基于matlab的自动控制系统的仿真设计
基于MATLAB控制系统的仿真与应用毕业设计论文

毕业设计(论文)题目基于MATLAB控制系统仿真应用研究毕业设计(论文)任务书I、毕业设计(论文)题目:基于MATLAB的控制系统仿真应用研究II、毕业设计(论文)使用的原始资料(数据)及设计技术要求:原始资料:(1)MATLAB语言。
(2)控制系统基本理论。
设计技术要求:(1)采用MATLAB仿真软件建立控制系统的仿真模型,进行计算机模拟,分析整个系统的构建,比较各种控制算法的性能。
(2)利用MATLAB完善的控制系统工具箱和强大的Simulink动态仿真环境,提供用方框图进行建模的图形接口,分别介绍离散和连续系统的MATLAB和Simulink仿真。
III、毕业设计(论文)工作内容及完成时间:第01~03周:查找课题相关资料,完成开题报告,英文资料翻译。
第04~11周:掌握MATLAB语言,熟悉控制系统基本理论。
第12~15周:完成对控制系统基本模块MATLAB仿真。
第16~18周:撰写毕业论文,答辩。
Ⅳ、主要参考资料:[1] 《MATLAB在控制系统中的应用》,张静编著,电子工业出版社。
[2]《MATLAB在控制系统应用与实例》,樊京,刘叔军编著,清华大学出版社。
[3]《智能控制》,刘金琨编著,电子工业出版社。
[4]《MATLAB控制系统仿真与设计》,赵景波编著,机械工业出版社。
[5]The Mathworks,Inc.MATLAB-Mathemmatics(Cer.7).2005.信息工程系电子信息工程专业类 0882052 班学生(签名):填写日期:年月日指导教师(签名):助理指导教师(并指出所负责的部分):信息工程系(室)主任(签名):学士学位论文原创性声明本人声明,所呈交的论文是本人在导师的指导下独立完成的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含法律意义上已属于他人的任何形式的研究成果,也不包含本人已用于其他学位申请的论文或成果。
对本文的研究成果作出重要贡献的个人和集体,均已在文中以明确方式表明。
基于MATLAB控制系统仿真实验报告

tf 4
y0
0 1
6、求出 G1(s)
2 (s2 2s 1) 与 G2 (s)
1 (2s3
3s2
1)
的单位阶跃响应,并分别
求出状态空间模型。
解:(1) G1(s) 2 (s2 2s 1) 的状态空间模型求解如下:
function shiyan2 b1=[2];
D(z)
0.62(1 0.136z 1)(1 0.183z (1 0.045z 1)(1 0.53z 1)
1 )
分别用仿真算法得到系统在单位阶跃输入作用下的响应,系统在单位速度输
入是的输出响应。
解:(1)首先将 W1(s)转换为 W1(z),采样周期 T=0.2s,程序清单如下: function shiyan42 num=[10];den=[0.005 0.15 1 0]; ts=0.2;[nc,dc]=c2dm(num,den,ts)
INTRO(注意:intro 为一个用 MATLAB 语言编写的幻灯片程序,主要演示
常用的 MATLAB 语句运行结果。)
然后,根据现实出来的幻灯片右面按钮进行操作,可按 START——NEXT—
—NEXT 按钮一步步运行,观察。
3、自编程序并完成上机编辑,调试,运行,存盘:
(1)用 MATLAB 命令完成矩阵的各种运算,例如:
5、利用 ode23 或 ode45 求解线性时不变系统微分方程 y(t) Ay(t) ,并绘制出 y(t)
曲线,式中
A
0.5
1
1 0.5
t t0 t 如下: function xdot=fun21(t,x) A=[-0.5 1;-1 -0.5]; xdot=A*x; function fzsy22 t0=0;tf=4;tol=1e-6; x0=[0;1];trace=1; [t,x]=ode23('fun21',t0,tf,x0,tol,trace); plot(t,x) 得到的实验结果如下图所示:
基于MATLAB控制系统的仿真与应用毕业设计论文

