液压传动概述
简述液压传动的原理及特点

简述液压传动的原理及特点
液压传动是一种利用液体在密闭管路内传递力和能量的传动方式。
液压传动的原理是根据帕斯卡定律,即在一个封闭的容器内任一点受到的外力传递给液体并均匀传递到容器的各个处所,从而使液体对容器壁产生均匀的压力。
液压传动通过液压泵将机械能转化为液压能,通过液压缸将液压能转化为机械能,实现机械设备的运行。
液压传动具有如下特点:
1.能量传递稳定:液压传动采用的是无级传动,通过调节阀门或改变活塞面积,可以实现无级调速,能够满足不同负载和速度的要求。
2.承载能力大:液压传动由于密闭的容器和液体的不可压缩性,能够承受非常大的压力,可用于承载大负荷的机械设备。
3.动力输出平稳:液压传动的液压缸在工作过程中输出的力矩平稳,不会产生冲击和振动,可以保证机械设备的运行平稳。
4.调速范围广:液压传动通过调节控制阀门的开度,可以实现连续的调速,调速范围广,能够适应不同工况的需要。
5.控制灵活:液压传动的控制灵活性强,可以通过调节阀门、调整液体流量和压
力来实现对液压传动系统的精确控制。
6.传递效率高:液压传动的传递效率高,尤其是在大功率和高速运动的场合,能够实现高效率的能量转换。
7.结构紧凑:由于液压传动系统采用液体传递力和能量,相对于机械传动和电动传动,液压传动结构更紧凑,体积更小。
8.维护方便:液压传动的维护相对较简单,只需注意液压油的清洁和更换,液压元件的密封性能和机件的磨损状态即可。
液压传动被广泛应用于各个工程领域,如船舶、航空、铁路、机床、冶金等。
液压传动具有传动力矩大、传动效率高、传动速度范围广、传动控制方便等优点,是一种高效、可靠的传动方式。
液压传动概述

机床工业
国防工业
冶金工业
工程机械
农业机械
汽车工业
轻纺工业
船舶工业
液压传动在矿山机械中的应用:
凿岩机,开掘机,开采机,破碎机,提升机,液压支架等
液压支架
利用液压千斤顶给汽车换胎
以液压油液作 为工作介质将 作用力放大。
以力矩平衡和 杠杆原理将作 用力放大。
利用撬棒撬动大石头
一、液压传动的概念
液压传动的概念:利用密闭系统中的受压液体来传递运动和动力的一
种传动方式。
液压千斤顶的工作原理
二,液压传动的工作原理 从液压千斤顶的工作过程,可以归纳出液压传动的基本原理如下:
(1)液压传动以液压(液压油)作为传递运动和动力的工作介质;
(2)液压传动中经过两次能量转换,先把机械能转换为便于输送的 液体的压力能,然后把来自体的压力能转换为机械能对外做功;
(3)液压传动是依靠密封的容器(或密闭系统)内密封容积的变 化来传递能量的。
三、液压传动的特点
优点
传动平稳 质量轻、体积小
§1-1 液压传动概述
1.掌握液压传动的概念。
2.掌握液压传动的工作原理。 3.了解液压传动的优点、缺点。
4.了解液压传动在现代工业生产中的应用。
导入
看一看,想一想: 液压千斤顶体积小 巧,却可以将人力放 大到足够抬起沉重的 汽车。究其根源主要 是液压千斤顶所采用 的放大力的工作原理 与杠杆不同。它是怎 么样将力传递放大的 呢?
