
由圆中的黑色部分和白色部分关于正方形的中心成中心对
称,得 S 黑=S 白=12S 圆=π2,所以由几何概型知所求概率 P=SS正黑 方形 π

排列与组合讲义-2025届高三数学一轮复习

排列与组合讲义-2025届高三数学一轮复习

2025届高考数学一轮复习讲义计数原理、概率、随机变量及其分布之排列与组合一、知识点讲解及规律方法结论总结1.排列、组合的定义名称定义排列从n个不同元素中取出m(m≤n)个元素并按照①一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.组合作为一组,叫做从n个不同元素中取出m个元素的一个组合.注意排列有序,组合无序.2.排列数、组合数的定义、公式及性质(n,m∈N*,且m≤n)排列数组合数定义从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,用符号②A n m表示.从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,用符号③C n m表示.公式A n m=n(n-1)(n-2)…(n-m+1)=n!(n-m)!.规定0!=1.C n m=A n mA m m=n(n-1)(n-2)…(n-m+1)m!=④n!m!(n-m)!.规定C n0=1.性质A n n=n!=n×(n-1)×(n-2)×…×2×1;A n m=(n-m+1)A n m-1=n An-1m-1.C n m=C n n-m;C n+1m=Cnm+Cnm-1.说明C n m=C n n-m的应用主要是两个方面:一是简化运算,当m>n2时,通常将计算C n m转化为计算C n n-m;二是列等式,由C n x=C n y可得x=y或x+y=n.二、基础题练习1.5个相同的球,放入8个不同的盒子中,每个盒里至多放一个球,则不同的放法有(B)A.A85种B.C85种C.58种D.85种解析由于球都相同,盒子不同,每个盒里至多放一个球,所以只要选出5个不同的盒子即可.故共有C85种不同的放法.2.[教材改编]从4本不同的课外读物中,买3本送给3名同学,每人各1本,则不同的送法种数是(B)A.12B.24C.64D.81 解析 4本不同的课外读物选3本分给3位同学,每人1本,则不同的分配方法种数为A 43=24. 3.[教材改编]某班举行了“弘扬中华文化”演讲比赛,有6人参加,并决出第1名到第6名的名次(没有并列名次).甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军.”对乙说:“你当然不会是最差的.”从回答分析,6人的名次排列情况可能有( D )A.216种B.240种C.288种D.384种解析 由题可知,甲和乙都不是冠军,所以冠军有4种可能性,乙不是最后一名,所以最后一名有4种可能性,所以6人的名次排列情况可能有4×4×A 44=384(种).4.[多选]下列说法正确的是 ( BD )A.所有元素完全相同的两个排列为相同排列B.两个组合相同的充要条件是其中的元素完全相同C.若C n x =C n m ,则x =mD.A n+1m =A n m +m A n m -15.[易错题]计算C 73+C 74+C 85+C 96的值为 210 .(用数字作答)解析 原式=C 84+C 85+C 96=C 95+C 96=C 106=210.6.若C n+13=C n 3+C n 4,则n = 6 .解析 ∵C n+13=C n 3+C n 4=C n+14,∴n +1=3+4,解得n =6.三、知识点例题讲解及方法技巧总结命题点1 排列问题例1 有3名男生、4名女生.(1)若排成前、后两排,前排3人,后排4人,则不同的排列方法总数为 5 040 .(2)若全体排成一排,女生必须站在一起,则不同的排列方法总数为 576 .(3)若全体排成一排,男生互不相邻,则不同的排列方法总数为 1 440 .(4)若全体排成一排,其中甲不站最左边,也不站最右边,则不同的排列方法总数为 3 600 .(5)若全体排成一排,其中甲不站最左边,乙不站最右边,则不同的排列方法总数为 3 720 .(6)若全体排成一排,其中甲、乙、丙三人从左到右顺序一定,则不同的排列方法总数为 840 .解析 (1)分两步完成,先选3人站前排,有A 73种方法,余下4人站后排,有A 44种方法,共有A 73·A 44=5 040(种).(2)将女生看作一个整体与3名男生一起全排列,有A44种方法,再将女生全排列,有A44种方法,共有A44·A44=576(种).(3)先排女生,有A44种方法,然后在女生之间及首尾共5个空位中任选3个空位安排男生,有A53种方法,共有A44·A53=1 440(种).(4)解法一先排甲,有5种方法,其余6人有A66种排列方法,共有5×A66=3 600(种).解法二左、右两边位置可安排除甲外其余6人中的2人,有A62种排法,剩下的5人有A55种排法,共有A62A55=3 600(种).(5)解法一甲在最右边时,其他人可全排列,有A66种方法;甲不在最右边时,因为甲也不在最左边,所以可从余下的5个位置中任选1个,有C51种,而乙可从除去最右边的位置后剩下的5个位置中任选1个,有C51种,其余人全排列,有A55种不同排法,共有A66+C51C51A55=3 720(种).解法二7人全排列,有A77种方法,其中甲在最左边时,有A66种方法,乙在最右边时,有A66种方法,其中都包含了甲在最左边且乙在最右边的情形(A55种方法),故共有A77-2A66+A55=3 720(种).(6)7人全排列,有A77种方法,由于甲、乙、丙的顺序一定,则不同的排列方法总数为A77A33=840.方法技巧求解排列问题的常用方法直接法把符合条件的排列数直接列式计算.优先法优先安排特殊元素或特殊位置.捆绑法相邻问题捆绑处理,即可以把相邻元素看作一个整体与其他元素进行排列,同时注意捆绑元素的内部排列.插空法不相邻问题插空处理,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素的排列空位中.定序问题除法处理定序问题,可先不考虑顺序限制进行排列,再除以定序元素的全排列.间接法正难则反,等价转化处理.训练1 (1)[2022新高考卷Ⅱ]甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同的排列方式共有(B)A.12种B.24种C.36种D.48种解析先将丙和丁捆在一起,有A22种排列方式,然后将其与乙、戊排列,有A33种排列方式,最后将甲插入中间两空,有2种排列方式,所以不同的排列方式共有2A22A33=24(种),故选B.(2)[2023济南市统考]由3个2,1个0,2个3组成的六位数中,满足有相邻4位恰好是2 023的六位数的个数为(B)A.3B.6C.9D.24解析 2 023用了2个2,1个0,1个3,还余下1个2,1个3,故将2 023视作一个整体与余下的1个2,1个3全排列,有A33=6(种)不同的排法.故选B.命题点2组合问题例2 (1)[多选]从6名男生和4名女生中选出4人去参加一项创新大赛,则下列说法正确的有(CD)A.若4人全部为男生,则有30种不同的选法B.若4人中男生、女生各有2人,则有30种不同的选法C.若男生中的甲和女生中的乙被选,则有28种不同的选法D.若男生中的甲和女生中的乙至少有1人被选,则有140种不同的选法解析4人全部为男生,选法有C64=15(种),故A错误;如果4人中男生、女生各有2人,男生的选法有C62=15(种),女生的选法有C42=6(种),则4人中男生、女生各有2人的选法有15×6=90(种),B错误;如果男生中的甲和女生中的乙被选,在剩下的8人中再选2人即可,有C82=28(种)不同的选法,故C正确;在10人中任选4人,有C104=210(种)不同的选法,甲、乙都不在其中的选法有C84=70(种),故男生中的甲和女生中的乙至少要有1人被选的选法有210-70=140(种),故D正确.(2)[2023新高考卷Ⅰ]某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有64种(用数字作答).解析解法一由题意,可分三类:第一类,体育类选修课和艺术类选修课各选修1门,有C41C41种方案;第二类,在体育类选修课中选修1门,在艺术类选修课中选修2门,有C41C42种方案;第三类,在体育类选修课中选修2门,在艺术类选修课中选修1门,有C42C41种方案.综上,不同的选课方案共有C41C41+C41C42+C42C41=64(种).解法二若学生从这8门课中选修2门课,则有C82-C42-C42=16(种)选课方案;若学生从这8门课中选修3门课,则有C83-C43-C43=48(种)选课方案.综上,不同的选课方案共有16+48=64(种).方法技巧组合问题常见的两类题型(1)“含”与“不含”的问题:“含”,则先将这些元素取出,再由剩下的元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中选取.(2)“至少”与“最多”的问题:解这类题的关键是理解“至少”与“最多”这两个词的含义,通常用直接法或间接法处理,分类复杂时,用间接法更容易处理.训练2 (1)[2023福州5月质检]“赛龙舟”是端午节重要的民俗活动之一,龙舟比赛的划手分划左桨和划右桨.某训练小组有6名划手,其中有2名只会划左桨,2名只会划右桨,2名既会划左桨又会划右桨.现从这6名划手中选派4名参加比赛,其中2名划左桨,2名划右桨,则不同的选派方法共有(C)A.15种B.18种C.19种D.36种解析按照从全能者(既会划左桨又会划右桨)中选多少人参与划左桨分类:①2名全能者中选2人划左桨,有C22C22=1(种)不同的选派方法;②2名全能者中选1人划左桨,有C21C21C32=12(种)不同的选派方法;③2名全能者中选0人划左桨,有C22C42=6(种)不同的选派方法.