一轮复习-古典概型与几何概型

合集下载

古典概型、几何概型复习优秀课件

古典概型、几何概型复习优秀课件

课堂互动讲练
考点二 复杂事件的古典概型问题
求复杂事件的概率问题,关键是 理解题目的实际含义,必要时将所求 事件转化为彼此互斥事件的和,或者 是先去求对立事件的概率,进而再用 互斥事件的概率加法公式或对立事件 的概率公式求出所求事件的概率.
课堂互动讲练
例2
袋中装有大小相同的10个小球, 其中6个红色,4个白色,从中依次不 放回地任取出3个,求: (1)取出3球恰好2红1白的概率; (2)取出3球依次为红、白、红的 概率; (3)第三次取到红球的概率.
课堂互动讲练
【思路点拨】 本题第(1)问为几 何概型,可采用数形结合的思想画出 图形,然后利用几何概型的概率公式 求解,第(2)问为古典概型只需分别求 出|x|≤2,|y|≤2内的点以及(x-2)2+(y -2)2≤4的点的个数即可.
课堂互动讲练
【解】 (1)如图,点P所在的区域 为正方形ABCD的内部(含边界),满足(x -2)2+(y-2)2≤4的点的区域为以(2,2)为 圆心,2为半径的圆面(含边界).
课堂互动讲练
1 π×22 4 π ∴所求的概率 P1= = . 4×4 16
(2)满足x,y∈Z,且|x|≤2,|y|≤2的点 (x,y)有25个,满足x,y∈Z,且(x-2)2+ (y-2)2≤4的点(x,y)有6个,∴所求的概率
6 P2= . 25
课堂互动讲练
【规律小结】 几何概型与古典概型的 区别在于它的试验结果不是有限个,其特点 是它的试验结果在一个区域内均匀分布,所 以几何概型的概率的大小与该事件所在区域 的形状和位置无关,只与该区域的大小有 关.利用几何概型的概率公式P(A)= A的测度 ,求概率的思路与古典概型的概率 Ω的测度 求解思路一样,都属于“比例解法”.

高考一轮总复习-082.古典概型与几何概型(基础)-知识讲解

高考一轮总复习-082.古典概型与几何概型(基础)-知识讲解

高考总复习:古典概型与几何概型【考点梳理】知识点一、古典概型1. 定义具有如下两个特点的概率模型称为古典概型:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。

2. 古典概型的基本特征(1)有限性:即在一次试验中,可能出现的结果,只有有限个,也就是说,只有有限个不同的基本事件。

(2)等可能性:每个基本事件发生的可能性是均等的。

3.古典概型的概率计算公式由于古典概型中基本事件发生是等可能的,如果一次试验中共有n 种等可能的结果,那么每一个基本事件的概率都是1n。

如果某个事件A 包含m 个基本事件,由于基本事件是互斥的,则事件A 发生的概率为其所含m 个基本事件的概率之和,即n m A P =)(。

所以古典概型计算事件A 的概率计算公式为:试验的基本事件总数包含的基本事件数事件A A P =)( 4.求古典概型的概率的一般步骤:(1)算出基本事件的总个数n ;(2)计算事件A 包含的基本事件的个数m ;(3)应用公式()m P A n=求值。

5.古典概型中求基本事件数的方法:(1)穷举法;(2)树形图;(3)排列组合法。

利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏。

知识点二、几何概型1. 定义:事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关。

满足以上条件的试验称为几何概型。

2.几何概型的两个特点:(1)无限性,即在一次试验中基本事件的个数是无限的;(2)等可能性,即每一个基本事件发生的可能性是均等的。

3.几何概型的概率计算公式:随机事件A 的概率可以用“事件A 包含的基本事件所占的图形面积(体积、长度)”与“试验的基本事件所占总面积(体积、长度)”之比来表示。

所以几何概型计算事件A 的概率计算公式为:Ω=μμA A P )( 其中μΩ表示试验的全部结果构成的区域Ω的几何度量,A μ表示构成事件A 的区域的几何度量。

数学一轮复习第十章10.6几何概型学案理含解析

数学一轮复习第十章10.6几何概型学案理含解析

第六节几何概型【知识重温】一、必记2个知识点1.几何概型如果每个事件发生的概率只与构成该事件区域的①________(②________或③________)成比例,则称这样的概率模型为几何概率模型,简称为④________。

2.在几何概型中,事件A的概率的计算公式如下:P(A)=⑤______________________________________________________________________ __。

二、必明2个易误点1.计算几何概型问题的关键是怎样把具体问题(如时间问题等)转化为相应类型的几何概型问题.2.几何概型中,线段的端点、图形的边框是否包含在事件之内不影响所求结果.【小题热身】一、判断正误1.判断下列说法是否正确(请在括号中打“√”或“×”).(1)几何概型中,每一个基本事件都是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.()(2)几何概型定义中的区域可以是线段、平面图形或空间几何体.()(3)与面积有关的几何概型的概率与几何图形的形状有关.()(4)几何概型与古典概型中的基本事件发生的可能性都是相等的,其基本事件个数都有限.()二、教材改编2.某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过2分钟的概率是()A.错误!B.错误!C。