容易实现无级调 速
易于实现过载保 护
承载能力大
液压元件能够自动润滑
容易实现复杂动 作
缺点
油液中混入空气, 易影响工作性能 液压元件制造精 度要求高 油液受温度的影 响 不适宜远距离 输送动力
液压传动

第一章1.液压传动的概念原理1.1.1概念液压传动是以密闭管道中受压液体为工作介质,进行能量转换,传递,分配,称之为液压技术,有称之为液压传动。
1.1.2工作原理1)帕斯卡原理即“施加于密封容器内平衡液体中的某一点的压力等值地传递到全部液体”因此有F1/A1=P1=P=P2=F2/A22)连续性原理如果不考虑液体的可压缩性,泄露和构件的变形,则挤压出的液体的体积等于推动上移的体积。
3)能量守恒定律略1.1.3液压系统的组成部分及作用若干液压元件和管路组成以完成一定动作的整体称液压系统。
(1)动力元件又称液压泵(2)执行元件见液压能转换成机械能的装置。
它是与液压泵作用相反的能量转换装置,是液压缸和液压马达的总称。
(3)控制元件液压系统中控制液体压力,流量和流动方向的元件总称为控制元件。
(4)辅助元件包括油箱管道管接头滤油器蓄能器加热器冷却器等。
(5)工作介质为液体通常是液压油。
1.2液压传动的主要特点及其应用1.2.1液压传动的主要优点(1)可实现大范围地无极调速,调速功能不受功率大小的限制(2)液压传动具有质量轻体积小惯性小响应快等特点。
(3)液压传动均匀平稳,负载变化时速度稳定。
(4)可实现过载自动保护。
(5)可根据设备要求与环境灵活安装,适应性强。
(6)以液压油为工作介质,具有良好的润滑条件。
(7)液压元件易于标准化、系列化、通用化,便于设计、制造和推广应用。
1.2.2液压传动的主要缺点(1)效率较低(2)泄露问题(3)对污染敏感(4)检修困难(5)对温度敏感(6)对元件加工的精确度要求高第二章工作介质2.1液压油的主要物理特性2.1.1密度和重度定义:密度(重度)的定义为单位体积液体的质量(重量)。
2.1.1黏性和黏度1)牛顿黏性定律——黏度表达式t=f/a=udu/daa——相对运动层面积f——相对运动层内内摩擦力t——液体内部切应力(单位面积上的内摩擦力)du/dy——速度梯度u——比例系数称动力黏度2)黏度的表示方法和单位(1)动力黏度上式中的u为油液种类和温度决定的比例系数,他表示液体黏性的内摩擦程度,称动力黏度或绝对黏度。
第三章-补充知识-液压传动基础知识-精简版2020

二、液压传动的主要缺点
与机械传动、电气传动相比,液压传动具有以下缺点
1、由于流体流动的阻力损失和泄漏较大,所以效率较低。如果处理不当,泄 漏不仅污染场地,而且还可能引起火灾和爆炸事故。
2、工作性能易受温度变化的影响,因此不宜在很高或很低的温度条件下工作。 3、液压元件的制造精度要求较高,因而价格较贵。由于液体介质的泄漏及可
液压传动
第一章 液压传动概述
第一节 液压传动的定义、工作原理及组成
一、基本概念 1、液压传动的定义
用液体作为工作介质,在密封的回路里,以液体的压力能进行能 量传递的传动方式,称之为液压传动。
2、液压控制的定义
液压控制与液压传动的不同之点在于液压控制是一个自动控制系 统,具有反馈装置,系统具有较强的抗干扰能力,所以系统输出量 的精度高。
与机械传动、电气传动相比,液压传动具有以下优点
1、液压传动的各种元件、可根据需要方便、灵活地来布置; 2、重量轻、体积小、运动惯性小、反应速度快; 3、操纵控制方便,可实现大范围的无级调速(调速范围达2000:1); 4、可自动实现过载保护; 5、一般采用矿物油为工作介质,相对运动面可自行润滑,使用寿命长; 6、很容易实现直线运动; 7、容易实现机器的自动化,当采用电液联合控制后,不仅可实现更高程