所以共有1+12+6=19(种)不同的选派方法.故选C.(2)[2023南京市、盐城市二模]编号为1,2,3,4的四位同学,就座于编号为1,2,3,4的四个座位上,每个座位恰好坐一位同学,则恰有两位同学的编号和座位编号一致的坐法种数为6.解析先选择两位同学坐对编号,有C42种方法,余下的两位同学只能交叉坐,只有1种方法,故共有C42×1=6(种)不同坐法.命题点3排列与组合的综合应用角度1有限制条件的排列、组合问题例3 (1)[2023沈阳市质监]甲、乙、丙、丁、戊、己6人站成一排拍合照,要求甲必须站在最中间两个位置之一,且乙、丙2人相邻,则不同的排队方法共有(C)A.24种B.36种C.72种D.96种解析如图所示,当甲在3的位置时,乙、丙可能排在(1,2),(4,5),(5,6),先从这三种中选出一种安排乙、丙,然后在剩下的3个位置安排余下的3人,所以不同的排队方法有C31A22A33=36(种);当甲在4的位置时,由对称性可知不同的排队方法也有36种.所以不同的排队方法共有36×2=72(种),故选C.123456(2)[2023重庆市名校联考]某校从8名教师中选派4名教师去4个偏远地区支教,每地1人,其中甲和乙不能同去,甲与丙同去或者同不去,则不同的选派方案的种数是600.(用数字作答)解析分为两步,第一步,先选4名教师,第一步又分两类,第一类,甲去,则丙一定去,乙一定不去,有C52=10(种)不同的选法;第二类,甲不去,则丙一定不去,乙可能去也可能不去,有C64=15(种)不同的选法.所以选4名教师,不同的选法有10+15=25(种).第二步,4名教师去4个偏远地区支教,有A44=24(种)分配方法.所以不同的选派方案的种数是25×24=600.方法技巧有限制条件的排列、组合问题的解题策略(1)先分析每个限制条件,然后考虑是分类还是分步,对于分类过多的问题可以采用间接法;(2)采用特殊元素(位置)优先原则,即先满足有限制条件的元素(位置),再考虑其他元素(位置).角度2 分组、分配问题例4 (1)有5个大学保送名额,计划分到3个班级,每班至少一个名额,有 6 种不同的分法.解析 一共有5个保送名额,分到3个班级,每个班级至少1个名额,即将名额分成3份,每份至少1个,(定份数)将5个名额排成一列,中间有4个空,(定空位)即只需在中间4个空中插入2个隔板,不同的方法共有C 42=6(种).(插隔板)(2)若将6名教师分到3所中学任教,其中一所1名,一所2名,一所3名,则有 360 种不同的分法.解析 先将6名教师分组,共有C 61C 52C 33=60(种)分法.再将这3组教师分配到3所中学,有A 33=6(种)分法.故不同的分法共有60×6=360(种).(3)将6本不同的书分给甲、乙、丙、丁4个人,每人至少1本的不同分法共有 1 560 种.(用数字作答)解析 把6本不同的书分成4组,故有“3,1,1,1”和“2,2,1,1”两种不同的分组方法.若按“3,1,1,1”的分组方法,则不同的分法共有C 63C 31C 21C 11A 33=20(种).(有三组元素个数相同,因与顺序无关,故需除去重复情况)若按“2,2,1,1”的分组方法,则不同的分法共有C 62C 42A 22·C 21C 11A 22=45(种).(四组元素中,分别有两组元素个数相同,分别为“2,2”和“1,1”,因与顺序无关,故需除去重复情况)所以不同的分组方法共有20+45=65(种).然后把分好的4组书分给4个人,分法共有A 44=24(种),所以不同的分法共有65×24=1 560(种).方法技巧分组、分配问题的解题思路是先分组后分配.1.常见的分组整体均匀分组 分组后一定要除以A n n (n 为均分的组数),避免重复计数.部分均匀分组 若有m 组元素个数相等,则分组时应除以m !.不等分组 分组时任何组中元素的个数都不相等.注意 关于分组问题,应注意无论分成几组,只要其中某些组中的元素个数相等,就存在均分现象.2.常见的分配(1)相同元素的分配问题,常用“隔板法”求解.(2)不同元素的分配问题,利用分步乘法计数原理,先分组,后分配.(3)有限制条件的分配问题,采用分类讨论法或间接法求解.训练3 (1)[多选/2023重庆八中模拟]将甲、乙、丙、丁4名志愿者分别安排到A ,B ,C 3个社区进行暑期社会实践活动,要求每个社区至少安排1名志愿者,每名志愿者只能被安排到1个社区,则下列选项正确的是( BD )A.共有72种安排方法B.若甲、乙被安排在同一个社区,则有6种安排方法C.若A 社区需要2名志愿者,则有24种安排方法D.若甲被安排在A 社区,则有12种安排方法解析 对于A 选项,将4名志愿者先分为3组,再分配到3个社区,所以安排方法种数为C 42C 21C 11A 22×A 33=36,所以A 选项不正确.对于B 选项,甲、乙被安排在同一个社区,先从3个社区中选1个安排甲与乙,再把剩余2个社区进行全排列,所以安排方法种数为C 31A 22=6,所以B 选项正确.对于C 选项,A 社区需要2名志愿者,所以先从4名志愿者中选择2名安排到A 社区,再把剩余2名志愿者进行全排列,所以安排方法种数为C 42A 22=12,C 选项不正确.对于D 选项,甲被安排在A 社区,分为两种情况,(对甲安排在A 社区进行分类讨论,讨论A 社区是甲单独一人还是甲与另外一人)第一种为A 社区安排了2名志愿者,则从剩余3名志愿者中再选择1名,分到A 社区,然后把剩余2名志愿者进行全排列,安排方法共有C 31A 22种;第二种是A 社区只安排了甲志愿者,此时剩余3名志愿者分为2组,再分配到剩余的2个社区中,此时安排方法有C 32A 22种.(这两组是不均匀分组,故不需除以任何数)所以安排方法种数一共为C 31A 22+C 32A 22=12,D 选项正确.故选BD.(2)将9名大学生志愿者安排在星期五、星期六及星期日3天参加社区公益活动,每天分别安排3人,每人参加一次,则不同的安排方案共有 1 680 种.(用数字作答)解析 先选出3人,有C 93种选法,再从剩下的6人中选出3人,有C 63种选法,最后剩下的3人为一组,有C 33种选法.由分步乘法计数原理以及整体均匀分组方法,可知不同的安排方案共有C 93C 63C 33A 33·A 33=1 680(种).四、命题点习题讲解1.[命题点1/2023大同学情调研]现有高中数学新教材必修一、二,选择性必修一、二、三,共5本书,把这5本书放在书架上排成一排,必修一、必修二不相邻的排列方法种数是(A)A.72B.144C.48D.36解析解法一先将选择性必修一、二、三这3本书排成一排,有A33=6(种)排列方法,再将必修一、必修二这2本书插入两端或3本书间的两个空隙中,有A42=12(种)排列方法,由分步乘法计数原理得,把这5本书放在书架上排成一排,必修一、必修二不相邻的排列方法种数是6×12=72.解法二5本书放在书架上排成一排的排列方法共有A55种,其中必修一、必修二相邻的排列方法有A22A44种,所以把这5本书放在书架上排成一排,必修一、必修二不相邻的排列方法种数为A55-A22A44=72.2.[命题点2/2023合肥市二检]某高中学校在新学期增设了“传统文化”“数学文化”“综合实践”“科学技术”和“劳动技术”5门校本课程.小明和小华两位同学商量每人选报2门校本课程.若小明必须选报“数学文化”课程,两位同学所选的课程至多有一门相同,则不同的选课方案有(B)A.24种B.36种C.48种D.52种解析解法一当小明和小华两位同学所选的课程恰有一门相同时,若相同的课程为“数学文化”,则不同的选课方案有C41C31=12(种);若相同的课程不是“数学文化”,则不同的选课方案有C41C31=12(种).所以小明和小华两位同学所选的课程恰有一门相同时,共有12+12=24(种)选课方案.当小明和小华两位同学所选的课程都不相同时,不同的选课方案有C41C32=12(种).所以不同的选课方案有24+12=36(种),故选B.解法二小明在“数学文化”课程外任选一门课程,小华任选2门课程时,不同的选课方案有C41C52=40(种),其中小明和小华2门课程都相同时,选课方案有C41=4(种),故两位同学所选的课程至多有一门相同时,不同的选课方案有40-4=36(种),故选B.3.[命题点3角度1]某旅游景区有如图所示A至H共8个停车位,现有两辆不同的白色车和两辆不同的黑色车,要求相同颜色的车不停在同一行也不停在同一列,则不同的停车方法总数为(B)A B C DE F G HA.288B.336C.576D.1 680解析由题意知,每行停放一辆白色车和一辆黑色车.第一步:取一辆白色车和一辆黑色车停放到第一行,共有C21C21C42A22=48(种)方法.第二步:把剩下的两辆车停放到第二行.若白色车与第一行的黑色车在同一列,此时黑色车有3种停放方法;若白色车与第一行的黑色车不在同一列,则白色车有2种停放方法,黑色车也有2种停放方法,所以共有2×2=4(种)停放方法.所以把剩下的两辆车停放到第二行共有3+4=7(种)方法.由分步乘法计数原理可知,满足题意的停车方法总数为48×7=336.4.[命题点3角度2/2021全国卷乙]将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有(C)A.60种B.120种C.240种D.480种解析根据题设中的要求,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,可分两步进行安排:第一步,将5名志愿者分成4组,其中1组2人,其余每组1人,共有C52种分法;第二步,将分好的4组安排到4个项目中,有A44种安排方法.故满足题意的分配方案共有C52×A44=240(种).5.[命题点3/2023福建适应性测试]中国救援力量在国际自然灾害中为拯救生命做出了重要贡献,很好地展示了国家形象,增进了国际友谊,多次为祖国赢得了荣誉.