错误!D。

错误!3.一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为()A.错误!B.错误!C。

错误! D.错误!三、易错易混4.[2021·福建莆田质检]从区间(0,1)中任取两个数作为直角三角形两直角边的长,则所取的两个数使得斜边长不大于1的概率是()A.错误!B.错误!C。

错误!D。

错误!5.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为________.四、走进高考6.[2017·全国卷Ⅰ]如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A。

2015届高考数学一轮总复习 10-5古典概型与几何概型

2015届高考数学一轮总复习 10-5古典概型与几何概型

2015届高考数学一轮总复习 10-5古典概型与几何概型基础巩固强化一、选择题1.已知α、β、γ是不重合平面,a 、b 是不重合的直线,下列说法正确的是( ) A .“若a ∥b ,a ⊥α,则b ⊥α”是随机事件 B .“若a ∥b ,a ⊂α,则b ∥α”是必然事件 C .“若α⊥γ,β⊥γ,则α⊥β”是必然事件 D .“若a ⊥α,a ∩b =P ,则b ⊥α”是不可能事件 [答案] D [解析]⎭⎪⎬⎪⎫a ∥b a ⊥α⇒b ⊥α,故A 错;⎭⎪⎬⎪⎫a ∥b a ⊂α⇒b ∥α或b ⊂α,故B 错;当α⊥γ,β⊥γ时,α与β可能平行,也可能相交(包括垂直),故C 错;如果两条直线垂直于同一个平面,则此二直线必平行,故D 为真命题.2.(文)4张卡片上分别写有数字1、2、3、4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A.13B.12 C.23 D.34 [答案] C[解析] 取出两张卡片的基本事件构成集合Ω={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}共6个基本事件.其中数字之和为奇数包含(1,2),(1,4),(2,3),(3,4)共4个基本事件, ∴所求概率为P =46=23.(理)(2013·宿州质检)一颗质地均匀的正方体骰子,其六个面上的点数分别为1、2、3、4、5、6,将这颗骰子连续抛掷三次,观察向上的点数,则三次点数依次构成等差数列的概率为( )A.112B.118 C.136 D.7108 [答案] A[解析] 连续抛掷三次共有63=216(种)情况,记三次点数分别为a 、b 、c ,则a +c =2b ,所以a +c 为偶数,则a 、c 的奇偶性相同,且a 、c 允许重复,一旦a 、c 确定,b 也唯一确定,故a ,c 共有2×32=18(种),所以所求概率为18216=112,故选A.3.(文)(2013·惠州调研)一个袋中装有2个红球和2个白球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同色的概率为( )A.12B.13C.14D.25[答案] A[解析] P =2×2+2×24×4=12.(理)(2013·皖南八校联考)一个袋子中有5个大小相同的球,其中有3个黑球与2个红球,如果从中任取两个球,则恰好取到两个同色球的概率是( )A.15 B.310 C.25D.12[答案] C[解析] P =C 23+C 22C 25=25.4.(文)(2013·郑州第一次质量预测)一数学兴趣小组利用几何概型的相关知识做实验计算圆周率,他们向一个边长为1米的正方形区域均匀撒豆,测得正方形区域有豆5120颗,正方形的内切圆区域有豆4009颗,则他们所测得的圆周率为(保留三位有效数字)( )A .3.13B .3.14C .3.15D .3.16[答案] A[解析] 根据几何概型的定义有π·(12)21=40095120,得π≈3.13.(理)点P 在边长为1的正方形ABCD 内运动,则动点P 到定点A 的距离|P A |<1的概率为( ) A.14 B.12 C.π4D .π[答案] C[解析] 由题意可知,当动点P 位于扇形ABD 内时,动点P 到定点A 的距离|P A |<1,根据几何概型可知,动点P 到定点A 的距离|P A |<1的概率为S 扇形ABD S 正方形ABCD =π4,故选C.5.(文)(2013·石家庄质检)在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长的概率为( )A.14B.13C.12D.32[答案] C[解析] 如图,设圆的半径为r ,圆心为O ,AB 为圆的一条直径,CD 为垂直于AB 的一条弦,垂足为M ,若CD 为圆内接正三角形的一条边,则O 到CD 的距离为r2,设EF 为与CD 平行且到圆心O 距离为r2的弦,交直径AB 于点N ,所以当过AB 上的点且垂直于AB 的弦的长度超过CD 时,该点在线段MN 上移动,所以所求概率P =r 2r =12,选C.(理)(2013·湖南)已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为12,则ADAB=( )A.12 B.14C.32 D.74[答案] D [解析]由题意知AB >AD ,如图,当点P 与E (或F )重合时,△ABP 中,AB =BP (或AP ),当点P 在EF 上运动时,总有AB >AP ,AB >BP ,由题中事件发生的概率为12知,点P 的分界点E 、F 恰好是边CD的四等分点,由勾股定理可得AB 2=AF 2=(34AB )2+AD 2,解得(AD AB )2=716,即AD AB =74,故选D.6.