变频调速恒压供水(单泵).

摘要

自从通用变频器问世以来,变频调速技术在各个领域得到了广泛的应用。变频调速技术在各个领域得到了广泛的应用。变频调速恒压供水设备以其节能、安全、高品质的供水质量等优点,使我国供水行业的技术装备水平从90年代初开始经历了一次飞跃。恒压供水调速系统实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,是当今最先进、合理的节能型供水系统。在实际应用中得到了很大的发展。

对城镇住宅电力驱动恒压供水的原理及几种实用化方案进行了深入的讨论,以变频器为主体的恒压供水系统对供水水泵实现全方位的宝护。该系统不但能最大限度地节约水资源,而且能够节约电能,延长供水水泵的使用寿命,并在紧急情况下(消防,减灾)能够做到重点供水。最后,对几种实用化供水方案进行了详细的讨论。

关键词:变频器;恒压供水;变频调速;供水系统

目录

1. 变频调速恒压供水系统的现状和应用 (1)

1.1. 变频调速恒压供水的目的和意义 (1)

1.2变频调速恒压供水的应用 (1)

2.变频调速恒压供水系统 (2)

2.1供水系统的基本特性 (2)

2.2变频恒压供水系统的构成及工作原理 (2)

2.2.1系统的构成 (2)

2.2.2变频调速恒压供水系统原理 (3)

2.2.3变频恒压控制理论模型 (4)

3.变频恒压供水系统设计 (6)

3.1控制方案 (6)

3.2变频恒压控制系统构成 (6)

3.3系统的硬件设计 (8)

3.4系统的软件设计 (9)

3.4.1 PLC的定义及特点 (9)

3.4.2 PLC的工作原理 (9)

3.4.3.I/O接线图 (10)

4.器件的选型 (11)

4.1变频器选型 (11)

4.1.1.变频器的控制方式 (11)

4.1.2.变频器容量的选择 (11)

4.1.3.系统主电路外围设备选择 (12)

5.变频器参数的设置 (16)

5.1参数复位 (16)

5.2电机参数设置 (16)

总结 (17)

参考文献 (18)

1.变频调速恒压供水系统的现状和应用

1.1.变频调速恒压供水的目的和意义

变频恒压供水系统已逐渐取代原有的水塔供水系统,广泛应用于多层住宅小

区生活消防供水系统。然而,由于新系统多会继续使用原有系统的部分旧设备(如

水泵),在对原有供水系统进行变频改造的实践中,往往会出现一些在理论上意

想不到的问题。随着电力技术的发展,变频调速技术的日臻完善,以变频调速为

核心的智能供水控制系统取代了以往高位水箱和压力罐等供水设备,起动平稳,

起动电流可限制在额定电流以内,从而避免了起动时对电网的冲击;由于泵的平

均转速降低了,从而可延长泵和阀门等东西的使用寿命;可以消除起动和停机时

的水锤效应。其稳定安全的运行性能、简单方便的操作方式、以及齐全周到的功能,将使供水实现节水、节电、节省人力,最终达到高效率的运行目的。

1.2变频调速恒压供水的应用

通常在同一路供水系统中,设置多台常用泵,供水量大时多台泵全开,供水量

小时开一台或两台。在采用变频调速进行恒压供水时,就用两种方式,其一是所有

水泵配用一台变频器;其二是每台水泵配用一台变频器。后种方法根据压力反馈信

号,通过PID运算自动调整变频器输出频率,改变电动机转速,最终达到管网恒压

的目的,就一个闭环回路,较简单,但成本高。前种方法成本低,性能不比后种差,

但控制程序较复杂,是未来的发展方向,比如NKL-A系列恒压供水控制系统就可实

现一变频器控制任意数马达的功能。

2.变频调速恒压供水系统

2.1供水系统的基本特性

供水系统的基本特性是水泵在某一转速下扬程h与流量q之间的关系曲线f (q),前提是供水系统管路中的阀门开度不变。扬程特性所反映的是扬程h与用水流量q之间的关系。由图2.1的扬程特性表明,流量q越大,扬程h越小。在阀门开度和水泵转速都不变的情况下,流量q的大小主要取决于用户的用水情况。

管阻特性是以水泵的转速不变为前提,阀门在某一开度下,扬程h与流量q之间的关系h=f (q)。管阻特性反映了水泵转动的能量用来克服水泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图2.1可知,在同一阀门开度下,扬程h越大,流量q也越大,流量q的大小反映了系统的供水能力。

扬程特性曲线和管阻特性曲线的交点,称为供水系统的平衡工作点,如图2.1中a点。在这一点,用户的用水流量和供水系统的供水流量达到平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。当用水流量和供水流量达到平衡时,扬程ha稳定,供水系统的压力也保持恒定。

图2.1 供水系统的基本特性

2.2变频恒压供水系统的构成及工作原理

2.2.1系统的构成

变频恒压供水系统采用西门子的S7-200 plc作为控制器,变频器MM440是频率调节器,交流接触器和电动机作为执行机构,压力传感器作为控制的反馈元件。

S7-200 plc 选用内部控制模块CPU224,模拟量2路输入通用模块、模拟量2路输出通用模块和pid 模块CPU224有14路输入/10路输出,对于小型的控制系统而言够用。pid 模块使用方便,在软件中只需要配置pid 的每个参数。

三相交流电与MM440的电源输入口连接,经过变频器变频后的交流电接异步电动机,异步电动机带动水泵转动。S7-200数字输出口输出控制信号到交流接触器,交流接触器两端连接的是工频或变频的三相交流电,主要起接通或断开三相交流电与异步电动机。S7-200的模拟输出口输出控制电压信号给MM440的模拟电压输入口ain1+和ain1-,该控制电压主要调节交流电的频率。压力传感器从供水网络中反馈压力信号,压力信号经过滤波放大后输入给S7-200的模拟输入口。

2.2.2变频调速恒压供水系统原理

1.电动机的调速原理

水泵电机多采用三相异步电动机,而其转速公式为:

(2.1) 式中:f 表示电源频率,p 表示电动机极对数,s 表示转差率。

从上式可知,三相异步电动机的调速方法有:

(l) 改变电源频率

(2) 改变电机极对数

(3) 改变转差率

改变电机极对数调速的调控方式控制简单,投资省,节能效果显著,效率高,

但需要专门的变极电机,是有级调速,而且级差比较大,即变速时转速变化较大,转矩也变化大,因此只适用于特定转速的生产机器。改变转差率调速为了保证其较大的调速范围一般采用串级调速的方式,其最大优点是它可以回收转差功率,节能效果好,且调速性能也好,但由于线路过于复杂,增加了中间环节的电能损耗,且成本高而影响它的推广价值。下面重点分析改变电源频率调速的方法及特点。

根据公式可知,当转差率变化不大时,异步电动机的转速n 基本上与电源频

率f 成正比。连续调节电源频率,就可以平滑地改变电动机的转速。但是,单一地调节电源频率,将导致电机运行性能恶化。随着电力电子技术的发展,已出现了各种性能良好、工作可靠的变频调速电源装置,它们促进了变频调速的广泛应用。

2.变频恒压控制系统节能原理

供水系统的扬程特性是以供水系统管路中的阀门开度不变为前提,表明水泵

()601f n s p =

-

在某一转速下扬程H与流量Q之间的关系曲线,如图2.1所示。由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户的用水情况,因此,扬程特性所反映的是扬程H与用水流量Qu间的关系H=f(Qu)。而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下扬程H与流量Q之间的关系曲线,如图2.1所示。管阻特性反映了水泵的能量用来克服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由于阀门开度的改变,实际上是改变了在某一扬程下,供水系统向用户的供水能力。因此,管阻特性所反映的是扬程与供水流量Qc之间的关系H=f(Qc)。扬程特性曲线和管阻特性曲线的交点,称为供水系统的工作点,如图2.1中A点。在这一点,用户的用水流量Qu和供水系统的供水流量Qc处于平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。

变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。通常由异步电动机驱动水泵旋转来供水,并且把电机和水泵做成一体,通过变频器调节异步电机的转速,从而改变水泵的出水流量而实现恒压供水的。因此,供水系统变频的实质是异步电动机的变频调速。异步电动机的变频调速是通过改变定子供电频率来改变同步转速而实现调速的