低速液压马达的基本形式是 径向柱塞式,例如多作用内曲线式、单作 用曲轴连杆式和静压 平衡式等。
低速液压马达的主要特点是:排量大,体积大,转速低,有的可低到每 分钟几转甚至不到一转。通常低速液压马达的输出扭矩较大,可达 几千 到几万 ,所以又称为低速大扭矩液压马达。
第三节 液压缸
一、 液压缸的类型和特点
3、 活塞式液压缸典型结构
液压传动技术发展现状[1]
![液压传动技术发展现状[1]](https://img.taocdn.com/s3/m/77192e2e1fb91a37f111f18583d049649b660ecc.png)
液压传动技术发展现状[1] 液压传动技术是一种重要的工程技术,它利用液体的压力能来传递动力和运动。
随着科学技术的发展,液压传动技术不断得到完善和提升,目前已经广泛应用于工程机械、航空航天、汽车、能源、机器人等领域。
本文将介绍液压传动技术的发展现状。
一、液压传动技术的概述液压传动技术是一种以液体为工作介质的传动方式,它利用液体的压力能来传递动力和运动。
相比于其他传动方式,液压传动具有传动力大、传动平稳、噪声小、易于实现无级调速等优点,因此在许多领域得到了广泛应用。
液压传动系统主要由液压泵、液压缸、液压阀、管路等组成。
二、液压传动技术的发展现状1.高压化随着液压传动技术的不断发展,液压系统的压力等级也在不断提高。
高压化可以使得液压系统的传动力更大,同时也能够减少管路损失,提高传动效率。
目前,液压系统的压力等级已经达到3000bar以上。
2.集成化为了减少液压系统的体积和重量,提高系统的可靠性,液压元件的集成化已经成为一种趋势。
集成化可以使得液压系统的各个部件紧凑排列,减少占地面积和重量,同时也可以提高系统的稳定性和可靠性。
目前,液压元件的集成化已经实现了从单一功能到多功能的发展。
3.轻量化轻量化是液压传动技术的另一个重要发展方向。
轻量化的目的是减少液压系统的重量和体积,提高系统的机动性和灵活性。
目前,许多液压元件已经实现了轻量化设计,采用了高强度材料和紧凑的结构设计,使得重量和体积得到了有效减少。
4.智能化智能化是液压传动技术的未来发展方向。
智能化可以实现液压系统的自动控制和调节,提高系统的自动化程度和可靠性。
目前,许多液压元件已经实现了智能化控制,可以通过传感器和执行器来实现对系统的自动控制和调节。
5.模块化模块化是液压传动技术的另一个重要发展方向。
模块化可以实现液压系统的快速组装和维修,提高系统的灵活性和可靠性。
目前,许多液压元件已经实现了模块化设计,可以通过简单的组装和连接来实现对系统的快速组装和维修。
液压传动

液压传动一、液压传动基本概念:液压传动是在流体力学、工程力学和机械制造技术基础上发展起来的一门较新的应用技术,它是现代基础技术之一,被广泛地应用于各工业部门。
液压传动和液力传动都是利用液体为工作介质传递能量的,总称液体传动。
但二者的根本区别在于:液压传动是以液体的压力能进行工作的;而液力传动是以液体的动能传递能量的,如液力联轴器。
二者的传动原理完全不同。
二、液压传动工作原理:液压传动是利用液体的压力能传递能量的传动方式。
其工作原理是:液压泵将输入的机械能变为液压能,经密封的管道传给液压缸(或液压马达),再转变为机械能输出.带动工作机构做功,通过对液体的方向、压力和流量的控制,可使工作机构获得所需的运动形式。
由于能量的转换是通过密封工作容积的变化实现的,故又称容积式液压传动。
图示的液压千斤顶为例说明液压传动的工作原理液压千斤顶是一个简单而又较完整的液压传动装置。