(2013·武昌区联考)若从区间(0,2)内随机取两个数,则这两个数的比不小于4的概率为( ) A.18 B.78 C.14D.34[答案] C[解析] 设这两个数分别为x ,y ,则由条件知0<x <2,0<y <2,y ≥4x 或x ≥4y ,则所求概率P =2×(12×2×12)2×2=14.二、填空题7.(2013·郑州二检)连掷两次骰子得到的点数分别为m 和n ,设向量a =(m ,n )与向量b =(1,-1)的夹角为θ,则θ∈⎝⎛⎤0,π2的概率是________. [答案]712[解析] ∵cos θ=m -n2·m 2+n 2,θ∈⎝⎛⎦⎤0,π2, ∴m ≥n ,满足条件m =n 的概率为636=16,m >n 的概率与m <n 的概率相等, ∴m >n 的概率为12×⎝⎛⎭⎫1-16=512, ∴满足m ≥n 的概率为P =16+512=712.8.(文)(2012·浙江文,12)从边长为1的正方形的中心和顶点这五个点中,随机(等可能)取两点,则该两点间的距离为22的概率是________. [答案] 25[解析]由五个点中随机取两点共有10种取法.由图可知两点间的距离为22的是中心和四个顶点组成的4条线段,故概率为P =410=25. (理)在区间[1,5]和[2,4]分别各取一个数,记为m 和n ,则方程x 2m 2+y 2n 2=1表示焦点在x 轴上的椭圆的概率是________.[答案] 12[解析] ∵方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆,∴m >n .由题意知,在矩形ABCD 内任取一点P (m ,n ),求P 点落在阴影部分的概率,易知直线m =n恰好将矩形平分,∴p =12.9.(文)在区间[-1,1]上随机取一个数k ,则直线y =k (x +2)与圆x 2+y 2=1有公共点的概率为________.[答案]33[解析] ∵直线与圆有公共点,∴|2k |k 2+1≤1, ∴-33≤k ≤33.故所求概率为P =33-(-33)1-(-1)=33.(理)(2013·大连、沈阳联考)若利用计算机在区间(0,1)上产生两个不等的随机数a 和b ,则方程x =22a -2bx有不等实数根的概率为________.[答案]12[解析]方程x =22a -2bx 化为x 2-22ax +2b =0,∵方程有两个不等实根, ∴Δ=8a -8b >0,∴a >b , 如图可知,所求概率P =12.三、解答题10.(文)设平面向量a m =(m,1),b n =(2,n ),其中m 、n ∈{1,2,3,4}. (1)请列出有序数组(m ,n )的所有可能结果;(2)记“使得a m ⊥(a m -b n )成立的(m ,n )”为事件A ,求事件A 发生的概率. [解析] (1)有序数组(m ,n )的所有可能结果为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16个.(2)由a m ⊥(a m -b n )得m 2-2m +1-n =0,即n =(m -1)2由于m 、n ∈{1,2,3,4},故事件A 包含的基本事件为(2,1),(3,4),共2个.又基本事件的总数为16,故所求的概率为P (A )=216=18. (理)(2013·北京东城区统一检测)袋内装有6个球,这些球依次被编号为1、2、3、…、6,设编号为n 的球重n 2-6n +12(单位:g),这些球等可能地从袋里取出(不受重量、编号的影响).(1)从袋中任意取出一个球,求其重量大于其编号的概率; (2)如果不放回地任意取出2个球,求它们重量相等的概率. [解析] (1)若编号为n 的球的重量大于其编号, 则n 2-6n +12>n ,即n 2-7n +12>0. 解得n <3,或n >4. 所以n =1,2,5,6.所以从袋中任意取出一个球,其重量大于其编号的概率P =46=23.(2)不放回地任意取出2个球,这两个球编号的所有可能情形为(不分取出的先后次序): 1,2;1,3;1,4;1,5;1,6; 2,3;2,4;2,5;2,6; 3,4;3,5;3,6; 4,5;4,6; 5,6. 共有15种.设编号分别为m 与n (m ,n ∈{1,2,3,4,5,6},且m ≠n )的球的重量相等,则有m 2-6m +12=n 2-6n +12,即有(m -n )(m +n -6)=0.所以m =n (舍去),或m +n =6.满足m +n =6的情形为:1,5;2,4,共2种. 故所求事件的概率为215.能力拓展提升一、选择题11.(2013·北京海淀期末)一对年轻夫妇和其两岁的孩子做游戏,让孩子把分别写有“1”“3”“1”“4”的四张卡片随机排成一行,若卡片按从左到右的顺序排成“1314”,则孩子会得到父母的奖励,那么孩子受到奖励的概率为( )A.112B.512C.712D.56 [答案] A[解析] 先从4个位置中选一个排4,再从剩下位置中选一个排3,所有可能的排法有4×3=12种,满足要求的排法只有1种,∴所求概率为P =112.12.