2.2.3变频恒压控制理论模型

变频恒压控制系统以供水出口管网水压为控制目标,在控制上实现出口总管网的实际供水压力跟随设定的供水压力。设定的供水压力可以是一个常数,也可以是一个时间分段函数,在每一个时段内是一个常数。所以,在某个特定时段内,恒压控制的目标就是使出口总管网的实际供水压力维持在设定的供水压力上从图2.2中可以看出,在系统运行过程中,如果实际供水压力低于设定压力,控制系统将得到正的压力差,这个差值经过计算和转换,计算出变频器输出频率的增加值,该值就是为了减小实际供水压力与设定压力的差值,将这个增量和变频器当前的输出值相加,得出的值即为变频器当前应该输出的频率。该频率使水泵机组转速增大,从而使实际供水压力提高,在运行过程中该过程将被重复,直到实际供水压力和设定压力相等为止。如果运行过程中实际供水压力高于设定压力,情况刚好相反,变频器的输出频率将会降低,水泵的转速减小,实际供水压力。因此而减小。同样,最后调节的结果是实际供水压力和设定压力相等。

图2.2变频恒压供水系统的控制原理框图

3.变频恒压供水系统设计

3.1控制方案

选用通用变频器+PLC(包括变频控制、调节器控制)+人机界面+压力传感器这种方案

这种控制方式灵活方便。具有良好的通信接口,可以方便地与其他的系统进行数据交换,通用性强;由于PLC产品的系列化和模块化,用户可灵活组成各种规模和要求不同控制系统。在硬件设计上,只需确定PLC的硬件配置和I/O 的外部接线,当控制要求发生改变时,可以方便地通过PC机来改变存贮器中的控制程序,所以现场调试方便。同时由于PLC的抗干扰能力强、可靠性高,因此系统的可靠性大大提高。该系统能适用于各类不同要求的恒压供水场合,并且与供水机组的容量大小无关

3.2变频恒压控制系统构成

PLC控制变频恒压供水系统主要有变频器、可编程控制器、压力变送器和现场的水泵机组一起组成一个完整的闭环调节系统,该系统的控制流程图如图3.1所示:

图3.1变频恒压供水系统控制流程图

从图中可看出,系统可分为:执行机构、信号检测机构、控制机构三大部分,

具体为:

(1)执行机构:执行机构是由一组水泵组成,它们用于将水供入用户管网,其中由一台变频泵和两台工频泵构成,变频泵是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定;工频泵只运行于启、停两种工作状态,用以在用水量很大(变频泵达到工频运行状态都无法满足用水要求时)的情况下投入工作。

(2) 信号检测机构:在系统控制过程中,需要检测的信号包括管网水压信号、水池水位信号和报警信号。管网水压信号反映的是用户管网的水压值,它是恒压供水控制的主要反馈信号。此信号是模拟信号,读入PLC时,需进行A/D转换。另外为加强系统的可靠性,还需对供水的上限压力和下限压力用电接点压力表进行检测,检测结果可以送给PLC,作为数字量输入;水池水位信号反映水泵的进水水源是否充足。信号有效时,控制系统要对系统实施保护控制,以防止水泵空抽而损坏电机和水泵。此信号来自安装于水池中的液位传感器;报警信号反映系统是否正常运行,水泵电机是否过载、变频器是否有异常,该信号为开关量信号。

(3) 控制机构:供水控制系统一般安装在供水控制柜中,包括供水控制器(PLC系统)、变频器和电控设备三个部分。供水控制器是整个变频恒压供水控制系统的核心。供水控制器直接对系统中的压力、液位、报警信号进行采集,对来自人机接口和通讯接口的数据信息进行分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和接触器对执行机构(即水泵机组)进行控制;变频器是对水泵进行转速控制的单元,其跟踪供水控制器送来的控制信号改变调速泵的运行频率,完成对调速泵的转速控制。

作为一个控制系统,报警是必不可少的重要组成部分。由于本系统能适用于不同的供水领域,所以为了保证系统安全、可靠、平稳的运行,防止因电机过载、变频器报警、电网过大波动、供水水源中断造成故障,因此系统必须要对各种报警量进行监测,由PLC判断报警类别,进行显示和保护动作控制,以免造成不必要的损失。

变频恒压供水系统以供水出口管网水压为控制目标,在控制上实现出口总管网的实际供水压力跟随设定的供水压力。设定的供水压力可以是一个常数,也可以是一个时间分段函数,在每一个时段内是一个常数。所以,在某个特定时段内,恒压控制的目标就是使出口总管网的实际供水压力维持在设定的供水压力上[10]。变频恒压供水系统的结构框图如图3.2所示:

图3.2变频恒压供水系统框图

恒压供水系统通过安装在用户供水管道上的压力变送器实时地测量参考点的水压,检测管网出水压力,并将其转换为4—20mA的电信号,此检测信号是实现恒压供水的关键参数。由于电信号为模拟量,故必须通过PLC的A/D转换模块才能读入并与设定值进行比较,将比较后的偏差值进行PID运算,再将运算后的数字信号通过D/A转换模块转换成模拟信号作为变频器的输入信号,控制变频器的输出频率,从而控制电动机的转速,进而控制水泵的供水流量,最终使用户供水管道上的压力恒定,实现变频恒压供水。

3.3系统的硬件设计

根据基于PLC的变频恒压供水系统的原理,系统的电气控制总框图如图3.3

图3.3 系统的电气控制总框图

由以上系统电气总框图可以看出,该系统的主要硬件设备应包括以下几部

分:(1) PLC及其扩展模块、(2) 变频器、(3) 水泵机组、(4) 压力变送器、(5) 液位变送器。主要设备选型如表3.1所示:

表3.1 本系统主要硬件设备清单

3.4系统的软件设计

3.4.1 PLC的定义及特点

在PLC的发展过程中,美国电气制造商协会(NEMA)经过4年的调查,于1980年把这种新型的控制器正式命名为可编程序控制器(Programmable Controller),英文缩写为PC,并作如下定义:“可编程序控制器是一种数字式电子装置。它使用可编程序的存储器来存储指令,并实现逻辑运算、顺序控制、计数、计时和算术运算功能,用来对各种机械或生产过程进行控制。PLC的特点如下:1、高可靠性2、丰富的I/O接口模块3、采用模块

化结构4、编程简单易学5、安装简单,维修方便

3.4.2 PLC的工作原理

PLC采用循环扫描的工作方式,在PLC中用户程序按先后顺序存放,CPU从第一条指令开始执行程序,直到遇到结束符后又返回第一条,如此周而复始不断循环。PLC的扫描过程分为内部处理、通信操作、程序输入处理、程序执行、程序输出几个阶段。全过程扫描一次所需的时间称为扫描周期。当PLC处于停状态时,只进行内部处理和通信操作服务等内容。在PLC处于运行状态时,从内部处理、通信操作、程序输入、程序执行、程序输出,一直循环扫描工作。

3.4.3.I/O接线图

4.器件的选型

4.1变频器选型

4.1.1.变频器的控制方式

控制方式是决定变频器使用性能的关键所在。目前市场上低压通用变频器品牌很多,包括欧、美、日及国产的共约5O多种。选用变频器时不要认为档次越高越好,其实只要按负载的特性,满足使用要求就可,以便做到量才使用、经济实惠。下表中参数供选用时参考。

表4.1控制方式的比较

4.1.2.变频器容量的选择

1、从电流的角度:

大多数变频器容量可从三个角度表述:额定电流、可用电动机功率和额定容量。其中后两项,变频器生产厂家由本国或本公司生产的标准电动机给出,或随变频器输出电压而降低,都很难确切表达变频器的能力。

选择变频器时,只有变频器的额定电流是一个反映半导体变频装置负载能力的关键量。负载电流不超过变频器额定电流是选择变频器容量的基本原则。需要着重指出的是,确定变频器容量前应仔细了解设备的工艺情况及电动机参数,例如潜

水电泵、绕线转子电动机的额定电流要大于普通笼形异步电动机额定电流,冶金工业常用的辊道用电动机不仅额定电流大很多,同时它允许短时处于堵转工作状态,且辊道传动大多是多电动机传动。应保证在无故障状态下负载总电流均不允许超过变频器的额定电流。

2、从效率的角度:

系统效率等于变频器效率与电动机效率的乘积,只有两者都处在较高的效率下工作时,则系统效率才较高。从效率角度出发,在选用变频器功率时,要注意以下几点:

(1)变频器功率值与电动机功率值相当时最合适,以利变频器在高的效率值下运转。

(2)在变频器的功率分级与电动机功率分级不相同时,则变频器的功率要尽可能接近电动机的功率,但应略大于电动机的功率。

(3)当电动机属频繁起动、制动工作或处于重载起动且较频繁工作时,可选取大一级的变频器,以利用变频器长期、安全地运行。

(4)经测试,电动机实际功率确实有富余,可以考虑选用功率小于电动机功率的变频器,但要注意瞬时峰值电流是否会造成过电流保护动作。

(5)当变频器与电动机功率不相同时,则必须相应调整节能程序的设置,以利达到较高的节能效果。

3、从计算功率的角度:

对于连续运转的变频器必须同时满足以下3个计算公式:

(1)满足负载输出:Pcn≥P m/η (3.1)

(2)满足电动机容量:Pcn≥√3KUeIe cosφ ×10-3 (3.2)

(3)满足电动机电流:Icn≥KIe(3.3) 式中

Pcn——变频器容量(单位kW);

PM——负载要求的电动机轴输出功率(单位kW);

Ue——电动机额定电压(单位V);

Ie——电动机额定电流(单位A);

Η——电动机效率(通常约为0.85);

Cosφ——电动机功率因数(通常约为0.75);

K——电流波形补偿系数(由于变频器的输出波形并不是完全的正弦波,而含有高次谐波的成分,其电流应有所增加,通常K约为1.05~1.1)。

将本系统参数带入求得所取变频器容量最低为88KW故取100KW,额定电流139.26A,故取150A。

根据计算所得的所需参数可以选取西门子MicroMaster430(风机水泵专业)变频器,具体的可以选择MM430-110K型号的变频器,他配接电机的容量是110kw,额定电流为205A满足使用需求,可以选择。

4.1.3.系统主电路外围设备选择

1、变频器主电路

变频器在实际使用中,还需要和一些外接的配件一起使用。下图所示的是主电路。

图3.1系统主电路图

断路器QF 和接触器KM 用于接通变频器的电源,交流电抗器AL 和直流电抗器DL 用于改善功率因数,输入滤波器ZF1和输出滤波器ZF2用于抗干扰,制动电阻RB 和制动单元用于能耗制动。 变频器有比较完善的过流和过载保护功能,且空气断路器也有过流保护功能,故进线侧可不必接熔断器。又由于变频器内部具有电子热保护功能。故在只接一台电动机的情况下可不必接热继电器。 2 变频器主电路器件选择

(1)断路器

当变频器需要检修时,或者因某种原因而长时间不用时,将QF 切断,使变频器与电源隔离。当变频器输入侧发生短路等故障时,进行保护。

选择原则

1、变频器在刚接电源的瞬间,对电容器的充电电流可达额定电流的(2-3)倍;

2、变频器的进线电流是脉冲电流,其峰值常可能超过额定电流;

3、变频器允许的过载能力为150%,1min 。

为了避免误动作,断路器的额定电流QN I 应选:

N Q N I I )4.1~3.1( (4.1)

其中N I 为变频器的额定电流。故选择断路器额定电流选择210A

根据上述数据可以选择断路器DW15—400断路器额定电压为380V ,额定电流为300满足要求可以选择。

(2)接触器

1、主要作用:可通过按钮开关方便地控制变频器的通电与断电;变频器发生故障时,可自动切断电源。

2、选择原则:

由于接触器自身并无保护功能,不存在误动作的问题,故选择原则是主触点的额定电流N KN I I ≥,应该大于126.6A,可以选择主触点额定电流为130A 的接触器。

根据上述数据施奈德的LC1—D150,满足参数要求,可以选择

(3)主电路的线径

1、电源和变频器之间的导线

一般说来,和同容量普通电动机的电线选择方法相同。考虑到其输入侧的功率因数往往较低,应本着宜大不宜小的原则来决定线径。

2、变频器和电机之间的导线

因为频率下降时,电压也要下降,在电流相等的情况下,线路电压降U ?在输出电压中的比例将上升,而电动机得到电压的比例则下降。这有可能导致电动机带不动负载并发热。所以,在决定变频器和电动机之间导线的线径时,最关键的因素便是线路电压降U ?的影响。一般要求:

N U U )%3~2(≤? (4.2)

U ?的计算公式是:

)(100030V l R I U MN =? (4.3) 式中:N U ——额定相电压,V ;

MN I ——电动机额定电流,A ;

0R ——单位长度(每米)导线的电阻,mΩ/m ;

l ——导线的长度,m 。由上两式可直接求出0R 的取值范围。根据

Ro 值确定导线面积。

由公式(4.2)得:6.7(≤?U ~11.4)V

由公式(4.3)得:0.69 mΩ/m ≤≤0R 1.04 mΩ/m

根据表4.2判断所需的导线截面积,为了满足控制系统的要求,应该选择截面积为162m m 的导线。

(4)制动电阻

准确计算制动电阻值十分麻烦,在实际工作中基本不用。许多变频器的使用说明书上给了一些计算方法,也有的直接提供了供用户选用的制动电阻的规格。但按说明书上选择电阻时须注意下面问题,变频器生产厂家为了减少制动电阻档次,常常对若干种不同容量的电动机提供相同阻值和容量的制动电阻。选用时,应注意根据生产机械的具体情况进行调整。对同一挡中电动机容量较小者,制动转矩与额定转矩的比值偏大。为了减小能量的消耗,应根据制动过程的缓急程度以及飞轮力矩的大小,考虑能否选择阻值较大的制动电阻。对同一挡中电动机容量较大者,制动转矩与额定转矩的比值偏小。在一些飞轮力矩较大,又要求快速制动的场合,或者如起重机械那样,需要释放位能的场合,上述制动电阻有可能满足不了要求,靠考虑选择阻值较小的一挡制动电阻

5.变频器参数的设置

5.1参数复位

1、P0003=3(选择级别为专家级)

2、设定P0010=30

3、设定P0970=1(设定P0970=1后变频器将自动进入参数恢复程序,大约要10~20秒钟后才能将所有参数恢复为出厂缺省值,恢复的过程中变频器显示P----字样并闪烁。)

4、显示P0970 则复位操作完成

5.2电机参数设置

P0010=1 (快速调试)

P0100=0(功率单位为KW;f的缺省值为50Hz)

P0304=380(电动机的额定电压)

P0305=126.6(电动机的额定电)

P0307=75(电动机的额定功率)

P0310=50(电动机的额定频率)

P0311=1470(电动机的额定转速)

P0700=2(变频器命令源选择为模入端子/数字输入)

P1000=2(模拟设定值) P1080=5(电动机最小频率)

P1082=50(电动机最大频率)

P1120=10(电动机从静止停车加速到最大电动机频率所需时间)

P1121=10(电动机从最大频率减速到静止停车所需的时间)

P3900=1(结束快速调试)

总结

控制供水系统最终是为了满足用户的需要,此系统以变频器与PLC为核心进行设计。PLC控制变频器进行PID调节,同时变频器输出频率值控制水泵的转速。按实际情况设定压力给定值,根据压力变送器的反馈信号与设定值的压差调整水泵的工作情况,实现恒压供水。该系统可靠性高、效率高、节能效果好以及动态响应速度快,更好的实现恒压供水。因实现了恒压自动控制,不需要操作人员频繁操作,节省了人力,提高了供水质量,减轻了劳动强度,可实现无人值班,节约管理费用。对整个供水过程来说,系统的可扩展性好,管理人员可根据每个季节的用水情况,选择不同的压力设定范围,不但节约了用水,而且节约了电能,达到了更优的节能方式,实现供水的最优化控制和稳定性控制。