现有5支救援队前往A,B,C 3个受灾点执行救援任务,若每支救援队只能去其中的一个受灾点,且每个受灾点至少安排一支救援队,其中甲救援队只能去B,C 2个受灾点中的一个,则不同的安排方法种数是(D)A.72B.84C.88D.100解析解法一(间接法)将5支救援队分成3组,有两种分法:3∶1∶1和2∶2∶1,再×A33=150将这3组分配到A,B,C 3个受灾点,有A33种分配方法,故共有C53A33+C52C32C11A22(种)安排方法,其中含有甲救援队去A受灾点的情形.当甲救援队去A受灾点时,变为余下4支救援队随机去A,B,C 3个受灾点,则A受灾点可以再去0支或1支或2支救援队,B,C受灾点均至少去1支救援队,当A受灾点再去0支救援队时,余下4支救援队分成两组(3∶1或2∶2)去B,C 2个受灾点,不同的安排方法种数为C43A22+C42;当A受灾点再去1支救援队时,余下3支救援队只能按2∶1分组去B,C 2个受灾点,不同的安排方法种数为C41C32A22;当A受灾点再去2支救援队时,余下2支救援队只能1支去B受灾点,1支去C受灾点,不同的安排方法种数为C42A22.故满足题意的不同的安排方法种数为150-(C43A22+C42+C41C32A22+C42A22)=100.故选D.解法二(直接法)将5支救援队分成3组,有两种分法:3∶1∶1和2∶2∶1,再将这3组分配到A,B,C 3个受灾点.①按3∶1∶1分组,若甲救援队单独一组,且甲救援队去B,C 2个受灾点中的一个,则有C21C43A22种不同的安排方法;若甲救援队不单独一组,则甲救援队所在的组还需2支救援队,有C42种选法,甲救援队所在的组去B,C 2个受灾点中的一个,有C21种方法,余下的2支救援队分成两组各去一个受灾点,有A22种方法,故有C42C21A22种不同的安排方法.②按2∶2∶1分组,若甲救援队单独一组,且甲去B ,C 2个受灾点中的1个,则有C 21×C 42C 22A 22×A 22种不同的安排方法;若甲救援队不单独一组,则甲救援队所在的组还需1支救援队,有C 41种选法,甲救援队所在的组去B ,C 2个受灾点中的1个,有C 21种方法,余下的3支救援队按2∶1分成两组各去一个受灾点,有C 32A 22种方法,故有C 41C 21C 32A 22种不同的安排方法.故满足题意的不同的安排方法种数为C 21C 43A 22+C 42C 21A 22+C 21×C 42C 22A 22×A 22+C 41C 21C 32A 22=16+24+12+48=100.故选D.五、习题实战演练1.[新高考卷Ⅰ]6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( C )A.120种B.90种C.60种D.30种解析 第1步,抽1名志愿者安排到甲场馆,有C 61种安排方法;第2步,从剩下的5名志愿者中抽取2名安排到乙场馆,有C 52种安排方法;第3步,将剩下的3名志愿者安排到丙场馆.由分步乘法计数原理得,不同的安排方法共有C 61C 52=60(种),故选C.2.[2024吉林市田家炳高级中学模拟]从A ,B ,C ,D ,E 这5人中选出4人,安排在甲、乙、丙、丁4个岗位上,如果A 不能安排在甲岗位上,则不同的安排方法有( D )A.56种B.64种C.72种D.96种解析 解法一(优先特殊元素) 根据题意可知,按A 是否入选进行分类.若A 入选,则先从乙、丙、丁3个岗位上安排1个岗位给A ,有C 31=3(种)安排方法,再给剩下3个岗位安排人,有A 43=24(种)安排方法,共有3×24=72(种)安排方法. 若A 不入选,则4个人4个岗位,有A 44=24(种)安排方法.综上,共有72+24=96(种)安排方法.故选D.解法二(优先特殊位置) 先安排去甲岗位的,A 不能去,其他4人中选1人,因而有C 41种安排方法,再选3人安排其他岗位,有A 43种安排方法,从而共有C 41A 43=96(种)安排方法.故选D.3.[2024北京市第十二中学模拟]4位同学排成一排准备照相时,又来了2位同学要加入,如果保持原来4位同学的相对顺序不变,则不同的加入方法种数为( D )A.10B.20C.24D.30 解析 解法一 不考虑限制条件,将6位同学排成一排准备照相,共有A 66种排法,如果保持原来4位同学的相对顺序不变,则有A 66A 44=30(种)排法,故选D.解法二 插入2位同学后变成6位同学6个位置,原4位同学占4个位置,但相对顺序没变,因而有C 64种排法,再排新插入的2位同学有A 22种排法,从而共有C 64A 22=30(种)排法,故选D.解法三 6个位置可以先排后加入的2位同学,有A 62=30(种)排法,剩下4个位置原4位同学按原顺序排入即可,只有1种方法,因而共有30种排法,故选D.4.[2024湖南衡阳模拟]2023年春节,在北京工作的五个家庭开车搭伴一起回老家过年,若五辆车分别为A ,B ,C ,D ,E ,五辆车随机排成一列,则A 车与B 车相邻,且A 车与C 车不相邻的排法有( A )A.36种B.42种C.48种D.60种解析 将A 车与B 车捆在一起当成一个元素使用,有A 22种不同的捆法,将其与除C 车外的2个元素全排列,有A 33种排法,将C 车插入,不与A 车相邻,有A 31种插法,故共有A 22×A 33×A 31=36(种)排法.故选A.5.5个小朋友站成一圈,不同的站法一共有( D )A.120种B.60种C.30种D.24种解析 先将5个小朋友编为1~5号,然后让他们按1~5的顺序站成一圈,这样就形成了一个圆排列.分别以1,2,3,4,5号作为开头将这个圆排列打开,就可以得到5种排列:12345,23451,34512,45123,51234.这就是说,这个圆排列对应了5个排列.因此,要求圆排列数,只需要求出全排列数再除以5就可以了,即这些小朋友不同的站法一共有A 555=A 44=24(种),故选D.6.[多选]下列关于排列数与组合数的等式中,正确的是( ABD )A.(n +1)A n m =A n+1m+1B.m C n m =n C n -1m -1C.C n m =A n m n !D.1n -m A n m+1=A n m解析 对于A ,(n +1)A n m =(n +1)n (n -1)…(n -m +1)=A n+1m+1,故A 正确;对于B ,C n -1m -1=(n -1)!(m -1)!(n -m)!,C n m =n !m!(n -m)!=n ·(n -1)!m ·(m -1)!(n -m)!=n m ·(n -1)!(m -1)!(n -m)!=n m ·C n -1m -1,所以m C n m =n Cn -1m -1,故B 正确;对于C ,C n m =A n m A m m =A n m m !,故C 错误;对于D ,1n -m A n m+1=1n -m ·n (n -1)·…·(n -m )=n (n -1)…(n -m +1)=A n m ,故D 正确.故选ABD.7.[多选/2024湖南湘潭联考]从10名男生和8名女生中选出3人去参加创新大赛,则至少有1名女生的选法种数为( AC )A.C 183-C 103B.C 81C 172C.C 81C 102+C 82C 101+C 83D.C 102C 81+C 101C 82解析 对于A ,从18名学生中选取3人,有C 183种不同的选法,从18名学生中选取3人,选的都是男生有C 103种不同的选法,所以至少有1名女生的选法有C 183-C 103=696(种),A正确;对于B ,C 81C 172=1 088≠696,故B 错误;对于C ,至少有1名女生的选法有三种情况:1名女生,2名女生,3名女生,所以至少有1名女生的选法有C 81C 102+C 82C 101+C 83=360+280+56=696(种),C 正确;对于D ,C 102C 81+C 101C 82=360+280=640≠696,故D 错误.8.[2024上海市华东师范大学第二附属中学质检]7个志愿者的名额分给3个班,每班至少一个名额,则有 15 种不同的分配方法(用数字作答).解析 7个志愿者的名额分配给3个班,每班至少一个名额,其实就是在7个志愿者的名额产生的6个空位中插入2个“档板”,共有C 62=15(种)不同的分配方法.9.高考期间,为保证考生能够顺利进入某考点,交管部门将6名交警分配到该考点周边3个不同路口疏导交通,每个路口2人,则不同的分配方法共有 90 种.解析 根据题意,分两步进行分析.第一步,将6名交警分成“2,2,2”的三组,有C 62C 42C 22A 33=15(种)分组方法;第二步,将分好的三组全排列,对应3个路口,有A 33=6(种)情况,则共有15×6=90(种)分配方法.10.某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,工程丁必须在工程丙完成后立即进行,那么安排这6项工程的不同排法种数是 20 (用数字作答).解析 解法一(特殊元素优先法) 丙、丁相邻且顺序固定,故将其视为1个元素,记为丙丁,则6项工程可视为5个元素.分成两步来完成:第一步,从5个位置中选择3个位置排列甲、乙、丙丁这3个特殊元素,又甲、乙、丙丁的相对顺序固定,故不同的排法有C 53=10(种);第二步,将余下的2项工程任意排列到剩下的2个空位置上,不同的排法有A 22=2(种).由分步乘法计数原理,可知不同排法共有10×2=20(种).解法二(插空法) 分成两步来完成:第一步,将相对顺序固定的甲、乙、丙、丁排列好,丙、丁相邻且顺序固定,从而形成3个特殊元素(丙、丁视为1个元素),共有1种排法;第二步,将余下的2项工程逐个插入,排法共有C 41C 51=20(种).根据分步乘法计数原理,安排这6项工程的不同排法共有1×20=20(种).解法三 丙、丁相邻且顺序固定,故将其视为1个元素,记为丙丁,其余4项工程各视为1个元素.对5个元素全排列,共有A 55种排法.其中,甲、乙、丙丁这3个特殊元素的位置共有A 33种不同的排法,而符合要求的甲、乙、丙丁的排法仅有1种,所以安排这6项工程的不同排法共有A 55A 33=20(种).。