手柄1带动柱塞2做往复运动。
当柱塞上行时,液压泵3内的工作容积扩大,形成负压,油箱5中的液体在大气压作用下推开吸液阀4进入泵内,排液阀关闭;当柱塞下行时,吸液阀关闭,液体被挤压产生压力,当压力升高到足以克服重物10时,泵内工作容积缩小,排液阀6被推开,压力液体经管路进入液压缸.推动活塞8举起重物做功。
反复上下摇动手柄,则液体不断从油箱经液压泵输入液压缸,使重物逐渐上升。
当手柄不动时,排液阀关闭,重物稳定在上升位置。
工作时截止阀7应关闭,工作完毕打开截止阀,液压缸的液体便流回油箱。
三、液压传动系统的组成:液压传动系统简称液压系统。
它是由若干液压元件组合起来并能完成一定动作的整体。
液压元件是由若干零件构成的专门单元,一般是可以通用的、标准化的.如泵、马达、阀等。
不论是简单的液压千斤顶装置,还是复杂的液压系统,都可归纳为五个组成部分。
(一) 液压泵它将原动机供给的机械能转变为液压能输出,是系统的动力部分。
图示为液压泵原理图(二) 液动机(液压缸或液压马达)液动机又称液压执行机构。
液压传动课件ppt

液压传动广泛应用于工程机械、农业机械、汽车工业、船舶工业、航空航天等领域。例如,挖掘机、起重机、推 土机等工程机械采用液压传动系统来实现各种动作;航空航天领域的飞行器也采用液压传动系统来进行姿态控制 和起落架收放等操作。
02 液压传动的基本原理
液压油的特性
01
液压油是液压传动系统中的工作介质,具有不可压缩性 、粘性和润滑性等特性。
液压系统的调试与检测
总结词
液压系统的调试与检测是确保系统性能和稳定性的必 要步骤,有助于及时发现和解决潜在问题。
详细描述
在液压系统安装完成后,应对其进行全面的调试和检测 ,以确保各元件工作正常、系统性能稳定。调试过程中 ,应对系统的压力、流量、温度等参数进行监控和调整 ,确保其在正常范围内。同时,应定期对液压系统进行 检测,可以采用振动、噪声、油温等手段,以及专业的 检测设备,对系统的性能和状态进行全面评估。对于发 现的问题,应及时进行处理和修复,以避免对系统造成 更大的损害。
液压泵有齿轮泵、叶片泵、柱 塞泵和螺杆泵等多种类型,根 据不同的应用场景选择合适的 液压泵。
液压阀的工作原理
液压阀是液压传动系统中的控制元件,用于控制液体的流动方向、压力和流量等参 数。
液压阀通过控制阀芯的位置来改变液体的流动状态,从而实现不同的控制功能。
液压阀有方向控制阀、压力控制阀和流量控制阀等多种类型,根据不同的控制需求 选择合适的液压阀。
液压缸的工作原理
液压缸是液压传动系统中的执行元件 ,能够将液体的压力能转换为机械能 。
液压缸有单作用缸和双作用缸等多种 类型,根据不同的应用场景选择合适 的液压缸。
液压缸通过密封工作腔的容积变化来 实现活塞的往复运动,从而输出机械 能。
03 液压传动的系统组成
《液压传动》知识要点

第1单元知识要点1.液压传动的概念液压传动是用液体作为工作介质,依靠运动液体的压力能来传递动力。
液压传动和气压传动称为流体传动。
液压传动是依靠液体在密封容积变化中的压力能来实现运动和动力传递的。
液压传动装置本身是一种能量转换装置,它先将机械能转换为便于输送的液压能,然后又将液压能转换为机械能对外界负载做有用功。
2.液压传动的两个工作特性负载决定压力;流量决定速度。
3.液压系统的组成液压系统一般由液压动力元件、执行元件、控制元件、辅助元件以及工作介质组成。
(1)动力元件:动力元件最常见的形式是液压泵。
它的作用是将机械能转换成液体压力能,并且向液压系统提供压力油,是液压系统的能源装置。
(2)执行元件:它的作用是将液体压力能转换成机械能,以驱动工作机构的元件,包括液压缸和液压马达。