(文)(2012·辽宁文,11)在长为12cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC 、CB 的长,则该矩形面积大于20cm 2的概率为( )A.16B.13C.23D.45[答案] C[解析] 在长为12cm 的线段AB 上任取一点C ,设AC =x ,则BC =12-x ,∴x (12-x )>20,∴2<x <10,因此总的几何度量为12,满足矩形面积大于20cm2的点在C 1与C 2之间的部分,如图∴P =812=23.关键在于找出总长度及事件“矩形的面积大于20cm 2”所表示区域的长度.(理)(2012·湖北理,8)如图,在圆心角为直角的扇形OAB 中,分别以OA 、OB 为直径作两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .1-2πB.12-1πC.2πD.1π[答案] A[分析] 在扇形OAB 内随机取一点,此点落在阴影部分的概率属于几何概型问题,关键是求阴影部分的面积,如图设阴影部分两块的面积分别为S 1、S 2,OA =R ,则S 1=2(S 扇形DOC -S △DOC ),S 2=S 扇形OAB -S ⊙D +S 1.[解析] 设图中阴影面积分别为S 1,S 2,令OA =R ,由图形知,S 1=2(S 扇ODC -S △ODC ) =2[π·(R 2)24-12·(R 2)2]=πR 2-2R 28,S 2=S 扇形OAB -S ⊙D +S 1=14πR 2-π·(R 2)2+πR 2-2R 28=πR 2-2R 28, ∴所求概率P =S 1+S 2S 扇形OAB=πR 2-2R 2414πR 2=1-2π.[点评] 1.当试验的结果构成的区域为长度、面积、体积、弧长、夹角等时,应考虑使用几何概型求解;2.利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的计算,有时需要设出变量,在坐标系中表示所需要的区域.13.在区间(0,1)上任取两个数,则两个数之和小于65的概率是( )A.1225B.1625C.1725D.1825 [答案] C[解析] 设两数为x 、y ,则0<x <1,0<y <1,满足x +y <65的点在图中阴影部分,∴所求概率为P =1-12×(1-15)21=1725,故选C .二、填空题14.(文)(2013·大连模拟)在长为16cm 的线段AB 上任取一点M ,并以线段AM 为一边作正方形,则此正方形的面积介于25cm 2与81cm 2之间的概率为________.[答案] 14[解析] 正方形的面积介于25cm 2与81cm 2之间,即线段AM 长介于5cm 与9cm 之间,即点M 可以在5~9cm 之间取,长度为4cm ,总长为16cm ,所以,所求概率为416=14.(理)(2013·南昌一模)张先生订了一份《南昌晚报》,送报人在早上6:30—7:30之间把报纸送到他家,张先生离开家去上班的时间在早上7:00—8:00之间,则张先生在离开家之前能拿到报纸的概率是________.[答案] 78[解析]以横坐标x 表示报纸送到时间,以纵坐标y 表示张先生离家时间,建立平面直角坐标系,如图.因为随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意当y >x 时,即只要点落到阴影部分,就表示张先生在离开家之前能拿到报纸,即所求事件A 发生,所以P (A )=1×1-12×12×121×1=78.15.(2013·南京模拟)在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 落在圆x 2+y 2=9内部的概率为________.[答案] 13[解析] 点P 的取法有2×3=6种,点P 在圆内部,则m 2+n 2<9,∴m =2,n =1或2.∴所求概率P =26=13. 三、解答题16.(文)某饮料公司对一名员工进行测试以便确定考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A 饮料,另外2杯为B 饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A 饮料.若该员工3杯都选对,测评为优秀;若3杯选对2杯测评为良好;否测评为合格.假设此人对A 和B 饮料没有鉴别能力.(1)求此人被评为优秀的概率;(2)求此人被评为良好及以上的概率.[解析] 将5杯饮料编号为:1,2,3,4,5,编号1、2、3表示A 饮料,编号4、5表示B 饮料,则从5杯饮料中选出3杯的所有可能情况为:(123),(124),(125),(134),(135),(145),(234)(235),(245),(345),共有10种令D 表示此人被评为优秀的事件,E 表示此人被评为良好的事件,F 表示此人被评为良好及以上的事件,则(1)P (D )=110, (2)P (E )=35,P (F )=P (D )+P (E )=710. (理)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是12. (1)求n 的值;(2)从袋子中不放回地随机抽取两个小球,记第一次取出的小球标号为a ,第二次取出的小球标号为b .①设事件A 表示“a +b =2”,求事件A 的概率;②在区间[0,2]内任取两个实数x 、y ,求事件“x 2+y 2>(a -b )2恒成立”的概率.