2019版数学一轮高中全程复习方略课件:第九章 计数原理、概率、随机变量及其分布9-2

2019版数学一轮高中全程复习方略课件:第九章 计数原理、概率、随机变量及其分布9-2

解析:(1)由题意可得其中 1 人必须完成 2 项工作,其他 2 1 2 2 人各完成 1 项工作,可得安排方式为 C3· C4· A2=36(种),或列式 4×3 1 2 1 为 C3· C4· C2=3× 2 ×2=36(种). 故选 D. (2)①当组成四位数的数字中有一个偶数时,四位数的个数 3 1 4 为 C5· C4· A4=960. ②当组成四位数的数字中不含偶数时,四位数的个数为 A4 5 =120. 故符合题意的四位数一共有 960+120=1 080(个).
从12人中选出512种选法从除去男生甲和女生乙外的10人中任选310种选法所以男生甲和女生乙不能同时入选的选法有c1067212017新课标全国卷安排3名志愿者完成4工作每人至少完成1项每项工作由1人完成则不同的安排方式共有22017天津卷用数字123456789组成没有重复数字且至多有一个数字是偶数的四位数这样的四位数一共有个
(3)组合数公式 m n! A n nn-1n-2„n-m+1 m Cn =⑨Am= = . m! m!n-m! m (4)组合数的性质 m n -m 性质 1:Cn = Cn . m m -1 m 性质 2:Cn+1=Cn +Cn (m≤n,n∈N*,m∈N*).
二、必明 3●个易误点 1.要注意均匀分组与不均匀分组的区别,均匀分组不要重 复计数. 2.解受条件限制的组合题,通常有直接法(合理分类)和间 接法(排除法).分类时标准应统一,避免出现遗漏或重复. 3.解组合应用题时,应注意“至少”、“至多”、“恰好” 等词的含义.
5.(2017· 浙江卷)从 6 男 2 女共 8 名学生中选出队长 1 人, 副队长 1 人,普通队员 2 人组成 4 人服务队,要求服务队中至少 有 1 名女生,共有________种不同的选法.(用数字作答)