(3)控制元件:它的作用是对系统中油液压力、流量、方向进行控制和调节,包括压力、方向、流量控制阀。
(4)辅助元件:为保证液压系统正常工作的上述三个组成部分以外的其他元件,如管道、管接头、油箱、滤油器、压力表等。
(5)工作介质:工作介质是传递能量和运动的流体,即液压油等。
4.液压传动的优点①安装方便灵活。
由于液压系统通过管路连接,液压传动的各种元件不受位置的限制,可根据具体的实际需要任意布置。
②重量轻、体积小,功率大。
产生相同功率,液压系统所需的设备重量轻、体积小。
例如,功率为300kW的液压马达重量约为2kN,而功率为300kW的电动机重量约为16kN。
因此利用较轻的液压设备就能获得大的驱动力和转矩。
③工作平稳,由于液压传动重量轻、体积小,从而惯性小,可以迅速起动和制动,容易实现频繁起动和调速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元一液压传动概述学习要求1.了解液压传动的发展概况2.理解液压传动的工作原理3.重点掌握液压系统的组成及各个部分的功用4.掌握液压传动的优缺点重点、难点本章重点内容:1.液压传动的工作原理2.液压传动系统的组成在重点内容中,液压传动的工作原理是重中之重,其它是该内容的延伸和深化。
本章的难点:液压传动的工作原理第一节液压传动的工作原理及组成流体传动是以流体为工作介质进行能量转换、传递和控制传动。
它包括液压传动、液力传动和气压传动。
液压传动和液力传动均是以液体作为工作介质来进行能量传递的传动方式。
·液压传动主要是以液体作为工作介质,利用液体的压力能来传递能量·液力传动主要是利用液体的动能来传递能量液压技术的发展17世纪中叶帕斯卡提出静压传递原理18世纪末英国制成第一台水压机19世纪炮塔转位器、六角车床和磨床第二次世界大战用于兵器(功率大、反应快)战后转向民用机械、工程、农业、汽车20世纪60年代后发展为一门完整的自动化技术现在国外95%工程机械、90%数控加工中心、95%以上的自动线采用液压传动。
采用液压传动的程度成为衡量一个国家工业水平的重要标志一、液压传动的工作原理简单机床液压传动系统的工作过程,就是液压传动系统传动工作原理的真实写照。
下面以机床液压传动系统和液压千斤顶为例来说明液压传动的工作原理·实例1、液压千斤顶如图1-1所示,大缸体9和大活塞8组成举升液压缸。
杠杆手柄1、小缸体2、小活塞3、单向阀4和7组成手动液压泵。
·工作原理:(1)如提起手柄使小活塞向上移动,小活塞下端油腔容积增大,形成局部真空,这是单向阀4打开,通过吸油管5从油箱12中吸油;(2)用力压下手柄,小活塞下移,小缸体下腔的压力升高,单向阀4关闭,单向阀7打开,小缸体下腔的油液经管道6输入大缸体9的下腔,迫使大活塞8向上移动,顶起重物。
(3)再次提起手柄吸油时,举升缸的下腔的压力油将力图倒流入手动泵内,但此时单向阀7自动关闭,使油液不能倒流,从而保证了重物不会自行下落。
不断地往复扳动手柄,就能不断地把油液压入举升缸的下腔,使重物逐渐地升起。
(4)如果打开截止阀11,举升缸的下腔的油液通过管道10、截止阀11流回油箱,大活塞在重物和自重作用下向下移动,回到原始位置。
·对液压传动工作过程的分析结论:1.力的传递遵循帕斯卡原理运动的传递遵照容积变化相等的原则压力和流量是液压传动中的两个最基本的参数;2.液压传动系统的工作压力取决于负载;3. 液压缸的运动速度取决于流量;4. 传动必须在密封容器内进行,而且容积要发生变化;5.传动过程中必须经过两次能量转换·实例 2、机床工作台·工作原理:(1)如图1-2,液压泵4在电动机(图中未画出)的带动下旋转,油液由油箱1经过滤器2被吸入液压泵,又液压泵输入的压力油通过手动换向阀11,节流阀13、换向阀15进入液压缸18的左腔,推动活塞17和工作台19向右移动,液压缸18右腔的油液经换向阀15排回油箱。