通过此次课设,将所学的知识运用到了实际的设计中,是我对知识有了更深的了解,同时也提高了我们动手动脑的能力。其中遇到了很多问题,在此感谢老师与同学们的帮助。

参考文献

[1] 韩雪涛,变频实用技术.北京:电子工业出版社,2012.06

[2] 韩占涛,S7-200plc编程与工程实例详解.北京:电子工业出版社,2013.2

[3] 贺玲芳,基于PLC控制的全自动变频恒压供水系统.西安科技学院学报,2000

[4] 魏连荣,变频器应用技术及实例解析.北京:化学工业出版社,2008.4

[5] 刘润华,可编程序控制器在变频调速供水系统中的应用.基础自动化 1997

[6] 廖常初,PLC编程及应用.北京:机械工业出版社,2003

变频恒压供水系统协议

技术协议 一、总则 1.1本协议书适用于山西柳林王家沟煤业有限公司变频恒压供水系统。它包括了设备的功能设计、结构、性能、供货等方面的技术要求。 1.2如卖方没有以书面形式对技术规范书明确提出异议,那么卖方提供的产品应完全满足技术协议书的要求。若供方所提供的协议书前后有不一致的地方,应以更有利于设备安装运行、工程质量为原则,由买方确定。设备采用的专利涉及到的全部费用均被认为已包含在设备报价中,卖方应保证买方不承担有关设备专利的一切责任。 1.3本技术协议书所使用的标准如与卖方所执行的标准发生矛盾时,按较高标准执行。 二、设备概述 2.1变频恒压供水是指在供水管网中用水量发生变化时,出口压力保持不变的供水方式。供水管网的出口压力值是根据用户需求确定的。 2.2变频恒压供水系统以管网水压 (或用户用水流量)为设定参数,通过微机控制变频器的输出频率从而自动调节水泵电机的转速,实现管网水压的闭环调节 (PID),使供水系统自动恒稳于设定的压力值:即用水量增加时,频率升高,水泵转速加快,供水量相应增大;用水量减少时,频率降低,水泵转速减慢,供水量亦相应减小,这样就保证了供水效率用户对水压和水量的要求。 2.3变频恒压供水系统是一项成熟的技术,我公司已为多家水处理厂进行设计和改造,并取得可观的经济和社会效益。

三、设备规范 3.1设备名称:变频恒压供水系统 3.2型号:HHY-50/72-Q3 3.3设备组成:主泵、副泵、稳压罐、系统机组、智能变频控制柜 3.4主要参数: 3.5位置:室内安装

3.6变频恒压供水系统型号说明 3.7该系统设备主泵有二台,全部可软启动,均可变频调速,若按正顺序启动则按逆顺序停止。在三台水泵并联供水时,只有一台泵是变频调速泵,其余为恒速泵。在水泵出水管附近安装压力传感器,并将出水口压力信号反馈给变频恒压控制柜,控制水泵按设计给定的压力自动选择水泵的开停及台数,由用户需水量决定水泵供水量。 四、变频调速水泵恒压供水的特点: 我公司的变频调速水泵恒压供水有如下特点: 4.1供水压力稳定: 系统实现闭环控制,传感器返回系统压力,通过与设定值的比较,输出相应频率,拖动水泵运行在相应的转速,使系统压力保持恒定。 4.2高效节能: 系统能按需设定压力,根据设定的压力自动调节水泵转速和水泵运行台数,使设备运行在高效节能的最佳工作状态。 4.3操作方便简单,稳定可靠: 系统由变频器和PLC自动控制,可实行无人操作,操作简单。配有自动/手动开关控制,保证设备的安全连续运行。

各种变频器恒压供水参数

安邦信AM300变频器供水参数表 F0.04=1 端子COM 与X1短接启动变频器 F0.02=30 加速时间 如启动过程中出现过流报警现象请加大此值 F0.03=30 减速时间 F0.05=5 PID 控制设定 闭环控制 F0.07=50 上限频率 F0.08=30 下限频率 F4.01=1 P 型机 F9.01= 键盘预置PID 给定 压力设定(100%对应压力表满量程)1Mpa (10公斤)压力 设定值40,则设定压力为4公斤 压力表判断方法: 用万用表欧姆档分别量压力表两端的阻值,其中阻值最大的一次万用表两表笔分别接的高端和低端,另一端为中端,与中端阻值大的一端为高端,另一端为低端。 安邦信G7-P7系列变频器供水参数表 F9= 给定压力值(0—50对应压力表压力) F10= 1:外部端子0(本机监视) 3:外部端子1(远程监视) F11=0 本机键盘/远控键盘 F17= 下限频率,休眠启动模式下为休眠频率 F76= 运行监视功能选择 0:C00输出频率/PID 反馈 1:C01参考频率/PID 给定 6:C06机械速度(PID 模式下变频器输出频率) F80=1 PID 闭环模式有效 F87=4 比例P 增益 F88=0.2积分时间常数Ti F114= 休眠时间,10秒,0表示休眠关闭 F115= 唤醒频率,唤醒压力,此值要低于给定的压力值(小于F9)。需根据现场情况自行调整 F116= 0:G 型机 1:P 型机 压力表判断方法: 用万用表欧姆档分别量压力表两端的阻值,其中阻值最大的一次万用表两表笔分别接的高端和低端,另一端为中端,与中端阻值大的一端为高端,另一端为低端。

简述变频调速水泵工作原理

水泵,众所周知,它是用来输送液体动力元件,国民经济许多部门要用到它。其品种规格繁多,对它分类方法也各不相同,按其工作原理可以分为三大类:叶片式水泵,容积式水泵,其他类型水泵。 目前市场主要产品为离心泵,是叶片泵一种,亦为应用最为广泛泵型。此种泵工作原理是靠叶轮高速旋转时叶片拨动液体旋转,使液体获离心力而完成水泵输水过程,这种泵称为离心泵。其应用领域涉及生活热水供水、污水排水、工业应用、商业建筑暖通空调循环、冷却水输送等各个方面。离心泵是一种重要设备,它运转需要消耗大量动力!据统计,全世界20%电能是消耗水泵系统上。而事实上,采取必要技术措 施及控制手段,其中30%-50%能耗是可以节省下来。 一:定速泵与变速泵: 传统供热、空调系统,是按单独质调节运行方式选择循环水泵,选泵原则是泵流量不能小于外网所需流 量,一般外网理论流量 1.1?1.2倍,扬程按管路及用户总阻力 1.05?1.10倍进行选择,这时对应轴功率已大于100%。可见按定流量运行方式,水泵运行电耗是很大。带来调节效果十分理想。 水泵按定流量运行方式,当部分负荷状态下,系统所需流量降低,为适应其流量变化,需减小阀门开度调节以改变系统特性曲线,即消耗多余压头,浪费了大量电能! 改变阀门开度完成对水泵运行点调节,我们还可以采用改变泵转速方法: 由可以看岀:当泵转速改变后泵性能曲线将同时改变,而转速将随频率]Hz ]改变而改变。对循环水泵性能分析可知:水泵流量、扬程和轴功率均与水泵叶轮转速之间存着一定比例关系: 如由此可以看岀,水泵扬程与电机转速平方成正比,水泵轴功率与电机转速立方成正比。即当水泵流量 降低20%时候,电机转速应降低20%,水泵电耗将降低50% ;当水泵流量降低50%时候,电机转速就降低50%,水泵电耗降低87.5%。当系统需要流量降低时,降低转速,相应水泵流量降低,水泵轴功率降低, 节约电能效果显著。,采用变速调节,也避免了采用阀门调节时不必要阀门压头损耗。 二:速度控制原理: 当流量降低时,控制器将检测压力信号(传感器电机电流或转速状态)。此时,控制器将向变频器发岀一个信 号,使其降低输岀(较低频率)直至压力回到要求水平(设定点)。反之,当流量再次升高时,控 制器将检测到压力降低。控制器将向变频器发出一个信号,使其提高输出(较高频率)直至压力回到要求