2015届高考数学(人教,理科)大一轮复习配套讲义:第九章 计数原理与概率、随机变量及其分布

2015届高考数学(人教,理科)大一轮复习配套讲义:第九章 计数原理与概率、随机变量及其分布

第九章计数原理与概率、随机变量及其分布第一节分类加法计数原理与分步乘法计数原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n 种不同的方法.那么完成这件事共有N=m+n种不同方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.1.分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.2.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.[试一试]1.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数有()A.30 B.20C.10 D.6解析:选D从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类,①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N=3+3=6种.2.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有() A.30个B.42个C.36个D.35个解析:选C∵a+b i为虚数,∴b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.1.应用两种原理解题(1)分清要完成的事情是什么?(2)分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系; (3)有无特殊条件的限制; (4)检验是否有重漏.2.混合问题一般是先分类再分步,分类时标准要明确,做到不重复不遗漏. [练一练]1.(2013·郑州模拟)在2012年奥运选手选拔赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种解析:分两步安排这8名运动员.第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排.∴安排方式有4×3×2=24(种).第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道安排,所以安排方式有5×4×3×2×1=120(种).∴安排这8人的方式有24×120=2 880(种). 答案:2 8802.(2014·湖南长郡中学、衡阳八中等十二校一联)用红、黄、蓝三种颜色去涂图中标号为1、2、…、9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1、5、9的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.解析:把区域分为三部分,第一部分1、5、9,有3种涂法.第二部分4、7、8,当5、7同色时,4、8各有2种涂法,共4种涂法;当5、7异色时,7有2种涂法,4、8均只有1种涂法,故第二部分共4+2=6种涂法.第三部分与第二部分一样,共6种涂法.由分步乘法计数原理,可得共有3×6×6=108种涂法.答案:108分类加法计数原理1.在所有的两位数中,个位数字大于十位数字的两位数共有A .50个 B .45个 C .36个D .35个解析:选C 利用分类加法计数原理:8+7+6+5+4+3+2+1=36(个).2.五名篮球运动员比赛前将外衣放在休息室,比赛后都回到休息室取衣服.由于灯光暗淡,看不清自己的外衣,则至少有两人拿对自己的外衣的情况有( )A .30种B .31种C.35种D.40种解析:选B分类:第一类,两人拿对:2×C2 5=20种;第二类,三人拿对:C3 5=10种;第三类,四人拿对与五人拿对一样,所以有1种.故共有20+10+1=31种.3.(2013·三门峡模拟)有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有()A.8种B.9种C.10种D.11种解析:选B设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d,假设A 监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理共有3+3+3=9(种).[类题通法]利用分类加法计数原理解题时应注意(1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏;(2)分类时,注意完成这件事情的任何一种方法必须属于某一类,不能重复.分步乘法计数原理[典例](2014·本溪模拟)如图所示的几何体是由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有________种.[解析]先涂三棱锥P-ABC的三个侧面,然后涂三棱柱的三个侧面,共有C13×C12×C11×C12=3×2×1×2=12种不同的涂法.[答案]12[类题通法]利用分步乘法计数原理解决问题时应注意(1)要按事件发生的过程合理分步,即分步是有先后顺序的.(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这件事.(3)对完成每一步的不同方法数要根据条件准确确定.[针对训练]在航天员进行的一项太空实验中,先后要实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,则实验顺序的编排方法共有() A.24种B.48种C.96种D.144种解析:选C第一步安排A有2种方法;第二步在剩余的5个位置选取相邻的两个排B,C,有4种排法,而B,C位置互换有2种方法;第三步安排剩余的3个程序,有A33种排法,共有2×4×2×A33=96种.两个原理的综合应用[典例](2014·黄冈质检)设集合I={1,2,3,4,5}.选择集合I的两个非空子集A和B,若集合B中最小的元素大于集合A中最大的元素,则不同的选择方法共有() A.50种B.49种C.48种D.47种[解析]从5个元素中选出2个元素,小的给集合A,大的给集合B,有C25=10种选择方法;从5个元素中选出3个元素,有C35=10种选择方法,再把这3个元素从小到大排列,中间有2个空,用一个隔板将其隔开,一边给集合A,一边给集合B,方法种数是2,故此时有10×2=20种选择方法;从5个元素中选出4个元素,有C45=5种选择方法,从小到大排列,中间有3个空,用一个隔板将其隔开,一边给集合A,一边给集合B,方法种数是3,故此时有5×3=15种选择方法;从5个元素中选出5个元素,有C55=1种选择方法,同理隔开方法有4种,故此时有1×4=4种选择方法.根据分类加法计数原理,总计为10+20+15+4=49种选择方法.故选B.[答案] B本例中条件若变为“A={1,2,3,4},B={5,6,7},C={8,9}现从中取出两个集合,再从这两个集合中各取出一个元素,组成一个含有两个元素的集合”,则可以组成多少个集合?解:(1)选集合A,B,有C14C13=12;(2)选集合A,C,有C14C12=8;(3)选集合B,C,有C13C12=6;故可以组成12+8+6=26个集合.[类题通法]在解决综合问题时,可能同时应用两个计数原理,即分类的方法可能要运用分步完成,分步的方法可能会采取分类的思想求.分清完成该事情是分类还是分步,“类”间互相独立,“步”间互相联系.[针对训练]上海某区政府召集5家企业的负责人开年终总结经验交流会,其中甲企业有2人到会,其余4家企业各有1人到会,会上推选3人发言,则这3人来自3家不同企业的可能情况的种数为________.解析:若3人中有一人来自甲企业,则共有C12C24种情况,若3人中没有甲企业的,则共有C34种情况,由分类加法计数原理可得,这3人来自3家不同企业的可能情况共有C12C24+C34=16(种).答案:16第二节排列与组合1.排列与排列数(1)排列:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数,记作A m n.2.组合与组合数(1)组合:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C m n.3.排列数、组合数的公式及性质1.易混淆排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关.2.计算A m n 时易错算为n (n -1)(n -2)…(n -m ).3.易混淆排列与排列数,排列是一个具体的排法,不是数是一件事,而排列数是所有排列的个数,是一个正整数.[试一试]1.电视台在直播2012伦敦奥运会时要连续插播5个广告,其中3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的是奥运宣传广告,且2个奥运宣传广告不能连播.则不同的播放方式有( )A .120B .48C .36D .18解析:选C 有C 12C 13A 33=36(种).2.2010年上海世博会某国将展出5件艺术作品,其中不同书法作品2件、不同绘画作品2件、标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则该国展出这5件作品不同的方案有________种.(用数字作答)解析:将2件必须相邻的书法作品看作一个整体,同1件建筑设计展品全排列,再将2件不能相邻的绘画作品插空,故共有A 22A 22A 23=24(种)不同的展出方案.答案:241.排列问题与组合问题的识别方法: 2.组合数的性质中(2)的应用主要是两个方面,一个简化运算,当m >n2时,通常将计算C m n 转化为计算C n-mn.二是列等式,由C x n =C yn 可得x =y 或x +y =n .性质(3)主要用于恒等变形简化运算.[练一练]1.(2013·河北教学质量监测)有A ,B ,C ,D ,E 五位学生参加网页设计比赛,决出了第一到第五的名次.A ,B 两位学生去问成绩,老师对A 说:你的名次不知道,但肯定没得第一名;又对B 说:你是第三名.请你分析一下,这五位学生的名次排列的种数为( )A.6 B.18C.20 D.24解析:选B由题意知,名次排列的种数为C13A33=18.2.5个人站成一排,其中甲、乙两人不相邻的排法有________种.(用数字作答)解析:先排甲、乙之外的3人,有A33种排法,然后将甲、乙两人插入形成的4个空中,有A24种排法,故共有A33·A24=72(种)排法.答案:72排列问题1.数列{a n},其余两项各不相同,则满足上述条件的数列{a n}共有()A.30个B.31个C.60个D.61个解析:选A在数列的六项中,只要考虑两个非1的项的位置,即得不同数列,共有A26=30个不同的数列.2.(2013·东北三校联考)在数字1,2,3与符号“+”,“-”这五个元素的所有全排列中,任意两个数字都不相邻的全排列方法共有()A.6种B.12种C.18种D.24种解析:选B本题主要考查某些元素不相邻的问题,先排符号“+”,“-”,有A22种排列方法,此时两个符号中间与两端共有3个空位,把数字1,2,3“插空”,有A33种排列方法,因此满足题目要求的排列方法共有A22A33=12种.3.(2013·西安检测)8名游泳运动员参加男子100米的决赛,已知游泳池有从内到外编号依次为1,2,3,4,5,6,7,8的8条泳道,若指定的3名运动员所在的泳道编号必须是3个连续数字(如:5,6,7),则参加游泳的这8名运动员被安排泳道的方式共有()A.360种B.4 320种C.720种D.2 160种解析:选B法一:先从8个数字中取出3个连续的数字共有6种方法,将指定的3名运动员安排在这3个编号的泳道上,剩下的5名运动员安排在其他编号的5条泳道上,共有6A33A55=4 320种安排方式.法二:先将所在的泳道编号是3个连续数字的3名运动员全排列,有A33种排法,然后把他们捆绑在一起当作一名运动员,再与剩余5名运动员全排列,有A66种排法,故共有A33A66=4 320种安排方式.[类题通法]求解排列应用题的主要方法组合问题[典例](2013·重庆高考)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是________(用数字作答).[解析]直接法分类,3名骨科,内科、脑外科各1名;3名脑外科,骨科、内科各1名;3名内科,骨科、脑外科各1名;内科、脑外科各2名,骨科1名;骨科、内科各2名,脑外科1名;骨科、脑外科各2名,内科1名.所以选派种数为C33·C14·C15+C34·C13·C15+C35·C13·C14+C24·C25·C13+C23·C25·C14+C23·C24·C15=590.[答案]590[类题通法]组合两类问题的解法(1)“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”、“最多”的问题:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.[针对训练](2013·四平质检)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有()A.70种B.80种C .100种D .140种解析:选A 法一(间接法):当选择的3名医生都是男医生或都是女医生时,共有C 35+C 34=14种组队方案.当从9名医生中选择3名医生时,共有C 39=84种组队方案,所以男、女医生都有的组队方案共有84-14=70种.法二(直接法):当小分队中有1名女医生时,有C 14C 25=40种组队方案;当小分队中有2名女医生时,有C 24C 15=30种组队方案,故共有70种不同的组队方案.分组分配问题分组分配问题是排列、组合问题的综合应用,解决这类问题的一个基本指导思想就是先分组后分配。