基于MATLAB控制系统的仿真与应用毕业设计论文目录一、内容概括 (2)1. 研究背景和意义 (3)2. 国内外研究现状 (4)3. 研究目的和内容 (5)二、MATLAB控制系统仿真基础 (7)三、控制系统建模 (8)1. 控制系统模型概述 (10)2. MATLAB建模方法 (11)3. 系统模型的验证与校正 (12)四、控制系统性能分析 (14)1. 稳定性分析 (14)2. 响应性能分析 (16)3. 误差性能分析 (17)五、基于MATLAB控制系统的设计与应用实例分析 (19)1. 控制系统设计要求与方案选择 (20)2. 基于MATLAB的控制系统设计流程 (22)3. 实例一 (23)4. 实例二 (25)六、优化算法在控制系统中的应用及MATLAB实现 (26)1. 优化算法概述及其在控制系统中的应用价值 (28)2. 优化算法介绍及MATLAB实现方法 (29)3. 基于MATLAB的优化算法在控制系统中的实践应用案例及分析对比研究31一、内容概括本论文旨在探讨基于MATLAB控制系统的仿真与应用,通过对控制系统进行深入的理论分析和实际应用研究,提出一种有效的控制系统设计方案,并通过实验验证其正确性和有效性。
本文对控制系统的基本理论进行了详细的阐述,包括控制系统的定义、分类、性能指标以及设计方法。
我们以一个具体的控制系统为例,对其进行分析和设计。
在这个过程中,我们运用MATLAB软件作为主要的仿真工具,对控制系统的稳定性、动态响应、鲁棒性等方面进行了全面的仿真分析。
在完成理论分析和实际设计之后,我们进一步研究了基于MATLAB 的控制系统仿真方法。
通过对仿真模型的建立、仿真参数的选择以及仿真结果的分析,我们提出了一种高效的仿真策略。
我们将所设计的控制系统应用于实际场景中,通过实验数据验证了所提出方案的有效性和可行性。
本论文通过理论与实践相结合的方法,深入探讨了基于MATLAB 控制系统的仿真与应用。
基于MATLAB的《自动控制系统》仿真实验系统实现

图 4 仿 真 实验 系统 界 面 理, 有助于对相关理论知识的消化和吸收。
参 考文 献
f] 伯 时 , 1陈 电力 拖 动 自动 控 制 系 统 [ . 京 : M】 北 机
械 工 业 出版 社 . 0 01 6 2 0 :- .
[] T A V rin . R1 ) tw rsIc 2MA L B es 7 o 0( 4 Mah ok , , n
由直 流电源 、 可控晶闸管和电动机 _ 二部分组成 , 如 网 2所示 。 对仿真模 型中的主要电气元件 G O 二极 T 、 管 和直流 电动机进行参数配置 ,由脉冲发生器 ( us e ea r通过 占空 比控制 GT P l G nrt ) e o O的通断 来改变输 出电压的大小 ,实现直流电动机的调 压调速 。为了保证仿 真模 型的运行 , 须在 S — i e r uai ltn菜单下点 击 C n grt n P rm tr, o of uao aa ees 在 i i 打开 的窗 口中 s vr 选择 oe5 (b D ) o e项 l d ls s N F 算法或 o e3 (tf R B F ) d2 t S fT — D 2 算法 b i/ 。运行 之 后观 察示波 器 中显示 的转速 和 电枢 电流 的波 形, 3 图 为仿真运行结果 。 4实验系统交互界 面的设计 图形 化 用户 界 面 ( rp ia U e ne一 G ahcl srIt r
直 流 开 环 调速 系统 仿 真模 型
实验 仿真模 型 主要利 用 SM LN 中的 S — I U IK i m Pw r s m模 块集 , o e yt S e 如图 1 所示 。 3实验仿真模型的建立 以 V M开 环 调速 实 验 为例 建 立仿 真模 — 型。 典型的 V M直流 电动机开环调速系统主要 —
基于MATLAB自动控制系统时域频域分析与仿真