基于 PLC 和变频器控制的恒压供水系统设计

基于 PLC 和变频器控制的恒压供水系统设计 赵华军钟波 (广州铁路职业技术学院) 摘要:文章介绍一种基于三菱PLC 和变频器控制恒压供水系统,详细地介绍了硬件的构成和控制流程。系 统较好地解决高层建筑、工业等恒压供水需求。系统具有节能、工作可靠、自动控制程度高、经济易配置等优点。 关键词:变频器;PID;PLC;恒压供水 1 引言 目前,在城市供水系统中,还有很多高楼、生活 小区、边郊企业等采用高位水塔供水方式。这样,由 于用水量具有很大随机性,常常出现在用水高峰时供 水量很小甚至没有水用的问题;且采用高位水塔,很 容易造成自来水的二次污染问题。针对这一情况,本 文设计了一套基于变频器内置PID 功能的恒压供水 系统,采用了PLC 控制及交流变频调速技术对传统 水塔供水系统的技术改造。该系统根据用水量的变 化,经过压力传感器将水压变化情况反馈给系统,使 得系统能自动调节变频器输出频率,从而控制水泵转 速,调节输出数量,使得水量变化时可保持水压恒定; 可取代高位水塔或直接水泵加压供水方式,为城市供 水系统的建设提出了一条极具推广、应用的新途径[1]。 2 工作原理 本文采用的变频器是三菱FR-A540,该变频器内 置PID 控制功能;供水系统方案如图1 所示。 将通往用户供水管中的压力变化经传感器采集 到变频器,与变频器中的设定值进行比 较,根据变频器内置的PID 功能,进行数 据处理,将数据处理的结果以运行频率的 形式进行输出[2]。 当供水的压力低于设定压力,变频器 就会将运行频率升高,反之则降低,且可 根据压力变化的快慢进行差分调节。由于 本系统采取了负反馈,当压力在上升到接 近设定值时,反馈值接近设定值,偏差减小,PID 运算会自动减小执行量,从而降低变频器输 出频率的波动,进而稳定压力。 在水网中的用水量增大时,会出现“变频泵” 效率不够的情况,这时就需要增加水泵参与供水,通 过PLC 控制的交流接触器组负责水泵的切换工作; PLC 是通过检测变频器频率输出的上下限信号,来判 断变频器的工作频率,从而控制接触器组是否应该增 加或减小水泵的工作数量。

全自动变频调速恒压供水控制柜

概况: HDL系列水泵控制柜是海德隆公司充分吸收国内外水泵控制的先进经验,经多年的生产和应用,不断完善优化,精心设计制作而成。该产品具有过载、短路、缺相保护以及泵体漏水、电机超温及漏电等多种保护功能及齐全的状态显示。还具备单泵及多泵控制工作模式,多种主、备泵切换方式及各类起动方式。可广泛适用于工农业生产及各类建筑的给水、排水、消防、喷淋管网增压以及暖通空调冷热水循环等多种场合的自动控制系统。 海德隆公司的控制设备根据不同的使用情况,可分为液位控制、压力(恒压)控制、时间控制、温度控制、空调联控、消防专用等类型。按产品使用的特点可分为:生活泵控制设备、变频恒压控制设备、消防泵专用控制设备、空调泵专用控制设备、潜水排污泵专用控制设备等。 启动方式: 1、直接启动:一般电机功率为15kW以下的水泵采用直接起动。 2、自耦降压启动:15kW以上的排污泵,一般采用自耦降压启动。消防喷淋泵亦多选用此起动方式。 3、Y-△降压启动:其余型号15kW以上的水泵,若无特殊要求,一般采用Y-△降压方式起动。 4、软启动器启动:若希望进一步降低起动时对电源及电机的冲击,延长机械寿命,完全消除水锤现象和噪音,并达到节能的目的,则采用软起动方式。 5、变频启动:适用于任何功率情况下的控制设备,变频控制系统设在自动状态下,水泵启动方式为通过改变电源的频率由小到大延时启动,达到平稳启动的目的。 工作条件: 1、周围最高空气温度不超过40℃,最低温度不低于-5℃。 2、安装地点海拔高度不超过1000米。 3、周围空气中无爆炸危险的介质,且介质中无足以腐蚀金属和破坏绝缘的气体及导电尘埃。 4、工作电压为380±10%。 5、震动:<5.9m/s2(0.6G); 功能原理及用途: 多泵控制工作模式: 一用一备:控制Ⅰ、Ⅱ二台水泵,可工作于“Ⅰ主Ⅱ备”或“Ⅱ主Ⅰ备”两种方式。 二用一备:控制Ⅰ、Ⅱ、Ⅲ三台水泵,可工作于“Ⅰ、Ⅱ主Ⅲ备”或“Ⅱ、Ⅲ主Ⅰ备”或“Ⅰ、Ⅲ主Ⅱ备”三种方式。 三用一备:控制Ⅰ、Ⅱ、Ⅲ、Ⅳ四台水泵,可工作于“Ⅰ、Ⅱ、Ⅲ主Ⅳ备”或“Ⅱ、Ⅲ、Ⅳ主Ⅰ备”或“Ⅰ、Ⅲ、Ⅳ主Ⅱ备”

变频器恒压供水系统(多泵)

目录 1 变频器恒压供水系统简介 (1) 1.1变频恒压供水系统理论分析 (1) 1.1.1变频恒压供水系统节能原理 (1) 1.1.2 变频恒压控制理论模型 (2) 1.2恒压供水控制系统构成 (3) 1.3 变频器恒压供水产生的背景和意义 (4) 2 变频恒压供水系统设计 (5) 2.1 设计任务及要求 (5) 2.2 系统主电路设计 (5) 2.3 系统工作过程 (6) 3 器件的选型及介绍 (8) 3.1 变频器简介 (8) 3.1.1 变频器的基本结构与分类 (8) 3.1.2 变频器的控制方式 (8) 3.2 变频器选型 (9) 3.2.1 变频器的控制方式 (9) 3.2.2 变频器容量的选择 (10) 3.2.3 变频器主电路外围设备选择 (12) 3.3 可编程控制器(PLC) (14) 3.3.1 PLC的定义及特点 (14) 3.3.2 PLC的工作原理 (15) 3.3.3 PLC及压力传感器的选择 (15) 4 PLC编程及变频器参数设置 (16) 4.1 PLC的I/O接线图 (16) 4.2 PLC程序 (17) 4.3 变频器参数的设置 (21) 4.3.1 参数复位 (21) 4.3.2 电机参数设置 (21) 总结 (22) 参考文献 (23)

1 变频器恒压供水系统简介 1.1变频恒压供水系统理论分析 1.1.1变频恒压供水系统节能原理 供水系统的基本特性和工作点扬程特性是以供水系统管路中的阀门开度不 变为前提,表明水泵在某一转速下扬程H与流量Q之间的关系曲线f(Q),如图1-1 所示。 图1-1供水系统的基本特征 由图可以看出,流量Q越大,扬程H越小。由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户的用水情况,因此,扬程特性所反映的是扬程H与用水流量Q(u)间的关系。而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下,扬程H与流量Q之间的关系H J (Qu )。管阻特性反映了水泵的能量用来克服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图可知,在同一阀门开度下,扬程H越大,流量Q也越大。由于阀门开度的改变,实际上是改变了在某一扬程下,供水系统向用户的供水能力。因此,管阻特性所反映的是扬程与供水流量Qc之间的关系H f (Qc )。扬程特性曲线和管阻特性曲线的交点,称为供水系统的工作点,如图中A点。在这一点,用户的用水流量Qu和供水系统的供水流量Qc处于平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。图1-1供水系统的基本特征。

恒压供水变频柜

恒压供水变频柜 恒压供水变频柜变频控制原理 用变频调速来实现恒压供水,与用调节阀门来实现恒压供水相比,节能效果十分显着(可根据具体情况计算出来)。其优点是: 1、起动平衡,起动电流可限制在额定电流以内,从而避免了起动时对电网的冲击; 2、由于泵的平均转速降低了,从而可延长泵和阀门等的使用寿命; 3、可以消除起动和停机时的水锤效应; 一般地说,当由一台变频器控制一台电动机时,只需使变频器的配用电动机容量与实际电动机容量相符即可。当一台变频器同时控制两台电动机时,原则上变频器的配用电动机容量应等于两台电动机的容量之和。但如在高峰负载时的用水量比两台水泵全速供水量相差很多时,可考虑适当减小变频器的容量,但应注意留有足够的容量。 恒压供水变频柜的特点: 1.节能,可以实现节电20%-40%,能实现绿色用电。 2.占地面积小,投入少,效率高。 3. 配置灵活,自动化程度高,功能齐全,灵活可靠。 4. 运行合理,由于是软起和软停,不但可以消除水锤效应,而且电机轴上的平均扭矩和磨损减小,减少了维修量和维修费用,并