2020年高考人教A版理科数学一轮复习(全册PPT课件 1520张)

人教A版数学(理科)一轮
2020版高考 全册精品 PPT课件
第1章 集合与常用逻辑用语 第一节 集 合 第二节 命题及其关系、充分条件与必要条件 第三节 简单的逻辑联结词、全称量词与存在量词
第2章 函数、导数及其应用 第一节 函数及其表示 第二节 函数的单调性与最值 第三节 函数的奇偶性与周期性 第四节 二次函数与幂函数 第五节 指数与指数函数 第六节 对数与对数函数 第七节 函数的图象
[答案] (1)× (2)× (3)× (4)×
23 答案
2 . ( 教 材 改 编 ) 若 集 合 A = D [由题意知 A={0,1,2},由 a= {x∈N|x≤2 2},a= 2,则下列结 2,知 a∉A.] 论正确的是( ) A.{a}⊆A B.a⊆A C.{a}∈A D.a∉A
解2析4 答案
22
[基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打 “×”) (1)任何一个集合都至少有两个子集.( ) (2){x|y=x2}={y|y=x2}={(x,y)|y=x2}.( ) (3)若{x2,1}={0,1},则 x=0,1.( ) (4)直线 y=x+3 与 y=-2x+6 的交点组成的集合是{1,4}.( )
第8章 平面解析几何 第一节 直线的倾斜角与斜率、直线的方程 第二节 两条直线的位置关系 第三节 圆的方程 第四节 直线与圆、圆与圆的位置关系 第五节 椭 圆
第1课时 椭圆的定义、标准方程及其性质 第2课时 直线与椭圆的位置关系
第六节 双曲线 第七节 抛物线 第八节 曲线与方程 第九节 圆锥曲线中的定点、定值、范围、最值问题 高考大题增分课(五) 平面解析几何中的高考热点问题
第9章 算法初步、统计与统计案例 第一节 算法与程序框图 第二节 随机抽样 第三节 用样本估计总体 第四节 变量间的相关关系与统计案例

第9章 第1节 计数原理与排列组合-2023届高三一轮复习数学精品备课(新高考人教A版2019)


►规律方法 解决组合应用题的方法
(1)“ 含 有 ” 或 “ 不 含 有 ” 某 些 元 素 的 组 合 题 型 : “含”,则先将这些元素取出,再由另外元素补足;“不 含”,则先将这些元素剔除,再从剩下的元素中去选取.
(2)“至少”或“至多”含有几个元素的题型:解这类 题必须十分重视“至少”与“至多”这两个关键词的含义, 谨防重复与漏解.用直接法和间接法都可以求解.通常用直 接法分类复杂时,考虑逆向思维,用间接法处理.
[例 2-1] 3 名男生,4 名女生,按照不同的要求排队,求不 同的排队方案的方法种数.
(3)全体站成一排,男、女各站在一起; 288 (4)全体站成一排,男生不能站在一起. 1440
[自主解答](3)相邻问题(捆绑法):男生必须站在一起, 是男生的全排列,有 A33种排法;女生必须站在一起,是女生 的全排列,有 A44种排法;全体男生、女生各视为一个元素,
_m__×__n__种不同的方法.
3.分类加法计数原理和分步乘法计数原理的区别
分类加法计数原理针对“分类”问题,其中各种方法相
互独立,用其中任何一种方法都可以做完这件事;分步乘法
计数原理针对“分步”问题,各个步骤相互依存,只有各个
步骤都完成了才算完成这件事. 4.排列与组合的概念
名称
定义
从 n 个不同元素中 按照_一__定__的_顺__序__排成一
m!(n-m)!
性质 (3)0!=1_;Ann=_n_! (4)Cmn =Cnn-m;Cmn+1=_C_nm_+__C_mn_-_1 __
教材拓展
1.排列与组合最根本的区别在于“有序”和“无 序”.取出元素后交换顺序,如果与顺序有关,则是排列; 如果与顺序无关,则是组合.