[解析] (1)由题意可知:n 1+1+n =12,解得n =2. (2)将标号为2的小球记作a 1,a 2①两次不放回抽取小球的所有基本事件为:(0,1),(0,a 1),(0,a 2),(1,0),(1,a 1),(1,a 2),(a 1,0),(a 1,1),(a 1,a 2),(a 2,0),(a 2,1),(a 2,a 1),共12个,事件A 包含的基本事件为:(0,a 1),(0,a 2),(a 1,0),(a 2,0),共4个.∴P (A )=412=13. ②记“x 2+y 2>(a -b )2恒成立”为事件B ,则事件B 等价于“x 2+y 2>4”,(x ,y )可以看成平面中的点,则全部结果所构成的区域Ω={(x ,y )|0≤x ≤2,0≤y ≤2,x ,y ∈R },而事件B 所构成的区域B ={(x ,y )|x 2+y 2>4,x ,y ∈Ω},∴P (B )=S B S Ω=2×2-π2×2=1-π4.考纲要求1.理解古典概型及其概率计算公式.2.会计算一些随机事件所含的基本事件数及事件发生的概率.3.了解随机数的意义,能运用模拟方法估计概率.4.了解几何概型的意义.补充说明1.求解与角度有关的几何概型的注意点当涉及射线的转动,扇形中有关落点区域问题时,应以角的大小作为区域度量来计算概率,切不可用线段代替,这是两种不同的度量手段.2..求解古典概型概率,首先要找准基本事件,判断的标准就是有限性和等可能性.基本事件空间中基本事件的计算方法和事件A 中包含的基本事件计算方法必须保持一致,计数时可以采取一一列举的方法,也可以采用模型化方法或用计数原理求,并辅以必要的文字说明.3.注意事件是否互斥;遇到“至多”、“至少”等事件时,注意对立事件概率公式的应用. 备选习题 1.(2013·哈尔滨二模)如图的矩形长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,由此我们可以估计出阴影部分的面积约为( )A.165B.215C.235D.195[答案] C[解析] 由几何概型的概率公式,得S 10=138300,所以阴影部分面积约为235,故选C. 2.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( )A.110B.18C.16D.15[答案] D[解析] 如图正六边形ABCDEF ,从6个顶点中随机选择4个顶点有ABCD ,ABCE ,ABCF ,ABDE ,ABDF ,ACDE ,ACDF ,ACEF ,ADEF ,BCDE ,BCDF ,BCEF ,ABEF ,BDEF ,CDEF 共15种选法,基本事件总数为15,其中四边形是矩形的有ABDE ,BCEF ,CDF A 共3种,所以所求概率为P =315=15.3.先后抛掷两枚均匀的正方体骰子(他们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为x 、y ,则log 2x y =1的概率为( )A.16B.536C.112D.12[答案] C[解析] 先后抛掷两枚骰子,向上点数共有6×6=36种不同结果,其中满足log 2x y =1, 即y =2x 的情况如下:x =1时,y =2;x =2时,y =4;x =3时,y =6,共3种.∴所求概率为P =336=112. [点评] 注意细微差别,若把题目中的条件log 2x y =1改为log 2x y >1,则所求概率为( ) 此时答案为A这是因为抛掷两枚骰子共有62=36种不同结果,∵log 2x y >1,∴y >2x .当x =1时,y 有4种取法;当x =2时,y 有2种取法;当x =3时,没有y 满足,∴满足y >2x 的取法共有4+2=6种,故所求概率P =636=16. 若改为log x 2y <1呢?4.设a ∈[0,2],b ∈[0,4],则函数f (x )=x 2+2ax +b 在R 上有两个不同零点的概率为________.[答案] 13[解析]∵f (x )有两个不同零点,∴Δ=4a 2-4b >0,∴b <a 2,如图,设点(a ,b )落在阴影部分(即满足0≤a ≤2,0≤b ≤4且b <a 2)的事件为A ,由于阴影部分面积S =⎠⎛02a 2d a =13a 3|20=83, 故所求事件A 的概率P (A )=832×4=13. 5.盒子内装有10张卡片,分别写有1~10的10个整数,从盒子中任取1张卡片,记下它的读数x ,然后放回盒子内,第二次再从盒子中任取1张卡片,记下它的读数y .试求:(1)x +y 是10的倍数的概率;(2)xy 是3的倍数的概率.[解析] 先后取两次卡片,每次都有1~10这10个结果,故形成的数对(x ,y )共有100个.(1)x +y 是10的倍数的数对包括以下10个:(1,9),(9,1),(2,8),(8,2),(3,7),(7,3),(4,6),(6,4),(5,5),(10,10).故“x +y 是10的倍数”的概率为P 1=10100=0.1. (2)xy 是3的倍数,只要x 是3的倍数,或y 是3的倍数,由于x 是3的倍数且y 不是3的倍数的数对有21个,而x 不是3的倍数且y 是3的倍数的数对有21个,x 是3的倍数且y 也是3的倍数的数对有9个.故xy 是3的倍数的数对有21+21+9=51(个).51故xy是3的倍数的概率为P2=100=0.51.。