且水泵的寿命大大提高。 5. 由于恒压供水变频柜直接从水源供水,减少了原有供水方式的二次污染,防止了很多传染疾病的传染源头。 6. 通过通信控制,可以实现无人值守,节约了人力物力。 恒压供水变频柜性能特点: 1、恒压供水变频柜具有强大的贮能保压能力,特别是在夜间时应付少量供水时,可以大大节约电能。 2、调节容积(水泵每启动一次可供用户使用的水量)大.泵每启动一次,可以长时间地维持管网压力,设备启动次数少,运行费用低 3、恒压供水变频柜设备采用国际领先的补气技术 气压罐的补气采用微电脑电子检测、限量补气与排气技术,随时保证罐内气体有一定容积,根本解决了气体长期失效带来的水泵频繁启动问题,填补了国际、国内在该问题上的技术空白。 4、恒压供水变频柜的现场条件,无塔自动上水器可采取以下不同的配置 (1)、恒压供水变频柜的水源是自备井: 1)潜水泵+控制系统+气压罐 2)潜水泵+水池(水箱)+控制系统+气压罐 (2)恒压供水变频柜的水源是自来水: 1)离心管道泵+控制系统+气压罐 2)离心管道泵+水池(水箱)+ 控制系统+气压罐

变频器恒压供水接线

第一篇 一、接线: 按图所示的电路,连接空气开关、漏电开关、电源,检查接线无误后,合上空气开关,变频器上电,数码管显示0.0。 关掉电源,电源指示灯熄灭后,再连接电机、起停开关、远程压力表、限流电阻等,变频器和电动机接地端子可靠接地,并仔细检查。 压力表选用YTZ-150电位器式远程压力表,安装在水泵的出水管上,该压力表适用于一般压力表适用的工作环境场所,既可直观测出压力值,又可以输出相应的电信号,输出的电信号传至远端的控制器。压力表有红、黄、蓝三根引出线。 压力表电气技术参数:电阻满量程:400Ω(蓝、红);零压力起始电阻值:≤20Ω (黄、红);满量程压力上限电阻值:≤360Ω(黄、红);接线端外加电压:≤10V(蓝、红) 二、开环调试: 检查接线无误后,合上空气开关和漏电开关,变频器上电,数码管显示0.0,按JOG键,检查水泵的转向,若反向,改变电机相序。 按运行键RUN,运行指示灯亮(绿色),顺时针方向旋转键盘旋钮,输出频率上升,观察压力表的压力指示,同时用万用表直流电压档测量变频器端子VF 和GND之间电压值,随着变频器输出频率升高,压力增加,VF和GND之间的反

馈电压上升,记录下将要设定的恒定压力(比如5Kg)对应的反馈电压值(比如 3.1V)。按停车键STOP,变频器减速停车。 三、闭环变频恒压运行: 合上起停开关,变频器运行指示灯亮,输出频率从0.0Hz到达30.0Hz后,根据用水情况自动调节,保证出水口的压力恒定为5Kg。增大F4.06的参数设定值,出水口的压力增加,减小F4.06的参数设定值,出水口的压力降低。 第二篇 一、前言 目前,应用最广泛的变频恒压供水系统是水泵出口压力恒定系统,其工作原理是在水泵出水口安装压力传感器,将测定的压力值转换成电信号输入压力控制器,压力控制器根据设定压力值与测定压力之间的差值,通过PI调节运算后,控制变频器,调节水泵的转速,使水泵出口压力保持恒定。 这种控制系统电控部分较简单,国内外采用广泛。缺点是仍有小量能量浪费且不能反映水流通过给水管网时,管网阻力持性的变化。所以当用水低峰时,虽然由于转速的改变水泵扬程能保持恒定不再升高,但管道最末端的出口水压将高于其所需的流出水头。 采用泵出口变压力控制系统,则可解决以上的不足,即泵出口的设定压力随用水量的变化而变化,使管道最末端的出口水压恒定在其所需的流出水 头。 ABB公司的ACS510系列变频器是专为风机、水泵控制系统设计的,其中参数“给定增量8103、8104和8105”可完成泵出口变压力控制功能。 二、ACS510中的变压力控制部分参数设置 在多台并联泵供水系统中,随着泵的运行数量的增加,流量会成倍的增大,管道阻力会迅速增高。如果随着流量的变化,增减恒压控制系统的设定压力,做到小流量小压力,大流量大压力,则可以最大限度的较少管道阻力对管道出口压力的影响,并且提高了节能比例。ABB公司的ACS510系列变频器就提供了上述功能。 在ACS510中,参数8103、8104、8105是给定增量参数,他们的作用是每多

V20变频器PID控制恒压供水操作指南(DOC)

V20变频器PID控制恒压供水操作指南 1.硬件接线 西门子基本型变频器SINAMICS V20 可应用于恒压供水系统,本文提供具体的接线及简单操作流程。 通过BOP设置固定的压力目标值,使用4~20mA管道压力反馈仪表构成的PID控制恒压供水系统的接线如下图所示: 图1-1.V20变频器用于恒压供水典型接线 2调试步骤

2.1 工厂复位 当调试变频器时,建议执行工厂复位操作: P0010 = 30 P0970 = 1 (显示50? 时按下OK按钮选择输入频率,直接转至P304进入快速调试。) 2.2 快速调试 表2-1 快速调试参数操作流程 参数功能设置 P0003 访问级别=3 (专家级) P0010 调试参数= 1 (快速调试) P0100 50 / 60 Hz 频率选择根据需要设置参数值: =0: 欧洲[kW] ,50 Hz (工厂缺省值) =1: 北美[hp] ,60 Hz P0304[0] 电机额定电压[V] 范围:10 (2000) 说明:输入的铭牌数据必须与电机接线 (星形/ 三角形)一致 P0305[0] 电机额定电流[A] 范围:0.01 (10000) 说明:输入的铭牌数据必须与电机接线 (星形/ 三角形)一致 P0307[0] 电机额定功率[kW / hp] 范围:0.01 ... 2000.0 说明:如P0100 = 0 或2 ,电机功率 单位为[kW] 如P0100 = 1 ,电机功率单位为[hp] P0308[0] 电机额定功率因数(cosφ )范围:0.000 ... 1.000 说明:此参数仅当P0100 = 0 或 2 时可见P0309[0] 电机额定效率[%] 范围:0.0 ... 99.9 说明:仅当P0100 = 1 时可见 此参数设为0 时内部计算其值。 P0310[0] 电机额定频率[Hz] 范围:12.00 ... 599.00 P0311[0] 电机额定转速[RPM] 范围:0 (40000) P0314[0] 电机极对数设置为0时内部计算其值。 P0320[0] 电机磁化电流[%] 定义相对于电机额定电流的磁化电流。 设置为0时内部计算其值。 P0335[0] 电机冷却根据实际电机冷却方式设置参数值 = 0: 自冷(工厂缺省值) = 1: 强制冷却 = 2: 自冷与内置风扇 = 3: 强制冷却与内置风扇

PLC与变频器控制的自动恒压供水系统解析

PLC与变频器控制的自动恒压供水系统 1 系统简介 为改善生产环境,沱牌公司投资清洁水技改工程并建成一座日产水2.5万顿的供水系统,分别建设了抽水泵系统、加压泵系统和高位水池。根据公司用水需求特点,从抽水泵系统过来的水一部分直接供给生产用水部门,一部分则需通过加压泵输送到高位水池,而供给生产用水部门的水压与供给高位水池的水压相差较大。同时高位水池距抽水泵房较远达十多公里,高位水池的液位高低和加压泵系统的设计以及如何与抽水泵系统“联动”也是较难解决的。 鉴于以上特点,从技术可靠 和>'https://www.360docs.net/doc/5419200507.html,/jingjilunwen/' target='_blank' class='infotextkey'>经济实用角度综合考虑,我们设计了用PLC控制与变频器控制相结合的自动恒压控制供水系统,同时通过主水管线压力传递 较>'https://www.360docs.net/doc/5419200507.html,/jingjilunwen/' target='_blank' class='infotextkey'>经济地实现了加压泵系统与抽水泵系统“远程联动”的控制目的。 2 系统方案 系统主要由三菱公司的PLC控制器、ABB公司的变频器、施耐德公司的软启动器、电机保护器、数据采集及其辅助设备组成(见图1)。 2.1 抽水泵系统 整个抽水泵系统有150KW深井泵电机四台,90KW深井泵电机两台,采用变频器循环工作方式,六台电机均可设置在变频方式下工作。采用一台 150KW和一台90KW的软起动150KW和90KW的电机。当变频器工作在50HZ,管网压力仍然低于系统设定的下限时,软起动器便自动起动一台电机投入到工频运行,当压力达到高限时,自动停掉工频运行电机。一次主电路接线示意图见图2所示。