分类加法和分步乘法


21
板块一
板块二
板块三
板块四
板块五
高考一轮总复习 ·数学(理)
命题角度 1 与数字有关的问题 例 3 从 0,4,6 中选两个数字,从 3,5,7 中选两个数字,组成无重复数字的四位数.其中偶数的个数为 ( ) A.56 C.36 B.96 D.360
1 3 1 2 3 1 1 2 2 [解析] 当四位数中不含有 0 时,有 C2 C A = 36 种,当四位数中含有 0 时, C C A + C 3 2 3 2 3 3 2C2C3A2=60
11
板块一
板块二
板块三
板块四
板块五
高考一轮总复习 ·数学(理)
17 . 4. 从 1,2,3,4,7,9 六个数中, 任取两个数作对数的底数和真数, 则所有不同的对数的值的个数为________
解析 (1)当取 1 时,1 只能为真数,此时对数的值为 0. (2)不取 1 时,分两步: ①取底数,5 种; ②取真数,4 种. 其中 log23=log49,log32=log94,log24=log39,log42=log93. ∴N=1+5×4-4=17.
19
板块一
板块二
板块三
板块四
板块五
高考一轮总复习 ·数学(理)
168 (2)4 张卡片的正、 反面分别写有 0 与 1,2 与 3,4 与 5,6 与 7, 将其中 3 张卡片排放在一起, 可组成________
个不同的三位数.
[解析] 要组成三位数,根据首位、十位、个位应分三步: 第一步:首位可放 8-1=7(个)数; 第二步:十位可放 6 个数; 第三步:个位可放 4 个数. 故由分步计数原理,得共可组成 7×6×4=168(个)不同的三位数.