基于MATLAB自动控制系统时域频域分析与仿真MATLAB是一款强大的数学软件,也是自动控制系统设计的常用工具。
它不仅可以进行时域分析和频域分析,还可以进行相关仿真实验。
本文将详细介绍MATLAB如何进行自动控制系统的时域和频域分析,以及如何进行仿真实验。
一、时域分析时域分析是指对系统的输入信号和输出信号进行时域上的观察和分析,以了解系统的动态特性和稳定性。
MATLAB提供了一系列的时域分析工具,如时域响应分析、稳态分析和步骤响应分析等。
1.时域响应分析通过时域响应分析,可以观察系统对于不同的输入信号的响应情况。
在MATLAB中,可以使用`lsim`函数进行系统的时域仿真。
具体步骤如下:- 利用`tf`函数或`ss`函数创建系统模型。
-定义输入信号。
- 使用`lsim`函数进行时域仿真,并绘制系统输出信号。
例如,假设我们有一个二阶传递函数模型,并且输入信号为一个单位阶跃函数,可以通过以下代码进行时域仿真:```num = [1];den = [1, 1, 1];sys = tf(num, den);t=0:0.1:10;u = ones(size(t));[y, t, x] = lsim(sys, u, t);plot(t, y)```上述代码中,`num`和`den`分别表示系统的分子和分母多项式系数,`sys`表示系统模型,`t`表示时间序列,`u`表示输入信号,`y`表示输出信号。
通过绘制输出信号与时间的关系,可以观察到系统的响应情况。
2.稳态分析稳态分析用于研究系统在稳态下的性能指标,如稳态误差和稳态标准差。
在MATLAB中,可以使用`step`函数进行稳态分析。
具体步骤如下:- 利用`tf`函数或`ss`函数创建系统模型。
- 使用`step`函数进行稳态分析,并绘制系统的阶跃响应曲线。
例如,假设我们有一个一阶传递函数模型,可以通过以下代码进行稳态分析:```num = [1];den = [1, 1];sys = tf(num, den);step(sys)```通过绘制系统的阶跃响应曲线,我们可以观察到系统的稳态特性。
现代控制系统分析与设计——基于matlab的仿真与实现

现代控制系统分析与设计——基于matlab的仿真与实现近年来,随着工业技术的飞速发展,控制系统逐渐成为工业自动化过程中不可缺少的重要组成部分,因此其分析与设计也会受到人们越来越多的关注。
本文从控制系统的分类出发,介绍了基于Matlab 的分析与仿真方法,并结合详细的实例,展示了最新的Matlab软件如何用来设计现代控制系统,及如何实现仿真结果。
一、控制系统分类控制系统是将完整的物理系统划分为几个部分,通过规定条件把这些部分组合起来,共同完成某一特定任务的一种技术。
控制系统可分为离散控制系统和连续控制系统,离散控制系统的尺度以脉冲的形式表现,而连续控制系统的尺度以连续变量的形式表现,常见的连续控制系统有PID、环路反馈控制等。
二、基于Matlab的分析与仿真Matlab是一款实用的高级计算和数学工具,具有智能语言功能和图形用户界面,可以进行复杂数据分析和可视化。
Matlab可以用来开发控制系统分析与仿真,包括:数学建模,系统建模,状态估计与观测,数据处理,控制算法研究,仿真实验及系统原型开发等。
此外,Matlab还可以利用其它技术,比如LabVIEW或者C程序,将仿真结果实现在实物系统上。
三、实现现代控制系统分析与设计基于Matlab的现代控制系统分析与设计,需要从以下几个方面进行考虑。
1.数学建模:Matlab支持多种数学计算,比如代数运算、矩阵运算、曲线拟合等,可以用来建立控制系统的数学模型。
2.系统建模:Matlab可以用于控制系统的建模和仿真,包括并行系统建模、混沌建模、非线性系统建模、时滞建模、系统设计建模等。
3.状态估计与观测:Matlab可以用来计算系统状态变量,并且可以根据测量信号估计系统状态,用于系统诊断和控制。
4.数据处理:Matlab可以用来处理控制系统中的大量数据,可以更好地研究控制系统的特性,以便进行更好的设计和控制。
5.算法研究:Matlab可以用来研究新的控制算法,以改进控制系统的性能。
基于MATLAB 的自动控制原理实验仿真系统的设计