变频恒压供水设备工作原理及原理图片

变频恒压供水设备工作原理及原理图 变频恒压供水设备工作原理这一相关知识,由兴崛供水为您全面讲述并提供工作原理图。 变频恒压供水设备工作原理:交流电动机的旋转速度与输入电的频率成正比,变频调速供水设备就是基于上述原理,采用压力传感器、可编程控制器、变频器及水泵电机构成以及设定压力为基准的闭环自动调节系统,具有控制水泵恒压供水的功能;通过压力传感器按受管网的压力信号,经微机与设定压力进行比较运算,输出调节参数送给变频器控制其频率的变化。用水量多时,频率提高,电机泵转数加快;反之频率降低,电机泵转数下降,既能保证用户用水又节省电能。 变频恒压供水设备一台变频器控制多台水泵”的多泵控制系统。在这里兴崛供水利用PLC设计一套变频调速恒压供水系统,该系统可根据管网瞬间压力变化自动调节某台水泵的转速和多台水泵的投入及退出,使管网主干管出口端保持在恒定的设定压力值,并满足用户的流量需求,使整个系统始终保持高效节能的最佳状态。可实现恒压变量、双恒压变量等控制方式,多种启停控制方式,该系统可以通过人意修改参数指令(如压力设定值、控制顺序、控制电机数量、压力上下限、PID值、加减速时间等);具有完善的电气安全保护措施,对过流、过压、欠压、过载、断水等故障均能自行诊断并报警。 兴崛变频恒压供水设备是非常理想的一种节能供水设备,节能效果好,结构紧凑,占地面积小,运行稳定可靠,使用寿命长,方案设计灵活,供水压力可调,流量可大可小,完全可以取代水塔、高位水箱及各种气压式供水设备,可彻底免除水质的二次污染。全自动变频恒压供水设备亦用于改造原有老式泵房设备,改造后同样可以达到高效节能、自动恒压供水的目的。 变频恒压供水设备组成: 变频恒压供水设备主要由水泵机组、测压稳压罐、压力传感器、变频控制柜等组成,能

水泵恒压供水变频器节能改造

水泵恒压供水变频器节能改造 叶良禄 提要:变频器传动时要得到与工频电源传动相同的转矩特性,变频器输出电压的基波有效值通常要等于工频电源的有效值。因此,变频器调速改造选型时要充分考虑电动机的负载特性。 摘要论述了水泵恒压供水变频节能改造的原理;变频器的选型要点及容量计算;节电计算及运行效果分析。 关键词变频器电动机改造 一、引言 动能公司供水车间七泵房主要承担着热力车间老区3台锅炉和3台汽机生产用水的供水任务。该系统共有水泵机组两大两小,大水泵机组型号为600S-32,额定流量3170m3/h,扬程32m,转速970r/min,配套功率400kW;配用电机为Y4005-6,额定功率400kW,电压6kV,额定电流46.5A,转速988r/min;小水泵机组型号为350S-44A,额定流量1116m3/h,扬程36m,转速1450r/min,配套功率160kW;配用电机为Y315L1-4,额定功率160kW,电压380V,额定电流289A,转速1485r/min。根据平时用水情况来确定机组的匹配数量和阀门开度,平时开一大一小,系统组管压力偏高有富余,有时只需一台大机,有时需要一大两小,其中一台小机的阀门开度仅为20%左右,系统瘪压情况较严重,压力不稳定。设备振动厉害,给生产带来很多不稳定的因素。系统的给水压力和供水量整年呈现一个动态的变化过程。为此,于2005年初对该系统的两台小机组进行了恒压供水变频节能改造,改造后的供水系统完全满足3台锅炉、3台汽机的生产用水要求,同时节能效果也十分显著。 二、恒压供水变频节能的原理 如图1所示,当水泵工作在曲线②的A点时,其流量与压力分别为Q1、p2,此时水泵所需的功率正比于p2与Q1的乘积。由于工艺要求需减小水量到Q2,通过增加管网管阻,使水泵的工作点移到曲线③上的B点,水压增大到p1,这时水泵所需的功率正比于p1与Q2的乘积,由图可见这种调节方式控制虽然简单,但功率消耗并无减少。

变频器恒压供水课程设计

目录 1变频器恒压供水系统简介 ................................................................... 错误!未定义书签。 1.1变频恒压供水系统节能原理 .................................................... 错误!未定义书签。 1.2变频恒压控制理论模型 ............................................................ 错误!未定义书签。 1.3恒压供水控制系统构成 ............................................................ 错误!未定义书签。 1.4恒压供水系统特点 .................................................................... 错误!未定义书签。 1.5恒压供水设备的主要应用场合 ................................................ 错误!未定义书签。2变频恒压供水系统设计 ....................................................................... 错误!未定义书签。 2.1设计任务及要求 ........................................................................ 错误!未定义书签。 2.2系统主电路设计 ........................................................................ 错误!未定义书签。 2.3系统工作过程 ............................................................................ 错误!未定义书签。 2.3.1减泵过程 ....................................................................... 错误!未定义书签。 2.3.2加泵过程 ....................................................................... 错误!未定义书签。 3 器件介绍及选型 .................................................................................. 错误!未定义书签。 3.1变频器介绍 ................................................................................ 错误!未定义书签。 3.2变频器的种类 ............................................................................ 错误!未定义书签。 3.3变频器选型 ................................................................................ 错误!未定义书签。 3.3.1变频器的控制方式 ....................................................... 错误!未定义书签。 3.3.2变频器容量的选择 ......................................................... 错误!未定义书签。 3.3.2变频器主电路外围设备选择 ......................................... 错误!未定义书签。 3.4可编程逻辑控制器(PLC)..................................................... 错误!未定义书签。 3.4.1 PLC的工作原理 ........................................................... 错误!未定义书签。 3.4.2 PLC及压力传感器的选择 ........................................... 错误!未定义书签。4PLC编程及变频器参数设置............................................................ 错误!未定义书签。 4.1 PLC的I/O接线图 ............................................................... 错误!未定义书签。 4.2 PLC .......................................................................................... 错误!未定义书签。 4.3 变频器参数的设置 ................................................................. 错误!未定义书签。总结 .......................................................................................................... 错误!未定义书签。参考文献 .................................................................................................. 错误!未定义书签。

恒压供水参数如何设置

英威腾CHF100系A列变频器,要求:PID恒压控制,压力保持2KG,用4-20mA电流反馈,控制线怎么接,参数如何设置 二线制接线:AI2、+24V, J16跳线到导流端子 参数设置: P0.01=1 (外部信号控制启动、停止,启动端子指令通道) P0.04=50 (上限频率) P0.05=10-20(下限频率) P0.07=6 (PID控制设定) P0.11=加速时间 P0.12=减速时间 电机参数电机功率额定电流等 P9.00=0 P9.01=40%(传感器压力量程0.6MPA) P9.02=1 P9.04=1.0KP(比例增益) P9.05=o.5S(积分增益) (如果压力波动较大、适当调大) 适当调节比例增益和积分增益可调节压力变化的快慢