2022版高考数学大一轮复习第11章概率第2讲古典概型与几何概型2

2022版高考数学大一轮复习第11章概率第2讲古典概型与几何概型2

第十一章概率第二讲古典概型与几何概型1。

[2021长春市第一次质量监测]张老师居住的一条街上,行驶着甲、乙两路公交车,这两路公交车的数目相同,并且都是每隔十分钟就到达车站一辆(即停即走)。

张老师每天早晨都是在6:00到6:10之间到达车站乘车到学校,这两条公交线路对他是一样的,都可以到达学校,甲路公交车的到站时间是6:09,6:19,6:29,6:39,…,乙路公交车的到站时间是6:00,6:10,6:20,6:30,…,则张老师乘坐上甲路公交车的概率是() A.10%B。

50%C。

60%D。

90%2。

[2021安徽省示范高中联考]在以正五边形ABCDE的顶点为顶点的三角形中,任取一个,是钝角三角形的概率()A。

12B.13C。

14D.233。

[2021石家庄质检]北京冬奥会将于2022年2月4日到2022年2月20日在北京和张家口举行.申奥成功后,中国邮政陆续发行多款邮票,图案包括冬奥会会徽“冬梦”、冬残奥会会徽“飞跃”、冬奥会吉祥物“冰墩墩”、冬残奥会吉祥物“雪容融”、多种冰上运动等.现从2枚会徽邮票、2枚吉祥物邮票、1枚冰上运动邮票共5枚邮票中任取3枚,则恰有1枚吉祥物邮票的概率为()A.310B.12C。

35D。

7104。

[2021晋南高中联考]把分别写有1,2,3,4的四张卡片全部分给甲、乙、丙三个人,每人至少一张,且若分得的卡片超过一张,则必须是连号,那么2,3连号的概率为 ( )A.23B .13C 。

35D 。

145。

[2021贵阳四校第一次联考][条件创新]在区间[-2,2]内随机取一个数x ,则事件“y ={2x ,x ≤0,x +1,x >0,且y ∈[12,2]”发生的概率为( )A.78B 。

58C 。

38D 。

126。

[2021广东珠海模拟][与音乐结合]现有8位同学参加音乐节演出活动,每位同学都会拉小提琴或吹长笛,已知5人会拉小提琴,5人会吹长笛,现从这8人中随机选一人上场演出,恰好选中两种乐器都会演奏的同学的概率是 ( )A.14B 。

2023版高考数学一轮总复习11-1随机事件古典概型与几何概型课件

2023版高考数学一轮总复习11-1随机事件古典概型与几何概型课件
域用A表示(A⊆Ω),则P(A)= A的几何度量.
Ω的几何度量
考法一 古典概型概率的求法 1.求解古典概型概率的步骤
2.基本事件个数的确定方法 1)列举法:此法适合于基本事件个数较少的古典概型. 2)列表法:此法适合于从多个元素中选定两个元素的试验,也可看成坐标 法.
3)画树状图法:画树状图法是进行列举的一种常用方法,适用于有顺序的 问题及较复杂问题中基本事件个数的探求. 4)运用排列组合知识计算.
A39 7
答案 D
创新 生活中的概率问题 1.概率问题常与生活实际或数学文化相结合,主要考查学生的逻辑推 理、数据分析、数学抽象等核心素养. 2.解决这类问题的关键:①认真审题,把握信息;②弄清提供的问题情境的 意义;③抽象转化成数学问题,应用熟悉的数学知识解决.
例1 (2021湖南湘潭一模,7)德国心理学家艾宾浩斯研究发现,遗忘在学习 之后立即开始,而且遗忘的进程并不是均匀的.最初遗忘速度很快,以后逐 渐减慢.他认为“保持和遗忘是时间的函数”.他用无意义音节(由若干音 节字母组成,能够读出,但无内容意义,即不是词的音节)作为记忆材料,用 节省法计算保持和遗忘的数量,并根据试验结果绘成描述遗忘进程的曲 线,即著名的艾宾浩斯遗忘曲线(如图所示).若一名学生背了100个英语单 词,一天后,该学生在这100个英语单词中随机听写2个英语单词,以频率代 替概率,不考虑其他因素,则该学生恰有1个单词不会的概率大约为 ( )
m=5+4+3+2+1=15,则取到的整数十位数字比个位数字大的概率P= m =15
n 25
=3.
5
答案 B
考法二 几何概型概率的求法
例2 (2021辽宁辽南协作体联考,9)1876年4月1日,加菲尔德在《新英格兰 教育日志》上发表了勾股定理的一种证明方法,即在如图的直角梯形 ABCD中,利用“两个全等的直角三角形和一个等腰直角三角形的面积之 和等于直角梯形的面积”,可以简洁明了地推证出勾股定理.1881年加菲 尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、易 懂的证明,就把这一证明方法称为“总统证法”.如图,设∠ECB=60°,在梯 形ABCD中随机取一点,则此点取自等腰直角△CDE(阴影部分)中的概率 是() A.2(2- 3 ) B.2- 3 C. 3 -1 D.2( 3-1)