2015届高考数学(人教,理科)大一轮配套练透:第9章 计数原理与概率、随机变量及其分布 第1节

[课堂练通考点]1.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40B.16C.13 D.10解析:选C分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.2.如图所示,从甲地到乙地有3条公路可走,从乙地到丙地有2条公路可走,从甲地不经过乙地到丙地有2条水路可走.则从甲地经乙地到丙地和从甲地到丙地的走法种数分别为()A.6,8 B.6,6C.5,2 D.6,2解析:选A从甲地经乙地到丙地,分两步:第1步,从甲地到乙地,有3条公路;第2步,从乙地到丙地,有2条公路.根据分步乘法计数原理,有3×2=6种走法.从甲地到丙地,分两类:第1类,从甲地经乙地到丙地,有6种走法;第2类,从甲地不经过乙地到丙地,有2条水路,即有2种走法.根据分类加法计数原理,有6+2=8种走法.3.(2014·临沂模拟)如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L型(每次旋转90°仍为L型图案),那么在由4×5个小方格组成的方格纸上可以画出不同位置的L型图案的个数是()A.16 B.32C.48 D.64解析:选C每四个小方格(2×2型)中有“L”型图案4个,共有2×2型小方格12个,所以共有“L”型图案4×12=48(个).4.(2013·济南模拟)集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是() A.9 B.14C.15 D.21解析:选B当x=2时,x≠y,点的个数为1×7=7(个);当x≠2时,x=y,点的个数为7×1=7(个),则共有14个点,故选B.5.现有4种不同颜色对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有多少种?解:先给最上面的一块着色,有4种方法,再给中间左边一块着色,有3种方法,再给中间右边一块着色,有2种方法,最后再给下面一块着色,有2种方法,根据分步乘法计数原理,共有4×3×2×2=48种方法.[课下提升考能]第Ⅰ组:全员必做题1.(2014·福州模拟)高三年级的三个班去甲、乙、丙、丁四个工厂参加社会实践,但去何工厂可自由选择,甲工厂必须有班级要去,则不同的分配方案有()A.16种B.18种C.37种D.48种解析:选C三个班去四个工厂不同的分配方案共43种,甲工厂没有班级去的分配方案共33种,因此满足条件的不同的分配方案共有43-33=37种.2.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”,在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是() A.60 B.48C.36 D.24解析:选B长方体的6个表面构成的“平行线面组”有6×6=36个,6个对角面构成的“平行线面组”有6×2=12(个).故共有36+12=48(个).3.有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这项任务,不同的选法有()A.1 260种B.2 025种C.2 520种D.5 040种解析:选C第一步,从10人中选派2人承担任务甲,有C210种选派方法;第二步,从余下的8人中选派1人承担任务乙,有C18种选派方法;第三步,再从余下的7人中选派1人承担任务丙,有C17种选派方法.根据分步乘法计数原理,知选法为C210·C18·C17=2 520种.4.将甲、乙、丙、丁四名实习老师分到三个不同的班,要求每个班至少分到一名老师,且甲、乙两名老师不能分到同一个班,则不同分法的种数为()A.28 B.24C.30 D.36解析:选C法一:分成两种情况,①甲和丙丁中的一人被分到同一个班或乙和丙丁中的一人被分到同一个班共有2C12A33=24种分法;②丙和丁两人被分到同一个班共有A33=6种分法.于是所求的分法总数为24+6=30.法二:将4名老师分到3个不同的班,有C24C13A22,甲、乙两名老师分到同一个班有C13 A22.∴满足要求的分法有C24C13A22-C13A22=30.5.(2013·山东高考)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为() A.243 B.252C.261 D.279解析:选B能够组成三位数的个数是9×10×10=900,能够组成无重复数字的三位数的个数是9×9×8=648,故能够组成有重复数字的三位数的个数是900-648=252.6.如图所示,在A,B间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通.今发现A,B之间电路不通,则焊接点脱落的不同情况有()A.9种B.11种C.13种D.15种解析:选C按照焊接点脱落的个数进行分类:第1类,脱落1个,有1,4,共2种;第2类,脱落2个,有(1,4),(2,3),(1,2),(1,3),(4,2),(4,3),共6种;第3类,脱落3个,有(1,2,3),(1,2,4),(2,3,4),(1,3,4),共4种;第4类,脱落4个,有(1,2,3,4),共1种.根据分类加法计数原理,共有2+6+4+1=13种焊接点脱落的情况.7.(2014·南充模拟)一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不重复(除交汇点O外)的不同游览线路有()A.6种B.8种C.12种D.48种解析:选D从P点处进入结点O以后,游览每一个景点所走环形路线都有2个入口(或2个出口),若先游览完A景点,再进入另外两个景点,最后从Q点处出有(4+4)×2=16种不同的方法,同理,若先游览B景点,有16种不同的方法,若先游览C景点,有16种不同的方法,因而所求的不同游览线路有3×16=48种.8.(2013·深圳调研)我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有()A.18个B.15个C.12个D.9个解析:选B依题意,这个四位数的百位数、十位数、个位数之和为4.由4、0、0组成3个数分别为400、040、004;由3、1、0组成6个数分别为310、301、130、103、013、031;由2、2、0组成3个数分别为220、202、022;由2、1、1组成3个数分别为211、121、112.共计:3+6+3+3=15个.9.一个乒乓球队里有男队员5人,女队员4人,从中选出男、女队员各一名组成混合双打,共有________种不同的选法.解析:“完成这件事”需选出男、女队员各一人,可分两步进行:第一步选一名男队员,有5种选法;第二步选一名女队员,有4种选法,共有5×4=20(种)选法.答案:2010.如果把个位数是1,且恰有3个数字相同的四位数叫作“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.解析:当相同的数字不是1时,有C13个;当相同的数字是1时,共有C13C13个,由分类加法计数原理知共有“好数”C13+C13C13=12个.答案:1211.(2013.沈阳模拟)三边长均为正整数,且最大边长为11的三角形的个数是________.解析:另两边长用x,y表示,且不妨设1≤x≤y≤11,要构成三角形,必须x+y≥12.当y取11时,x可取1,2,3,...,11,有11个三角形;当y取10时,x可取2,3, (10)有9个三角形;…;当y取6时,x只能取6,只有1个三角形.∴所求三角形的个数为11+9+7+5+3+1=36.答案:3612.(2014·泉州质检)如图所示,一环形花坛分成A,B,C,D四块,现有四种不同的花供选种,要求在每块花坛里种一种花,且相邻的两块花坛里种不同的花,则不同的种法共有________种.解析:法一:按所种花的品种多少分成三类:种两种花有A24种种法;种三种花有2A34种种法;种四种花有A44种种法.所以不同的种法共有A24+2A34+A44=84种.法二:按A-B-C-D的顺序种花,可分A,C种同一种花与不种同一种花两种情况,共有4×3×(1×3+2×2)=84种不同的种法.答案:84第Ⅱ组:重点选做题1.标号为A,B,C的三个口袋,A袋中有1个红色小球,B袋中有2个不同的白色小球,C袋中有3个不同的黄色小球,现从中取出2个小球.(1)若取出的两个球颜色不同,有多少种取法?(2)若取出的两个球颜色相同,有多少种取法?解:(1)若两个球颜色不同,则应在A,B袋中各取一个或A,C袋中各取一个或B,C袋中各取一个.∴应有1×2+1×3+2×3=11(种).(2)若两个球颜色相同,则应在B或C袋中取出2个.∴应有1+3=4(种).每个盒子只能放一个小球,且A球不能放在1,2号,B球必须放在与A球相邻的盒子中,求不同的放法有多少种?解:根据A球所在位置分三类:(1)若A球放在3号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C,D,E,则根据分步乘法计数原理得,3×2×1=6种不同的放法;(2)若A球放在5号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C,D,E,则根据分步乘法计数原理得,3×2×1=6种不同的放法;(3)若A球放在4号盒子内,则B球可以放在2号,3号,5号盒子中的任何一个,余下的三个盒子放球C,D,E有A33=6种不同的放法,根据分步乘法计数原理得,3×3×2×1=18种不同方法.综上所述,由分类加法计数原理得不同的放法共有6+6+18=30种.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时分层训练(五十二) 分类加法计数原理与分步乘法计数原理
A组基础达标
(建议用时:30分钟)
一、选择题
1.某电话局的电话号码为139××××××××,若前六位固定,最后五位数字是由6或8组成的,则这样的电话号码的个数为( )
A.20 B.25
C.32 D.60
C[依据题意知,后五位数字由6或8组成,可分5步完成,每一步有2种方法,根据分步乘法计数原理,符合题意的电话号码的个数为25=32.]
2.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一个有序整数对(x,y)作为一个点的坐标,则这样的点的个数是
( ) A.9 B.14
C.15 D.21
B[当x=2时,x≠y,点的个数为1×7=7个.
当x≠2时,由P⊆Q,∴x=y,
∴x可从3,4,5,6,7,8,9中取,有7种方法,
因此满足条件的点共有7+7=14个.]
3.甲、乙两人从4门课程中选修2门,则甲、乙所选课程中恰有1门相同的选法有( ) 【导学号:51062324】
A.6种B.12种
C.24种D.30种
C[分步完成,第一步,甲、乙选修同一门课程有4种方法.第二步,甲从剩余的3门课程中选一门有3种方法.第三步,乙从剩余的2门课程中选一门有2种方法.∴甲、乙恰有1门相同课程的选法有4×3×2=24种.]
4.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有( )
A.4种B.10种
C.18种D.20种
B[赠送1本画册,3本集邮册.需从4人中选取1人赠送画册,其余赠送集邮册,有C14种方法.
赠送2本画册,2本集邮册,只需从4人中选出2人赠送画册,其余2人赠送集邮册,
有C 2
4种方法.
由分类加法计数原理,不同的赠送方法有C 14+C 24=10种.]
5.(2017·绍兴模拟)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为
( )
A .243
B .252
C .261
D .279 B [0,1,2,…,9共能组成9×10×10=900个三位数,其中无重复数字的三位数有9×9×8=648个,∴有重复数字的三位数有900-648=252个.]
6.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是( )
A .9
B .10
C .18
D .20
C [由于lg a -lg b =lg a b (a >0,b >0),从1,3,5,7,9中任取两个作为a b 有A 2
5=20种,又13与39相同,31与93
相同, ∴lg a -lg b 的不同值的个数为A 25-2=18.]
二、填空题
7.(2016·杭州模拟)在三位正整数中,若十位数字小于个位和百位数字,则称该数为“驼峰数”.比如“102”,“546”为“驼峰数”,由数字1,2,3,4可构成无重复数字的“驼峰数”有________个. 【导学号:51062325】
8 [十位上的数为1时,有213,214,312,314,412,413,共6个,十位上的数为2时,有324,423,共2个,所以共有6+2=8(个).]
8.从8名女生,4名男生中,选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法数为________种. 【导学号:51062326】
112 [从男生中抽1人有4种方法,从女生中抽2人有C 28=28种方法,
由分步乘法计数原理,共有28×4=112种方法.]
9.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有________种.
75 [由题意知,选2名男医生、1名女医生的方法有C 26C 15=75种.]
10.如图9­1­4所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法总数为________个.
图9­1­4
420[先染顶点S,有5种染法,再染顶点A,有4种染法,染顶点B,有3种染法,顶点C的染法有两类:若C与A同色,则顶点D有3种染法;若C与A不同色,则C有2种染法,D有2种染法,所以共有5×4×3×3+5×4×3×2×2=420(种)染色方法.]
B组能力提升
(建议用时:15分钟)
1.有4件不同颜色的衬衣,3件不同花样的裙子,另有2套不同样式的连衣裙.“五一”节需选择一套服装参加歌舞演出,则有几种不同的选择方式
( ) A.24 B.14
C.10 D.9
B[第一类:一件衬衣,一件裙子搭配一套服装有4×3=12种方式,
第二类:选2套连衣裙中的一套服装有2种选法,
由分类加法计数原理,共有12+2=14(种)选择方式.]
2.从集合{1,2,3,4,…,10}中,选出5个数组成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有( )
A.32个B.34个
C.36个D.38个
A[将和等于11的放在一组:1和10,2和9,3和8,4和7,5和6.从每一小组中取一个,有C12=2种,共有2×2×2×2×2=32个.]
3.如果把个位数是1,且恰有3个数字相同的四位数叫作“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.
12 [当相同的数字不是1时,有C13个;当相同的数字是1时,共有C13C13个,
由分类加法计数原理知共有“好数”C13+C13C13=12个.]
4.回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3 443,94 249等.显然2位回文数有9个:11,22,33,…,99;3位回文数有90个:101,111,121,…,191,202,…999.则
(1)4位回文数有________个;
(2)2n+1(n∈N*)位回文数有________个. 【导学号:51062327】
(1)90 (2)9×10n[(1)4位回文数相当于填4个方格,首尾相同,且不为0,共9种
填法;中间两位一样,有10种填法,共计9×10=90种填法,即4位回文数有90个.
(2)根据回文数的定义,此问题也可以转化成填方格,由分步计数原理,共有9×10n种填法.]。

相关文档
最新文档