压力变送器选型要点: 1、变送器要测量什么样的压力:先确定系统中要确认测量压力的最大值,一般而言,需要选择一个具有比最大值还要大1.5倍左右的压力量程的变送器。这主要是在许多系统中,尤其是水压测量和加工处理中,有峰值和持续不规则的上下波动,这种瞬间的峰值能破坏压力传感器,持续的高压力值或稍微超出变送器的标定最大值会缩短传感器的寿命,然而,由于这样做会精度下降。于是,可以用一个缓冲器来降低压力毛刺,但这样会降低传感器的响应速度。所以在选择变送器时,要充分考虑压力范围,精度与其稳定性。 2、什么样的压力介质:我们要考虑的是压力变送器所测量的介质,黏性液体、泥浆会堵上压力接口,溶剂或有腐蚀性的物质会不会破坏变送吕中与这些介质直接接触的材料。以上这些因素将决定是否选择直接的隔离膜及直接与介质接触的材料。一般的压力变送器的接触介质部分的材质采用的是316不锈钢,如果你的介质对316不锈钢没有腐蚀性,那么基本上所有的压力变送器都适合你对介质压力的测量.如果你的介质对316不锈钢有腐蚀性,那么我们就要采用化学密封,这样不但起到可以测量介质的压力,也可以有效的阻止介质与压力变送器的接液部分的接触,从而起到保护压力变送器,延长了压力变送器的寿命. 3、变送器需要多大的精度:决定精度的有,非线性,迟滞性,机电商务网非重复性,温度、零点偏置刻度,温度的影响。但主要由非线性,迟滞性,非重复性,精度越高,价格也就越高。每一种电子式的测量计都会有精度误差的,但是由于各个国家所标的精度等级是不一样的,比如,中国和美国等国家标的精度是传感器在线性度最好的部分,也就是我们通常所说的测量范围的10%到90%之间的精度;而欧洲标的精度则是线性度最不好的部分,也就是我们通常所说的测量反的0到10%以及90%到100%之间的精度.如欧洲标的精度为1%,则在中国标的精度就为0.5%. 4、变送器的温度范围:通常一个变送器会标定两个温度范围,即正常操作的温度范围和温度可补偿的范围。正常操作温度范围是指变送器在工作状态下不被破坏的时候的温度范围,在超出温度补范围时,可能会达不到其应用的性能指标。温度补偿范围是一个比操作温度范围小的典型范围。在这个范围内工作,变送器肯定会达到其应有的性能指标。温度变从两方面影响着其输出,一是零点漂移;二是影响满量程输出。如:满量程的+/-X%/℃,读数的+/- X%/℃,在超出温度范围时满量程的+/-X%,在温度补偿范围内时读数的+/-X%,如果没有这些参数,会导至在使用中的不确定性。变送器输出的变化到度是由压力变化引起的,还是由温度变化引起的。温度影响是了解如何使用变送器时最复杂的一部分。 5、需要得到怎样的输出信号: mV 、V、 mA及频率输出数字输出,选择怎样的输出取决于多种因素,包括变送器与系统控制器或显示器间的距离,是否存在“噪声”或其他电子干扰信号。是否需要放大器,放大器的位置等。对于许多变送器和控制器间距离较短的OEM设备,采用mA输出的变送器最为经济而有效的解决方法,如果需要将输出信号放大,最好采用具有内置放大的变送器。对于远距离传输出或存在较强的电子干扰信号,最好采用mA级输出或频率输出。如果在RFI或EMI指标很高的环境中,除了要注意到要选择mA或频率输出外,还要考虑到特殊的保护或过滤器。(目前由于各种采集的需要,现在市场上压力变送器的输出信号

水泵变频运行的特性曲线

水泵变频运行的特性曲线(一) 1 引言 水泵冷油泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。 2 水泵罗茨真空泵变频运行分析的误区 2。1 有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律Q1/Q2=n1/n2 扬程比例定律 H1/H2=(n1/n2)2 轴功率比例定律P1/P2=(n1/n2)3 并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。 以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题: (1) 为什么水泵变频运行时频率在30~35Hz以上时才出水? (2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一 个突跳,然后才随着转速的升高而升高? 2。2 绘制水泵的性能特性曲线和管道阻力曲线 很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示.

图1水泵的特性曲线 图1中,水泵液下排污泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=K1Q与流量Q成正比.采用节流调节时的实际管网阻力曲线R2,工作点为B,流量Q B,扬程HB。采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量Q C,扬程H C;这里QB=Q C。 按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。实际水泵变频调速时,频率降到30~35Hz 以下时就不出水了,流量已经降到零。 2.3 变频泵与工频泵并联 变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌?

变频恒压供水工作原理

变频恒压供水工作原理标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

变频恒压供水工作原理 产品工作原理: 全自动变频调速供水设备是应用先进的现代控制理论,结合可编程控制技术、变频控制技术、电机泵组控制技术的新型机电一体化供水装置。该设备通过安装在水泵出水总管上的远传压力表(内为一滑动电阻),将出口压力转换成0-5V电压信号,经A/D转换模块将模拟电压信号转换成数字量并送入可编程序控制器,经可编程内部PID运算,得出一调节参量并将该参量送入D/A转换模块,经数摸转换后将得出模拟量传送变频器,进而控制其输出频率的变化。设备采用多泵并联的供水方式,用户用水量的大小决定了投入运行的水泵的数量,当用水量较小时,单台泵变频工作,当用水量增加,水泵运行频率随之增加,如达到水泵额定输出功率仍无法满足用户供水要求时,该泵自动转换成工频运行状态,并变频启动下一台水泵。反之,当用水量减少,则降低水泵运行频率直至设定下限运行频率,如供水量仍大于用水量,则自动停止工频运行泵同时变频泵转速增加。当用水量降至某一程度时(如夜间用水很少时),变频主泵停止工作,改由辅泵及小型气压罐供水。 产品特点: ※采用先进的供水专用变频器 ※最新供水专利技术 ※全中文人机界面,操作简单 ※RS485远程通讯 ※压力控制精度5‰ ※压力频率全数字显示 ※一次水高、低水位报警 ※供水压力过压、欠压保护 ※系统故障自诊断 ※水泵过载、过流保护 ※水泵软启动,软切换 ※适用于各种泵站 ※故障水泵自动切除运行系统 ※体积小,安装调试方便 ※全部进口低压电器集成,运行更安全可靠 ※优化的控制软件更利于系统节能运行 变频恒压供水控制器采用最新微电脑设计处理器设计制造配备液晶中文显示,参数显示、设定一目了然,故障时弹出供货商公司名称及2个服务电话(可按要求设置),多达75个功能参数项、9种应用宏选择,能满足五台以下的所有运行程序,其主要特点有: 1.外部接线简单:用户只需通过菜单设置,即可使控制器适用于不同的供水控制系统;无需改变复杂的外部接线。 2.可靠性:由于控制器已将各种功能模块集成于内部,外部配件少,、进一步降低了整个系统出现故障的机会。 3.调试简单方便:丰富而完美的汉字提示。使一般的操作人员无需经过复杂的培训,也能对各种操作应用自如。

恒压供水变频调速系统毕业设计

1 引言 1.1 本课题的意义 水作为一种能源,是生活中必不可少的,水作为一种可再生资源,同时也是非常脆弱的,这时节约用水就显得非常重要。随着中国经济的飞速发展,大城市里房屋建筑的高度也在迅速的增加,但随之也出现了许多问题,高层住宅供水难就是其中尤为突出的问题。原因是通常,供水系统全天各时段用水量变化较大,如果不及时对供水水量及供水压力进行调节,会使整个供水管网的压力处在波动状态,严重的还会引起管网失压或爆管事故、恶化供水质量。]3[ 传统供水方式主要有:高水塔,高位水箱或增压设备等。它们在不同程度上存在下列许多问题:其设备一次投资费用高,而且必须使水塔高度高于最高层楼用水高度,用压力来提升水量,其结果往往缩短了水泵的使用寿命,还容易造成水的二次污染,造成水电资源的浪费。除此之外传统的供水系统还存在下列问题:1、用水负荷大幅度变化容易引起管网压力的巨幅变化极易造成供水管网的破裂;2、加大了工人的劳动及增加了生产设备维修费用;3、设备的频繁启动产生的大电流易使电网和设备均处于频繁的电流冲击状态,从而使电气设备和机械连接部件的寿命大幅度缩短。]10[在城市供水系统中, 泵的驱动电机绝大部分是交流异步电动机, 其年耗电量约占系统生产成本的80%。目前国内大部分供水企业仍采用传统供水工艺, 即手工操作, 人工监控,经验管理。一般采用调节阀门来满足和适应管网供水压力和需水量的变化,但是用户需水量随时间变化的非常频繁。]9[随着国民经济的迅速发展,能源紧缺问题愈加严重,寻求解决高层建筑供水难的办法迫在眉睫。 对于泵类和风扇负载而言,其功耗与转轴速度的立方根呈正比。当转轴速度降低10%时,气流也减少10%,且能耗减少27%;如果速度降低20%,能耗可降低49%。在工业中应用的离心泵、风扇和鼓风机中,通过使用单片机对电机进行变速控制,取代速度恒定的电机方法,可以节能25%-40%。]5[ 以改善高层住宅用水难为目标,根据城市高层建筑供水系统的实际情况,本系统采用基于恒定管压力的PID 算法对交流电机进行交流变频调速,通过合理配置水泵的工况, 能

相关文档
最新文档