以上是换向阀15转换成如图1-2(a)的位置(2)如果将换向阀15转换成如图1-2(b)的位置,则压力油进入液压缸18的右腔,推动活塞17和工作台19向左移动,液压缸18左腔的油液经换向阀15排回油箱。
工作台19的移动速度由节流阀13来调节。
当节流阀开大时,进入液压缸18的油液增多,工作台的移动速度增大;当节流阀关小时,工作台的移动速度减小。
液压泵4输出的压力油除了进入节流阀13以外,其余的打开溢流阀7流回油箱。
(3)手动换向阀9处于图1-2(c)所示的状态,液压泵输出的油液经手动换向阀9流回油箱,这时工作台停止运动,液压系统处于卸荷状态。
·对液压传动工作过程的分析结论:1.液压传动是以液体作为工作介质来进行能量传递的一种传动形式,通过能量转换装置(液压泵),将原动机的机械能转变为液体的压力能,然后通过封闭管道、控制元件等,由另一能量装置(液压缸、液压马达)将液体的压力能转变为机械能,驱动负载实现执行机构的直线或旋转运动;2. 工作介质是在受控制、受调节的状态下工作的,传动和控制难以分开;3.液压系统的压力是靠液压泵对液压油的推动与负载对油的阻尼所憋出来的;4.工作台运动方向由换向阀控制工作台的速度大小是由节流阀控制;5.泵输出的多余油液经溢流阀回油箱因此泵出口压力是由溢流阀决定的,液压传动过程中经过两次能量转换。
二、液压传动的系统组成从以上两个液压系统可以看到,液压传动系统的组成部分有以下五个方面:1.能源装置将机械能转变成油液的压力能,是液压系统的心脏。
最常见的是液压泵,它给液压系统提供压力油,使整个系统能够动作起来。
2. 执行装置将油液的压力能转变成机械能,并对外做功。
如液压缸、液压马达。
3.控制调节装置控制和调节液压系统中油液的压力、流量和流动方向的装置。
如换向阀、节流阀、溢流阀等。
4.辅助装置除上述三项以外的其他装置。
如过滤器、油管、油箱、接头等。
保证系统稳定持久的工作。
5.工作介质液压油或其他合成液体。
传递能量的媒介·液压系统的组成及各部分的功用分析三液压传动系统的图形符号图1-2所示的液压系统图是一种半结构式的工作原理图。
它直观性强,容易理解,但难于绘制。
在实际工作中,除少数特殊情况外,一般都采用国标GB/T786.1—93所规定的液压与气动图形符号(参看附录)来绘制,如图1-3所示。
使用图形符号既便于绘制,又可使液压系统简单明了。
说明1.图形符号表示元件的功能2.不表示元件的具体结构和参数3.反映各元件在油路连接上的相互关系,不反映其空间安装位置;4.只反映静止位置或初始位置的工作状态,不反映其过渡过程。
图1-2第二节液压传动的优缺点及应用一、液压传动的优缺点 1、主要优点(1)在同等功率情况下,液压执行元件体积小、重量轻、结构紧凑。
例如同功率液压马达的重量约只有电动机的1/6左右。
(2)液压传动的各种元件,可根据需要方便、灵活地来布置;(3)液压装置工作比较平稳,由于重量轻、惯性小、反应快,液压装置易于实现快速启动、制动和频繁的换向;(4)操纵控制方便,可实现大范围的无级调速(调速范围达2000:1),它还可以在运行的过程中进行调速;(5)一般采用矿物油为工作介质,相对运动面可自行润滑,使用寿命长;(6)容易实现直线运动、回转运动;(7)既易实现机械的自动化,又易于实现过载保护,当采用电液联合控制甚至计算机控制后,可实现大负载、高精度、远程自动控制;(8)液压元件实现了标准化、系列化、通用化,便于设计、制造和使用。