古典概型与几何概型复习课

古典概型与几何概型复习课
10
2到、正向方边形长的为顶1点的正A的方距形离内不随大机于投12一的粒概豆率子是,__则_1_豆6__子_. 3、先后投掷两枚相同的骰(tou)子,则向上的 点数之和为5的概率为___1__.
9
4、用橡皮泥做成一个直径为6 cm的小球,假设橡 皮泥中混入了一个很小的砂粒,则这个砂粒距离球 心不小于1 cm的概率是____2_6____.
解: (1)这个试验的基本事件为: (1,1)(1,2)(1,3)(1,4)(2,1) (2,2)(2,3)(2,4)(3,1)(3,2) (3,3)(3,4)(4,1)(4,2)(4,3) (4,4).
(2)事件“出现点数之和大于3”包含以下13 个基本事件: (1,3)(1,4)(2,2)(2,3)(2,4) (3,1)(3,2)(3,3)(3,4)(4,1) (4,2)(4,3)(4,4).
古典概型与几何概型 复习
江苏省天一中学 潘干
回顾旧知:
1、基本事件 (1)随机实验的每一个可能出现的结果是一个随机 事件,这类事件叫做基本事件。
(2)基本事件有以下两个特点:①任何两个基本事件 是互斥的;②任何事件都可以表示成基本事件的和 (不可能事件除外)
回顾旧知:
2.古典概型
(1)定义:我们将具有以下两个特点的概率模型称为古典概率 模型,简称为古典概型.
测度(长度或面积或体积)成比例 ,则称这样的概率
模型为几何概型. (2)在几何概型中,事件A的概率的计算公式:
P( A)

d的测度 D的测度
(3)准确找出问题的测度(长度、面积、体积)
课前小练:
1、甲、乙两人各写一张贺年卡,随意送给丙、丁两人中的一人,则甲、乙将贺年卡 送给同一人的概率是__P___2 __1

2014版高考数学一轮总复习 第66讲 随机事件的概率、古典概型与几何概型同步测控 理

2014版高考数学一轮总复习 第66讲 随机事件的概率、古典概型与几何概型同步测控 理

第66讲随机事件的概率、古典概型与几何概型1.A.0. 92 B.0.94C.0.95 D.0.962.两位大学毕业生一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是170”,根据这位负责人的话可以推断出参加面试的人数为( )A.21 B.35C.42 D.7063.甲、乙两人随机入住两间空房,每间房至多可入住2人,则甲、乙两人各住一间房的概率是( )A.13B.14C.12D.14.5张卡片上分别标有数字1,2,3,4,5,从这5张卡片中随机抽取2张,则取出的2张卡片上数字之和为奇数的概率为________.5.在半径为3的球内随机取一个点,则这个点到球面的距离大于1的概率为________.6.(2012·上海卷)三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两个选择的项目完全相同的概率为____________(结果用最简分数表示).7.设函数f(x)=log2[x2-2(a-1)x+b2]的定义域为D.(1)若a是从1、2、3、4四个数中任取的一个数,b是从1、2、3三个数中任取一个数,求使D=R的概率;(2)若a是从区间[0,4]任取的一个数,b是从区间[0,3]任取的一个数,求使D=R的概率.8.(2012·辽宁卷)在长为12 cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积小于32 cm2的概率为( )A.16B.13C.23D.459.如图,在一个边长为1的正方形AOBC内,曲线y=x2和曲线y2=x围成一个叶形图(阴影部分),向正方形AOBC内随机投一点(该点落在正方形AOBC内任何一点是等可能的),则所投的点落在叶形图内部的概率是________.10.先后2次抛掷一枚骰子,将得到的点数分别记为a,b.(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成不同的等腰三角形的概率.第66讲1.C 2.A 3.C 4.35 5.827 6.237.解析:(1)定义域D ={x |x 2-2(a -1)x +b 2>0}. 将取的数组记作(a ,b ),共有4×3=12种可能.要使D =R ,则Δ=4(a -1)2-4b 2<0, 即|a -1|<|b |.满足条件的有(1,1),(1,2),(1,3),(2,2),(2,3),(3,3),共6个基本事件,所以P (D =R )=612=12.(2)全部试验结果Ω={(a ,b )|a ∈[0,4],b ∈[0,3]}, 事件A ={D =R }对应区域为A ={(a ,b )||a -1|<|b |}, 则P (A )=S 阴影S Ω=3×4-12×1×1-12×3×33×4=712,故使D =R 的概率为712.8.C 解析:设线段AC 的长为 x cm ,则线段CB 的长为(12-x )cm ,那么矩形的面积为x (12-x )cm 2,由x (12-x )<32,解得x <4或x >8.又0<x <12,所以该矩形面积小于32 cm 2的概率为23,故选C.9.13 解析:阴影部分的面积S 1=⎠⎛01(x -x 2)d x =(23x 32-13x 3)|01=13,而正方形AOBC 的面积为1,故所求的概率为13.10.解析:(1)先后2次抛掷一枚骰子,将得到的点数分别记为a ,b ,事件总数为6×6=36.因为直线ax +by +5=0与圆x 2+y 2=1相切的充要条件是5a 2+b2=1,即a 2+b 2=25,由于a ,b ∈{1,2,3,4,5,6},所以满足条件的情况只有a =3,b =4或a =4,b =3两种情况.所以直线ax +by +5=0与圆x 2+y 2=1相切的概率是236=118.(2)先后2次抛掷一枚骰子,将得到的点数分别记为a ,b ,事件总数为6×6=36. 因为三角形的一边长为5,所以当a =1时,b =5,有(1,5,5)1种; 当a =2时,b =5,有(2,5,5)1种;当a =3时,b =3,5,有(3,3,5),(3,5,5)2种; 当a =4时,b =4,5,有(4,4,5),(4,5,5)2种;当a =5时,b =1,2,3,4,5,6,有(5,1,5),(5,2,5),(5,3,5),(5,4,5),(5,5,5),(5,6,5)6种;当a =6时,b =5,6,有(6,5,5),(6,6,5)2种. 故满足条件的不同情况共有14种.从而三条线段能围成不同的等腰三角形的概率为1436=718.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由于出现的结果有限,每次每颗只能有四种结果,且每种结果 出现的可能性是相等的,所以是古典概型.由于试验次数少, 故可将结果一一列出.