2、主要缺点(1)液压传动不能保证严格的传动比,这是由于液压油的可压缩性和泄漏造成的;(2)工作性能易受温度变化的影响,因此不宜在很高或很低的温度条件下工作;(3)由于流体流动的阻力损失和泄漏较大,所以效率较低。
如果处理不当,泄漏不仅污染场地,而且还可能引起火和爆炸事故;(4)为了减少泄漏,液压元件在制造精度上要求较高,因此它的造价高,且对油液的污染比较敏感;(5)液压传动需要有单独的能源(例液压泵站),液压能不能像电能那样从远处传来;(6)液压传动装置出现故障时不易追查原因,不易迅速排除。
总的说来,液压传动的优点最突出的是,它的一些缺点有的现已大为改善,有的将随着科学技术的发展而进一步得到克服。
二、液压传动的应用在工业生产的各个部门应用液压传动技术的出发点不尽相同。
例如,工程机械、矿山机械、压力机械和航空工业中采用液压传动的主要原因是取结构简单、体积小、重量轻、输出功率大;机床上采用液压传动是取其能在工作过程中方便地实现无级调速,易于实现频繁的换向,易于实现自动化。
表1-1是液压传动在各行业中的应用例。
表1-1 液压传动在各个行业中的应用行业名称应用场合举例机床工业磨床、铣床、刨床、拉床、压力机、自动机床、组合机床、数控机床、加工中心等工程机械挖掘机、装载机、推土机等汽车工业自卸式汽车、平板车、高空作业车等农业机械联合收割机的控制系统、拖拉机的悬挂系统等轻工机械打包机、注塑机、校直机、橡胶硫化机、造纸机等冶金机械电炉控制系统、轧钢机控制系统等起重运输机械起重机、叉车、装卸机械、液压千斤顶等矿山机械开采机、提升机、液压支架、采煤机等建筑机械打桩机、平地机等船舶港口机械起货机、锚机、舵机等铸造机械砂型压实机、加料机、压铸机等三、发展方向:1.高度的组合化、集成化和模块化,高可靠性。
2.高压大功率:高压的目的主要是为了减轻系统的重量及减小结构尺寸.大功率是为了解决大惯量与重负载的拖动问题。
3.理论解析与特性补偿:用计算机对系统进行仿真分析,对大惯量非线性及外干扰等问题进行特性补偿与近代控制策略研究4.同微机的结合.目前液压控制已从模拟控制转为以微机控制为主.如电液比例控制阀.数字阀等液压数字技术。
第1章例题分析例1:图1-1是液压千斤顶的传动系统图,试说明工作原理图1-11,6—活塞,2,7—液压缸,3,8—单向阀,4—截止阀,5—手柄,9—油箱解:当抬起手柄5时:活塞6向上运动,缸7容积增大形成真空,单向阀3关闭,缸7通过单向阀8从油箱吸油。
当压下手柄5时:活塞6向下运动,单向阀8关闭,缸7中的油液通过单向阀3进入缸2推动活塞1向上运动,抬起重物。
再抬起手柄5:缸7从油箱吸油;压下手柄5,油液进入2,这样,油液不断的被吸入油缸7,压入油缸2,就可以把重物抬起所需的高度。
单向阀3的作用:重物升高后不会落下来。
需要放下重物时:打开截至阀4,缸2中的油液流回油箱,重物放下来,放下来后关闭截止阀4,待下次需要放油时打开。
单元一小结液压传动是以封闭容积中的液体来传递力和运动的。
再传递力时,利用了流体力学中的帕斯卡原理;而在传递运动时,则利用了密封容积中主动件(泵)挤出的液体体积和从动件(液动机)接受的液体体积相等的原理(质量守恒定律)。
液压传动中,压力和流量时最重要的参数。
压力决定于负载;流量则决定执行元件的运动速度。
压力和继续传动中的力相当,而流量和机械传动中的速度相当,压力和流量的乘积则为功率。
液压传动系统中必须含有泵、执行元件、控制阀、辅助元件以及传动介质。
液压传动中,压力和流量是最重要的参数。
压力决定于负载;流量则决定执行元件的运动速度。