(1)这个试验的基本事件为:
(1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4).
一轮复习讲义
古典概型与几何概型
1.古典概型 具有以下两个特点的概率模型称为古典概率模型,简称古典 概型. (1)试验中所有可能出现的基本事件 只有有限个 . (2)每个基本事件出现的可能性 相等 .
2. 几何概型 如果每个事件发生的概率只与构成该事件区域的 则称这样的概率模型为几何概率模 长度 ( 面积 或 体积 )成比例, 型,简称为 几何概型.
变式训ห้องสมุดไป่ตู้ 1
在半径为 1 的圆内一条直径上任取一点, 过这个点作垂直于直 径的弦,则弦长超过圆内接等边三角形边长的概率是
1 . ________ 2
几何概型的概率
例 3 有关于 x 的一元二次方程 x +2ax+b =0. (1)若 a 是从 0,1,2,3 四个数中任取的一个数,
2
2
b 是从 0,1,2 三个数中任取的一个数, 求上述方
特点: (1)无限性:在一次试验中,可能出现的结果有无限多个; (2)等可能性:每个结果的发生具有等可能性.
要点梳理
忆一忆知识要点
3.如果一次试验中可能出现的结果有 n 个,而且所有结果出 1 现的可能性都相等, 那么每一个基本事件的概率都是 n ; 如果某个事件 A 包括的结果有 m 个,那么事件 A 的概率 m P(A)= n . 4.古典概型的概率公式 A包含的基本事件的个数 基本事件的总数 P(A)= .
变式 2:一个口袋里装有 2 只白球,3 只黑球,从中摸 出 2 个球 ( 1)共有多少种结果? ( 2)摸出 2 个黑球有多少种结果? ( 3)求摸出 2 个黑球的概率? ( 4)求摸出一只黑球一只白球的概率? ( 5)求摸出至少一只黑球的概率?
几何概型的概率
例 1 有一段长为 10 米的木棍,现要截成两段,每段不小于 3 米的概率有多大?
程有实根的概率; (2)若 a 是从区间[0,3]任取的一个数, b 是从区 间[0,2]任取的一个数, 求上述方程有实根的概 率.
(2)事件“出现点数之和大于 3”包含以下 13 个基本事件: (1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3), (3,4),(4,1),(4,2),(4,3),(4,4).
(3)事件“出现点数相等”包含以下 4 个基本事件: (1,1),(2,2),(3,3),(4,4).
5.几何概型中,事件 A 的概率计算公式
构成事件A的区域的测度 P(A)=试验的全部结果所组成的区域的测度 .
古典概率模型的计算问题
例 1 有两颗正四面体的玩具,其四个面上分别标有数字 1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用 (x, y) 表示结果,其中 x 表示第 1 颗正四面体玩具出现的点数,y 表示第 2 颗正四面体玩具出现的点数.试写出: (1)试验的基本事件; (2)事件“出现点数之和大于 3”; (3)事件“出现点数相等”.
古典概率模型的计算问题
例 1.从含有两件正品 a1,a2 和一件次品 b1 的三件 产品中,每次任取一件,每次取出后不放回,连续取 两次,求取出的两件产品中恰有一件次品的概率.
例 2.有 10 件产品,其中有 2 件次品,每次抽取 1 件检 验,抽检后不放回,共抽 2 次。求下列事件的概率。 (1)两次抽到的都是正品; (2)抽到的恰有一件为次品; (3)第 1 次抽到正品,第 2 次抽到次品。
相关文档
最新文档