基于MATLAB 的自动控制原理实验仿真系统的设计基于MATLAB 的自动控制原理实验仿真系统的设计基于MATLAB 的自动控制原理实验仿真系统的设计田晴,张茁(河北联合大学电气工程学院,河北唐山063000)摘要:MATLAB的图形用户界面(GUI)为基于对象的可视化编程,本文以此为基础,进行了自动控制原理实验仿真系统的软件设计,仿真实验系统囊括了控制理论的大部分要点,较实验室传统性实验更全面、具体。
应用GUIDE的设计,该系统操作简单,知识点表现清晰明了,学生能够在轻松的环境下,且不受地域时域的限制,掌握控制理论知识。
关键词:自动控制原理;实验仿真系统;MATLAB;GUIDE基金项目:河北联合大学教育教学改革项目,项目编号:Y1340-10一、引言《自动控制原理》是自动化专业的基础课程,是控制科学与工程学科的一门方法论课程,主要培养学生掌握控制系统的分析和设计方法,其内容之多,理论性之强,决定了课程学习的难度。
而实验课作为课堂教学的辅助内容,是培养学生自主性和创新性的重要环节。
目前实验室的实验教学采用模拟电路实验台,将集成电路模块进行连线,形成典型系统,通过示波器观察响应曲线。
传统性实验训练了学生对以传递函数为核心的控制系统与模拟电路系统之间的联系的认识和实践能力,但也存在其局限性:(1)价格昂贵,占地很大,因为实验台有限,只能几个同学共用一个实验台,难以满足几百学生实验教学的需要;(2 )同一个实验,教师要对学生分拨讲解,重复进行,浪费人力、物力;(3 )由于实验设备的长期工作,造成电容积分饱和,致使出现实验误差;(4 )实验设备高度集成,操作性复杂,参数变化有限,局限了综合性设计性实验的开展;(5 )实验室难以做到全开放性,学生实验受地域和时域的限制。
因此,研制实验仿真系统是解决上述问题的有效措施。
二、软件的总体结构设计MATLAB的图形用户界面(GUI)可实现可视化编程,不仅形象生动、互动友善、操作灵活,而且为人们提供了定性定量结合、局域全域结合、时域频域结合、模拟数字结合的数据探索、科学分析的仿真平台。
MATLAB控制系统的仿真

C R
x1 x2
0 1
L
u
L
y [1
0]
x1 x2
[0]u
•
x Ax bu
y CT x du
• 没有良好的计算工具前:系统建立、变换、分析、设 计、绘图等相当复杂。
• MATLAB控制系统软件包以面向对象的数据结构为基 础,提供了大量的控制工程计算、设计库函数,可以 方便地用于控制系统设计、分析和建模。
Transfer function:
s+1 ------------s^2 + 5 s + 6
Matlab与系统仿真
22
应用——系统稳定性判断
系统稳定性判据: 对于连续时间系统,如果闭环极点全部在S平面左半平面,
则系统是稳定的;
若连续时间系统的全部零/极点都位于S左半平面, 则系统是——最小相位系统。
Matlab与系统仿真
38
4.2 动态特性和时域分析函数
(一)动态特性和时域分析函数表 (二)常用函数说明 (三)例子
Matlab与系统仿真
39
(一)动态特性和时域分析函数表 ——与系统的零极点有关的函数
表8.6前部分p263
Matlab与系统仿真
40
——与系统的时域分析有关的函数
Matlab与系统仿真
Matlab与系统仿真
8
4.1 控制工具箱中的LTI对象
Linear Time Invariable
(一)控制系统模型的建立 (二)模型的简单组合 (三)连续系统和采样系统变换(*略)
Matlab与系统仿真
9
(一)控制系统模型的建立
➢ MATLAB规定3种LTI子对象:
• Tf 对象—— 传递函数模型 • zpk 对象—— 零极增益模型 • ss 对象—— 状态空间模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于matlab的自动控制系统的仿真设计
自动控制系统是现代工业、交通、军事等领域中不可或缺的一部分,它可以通过各种传感器和执行器来实现对系统的控制,从而使得系统能够自动地运行,并且在遇到各种干扰和扰动时能够自动地进行调节和控制。
为了更好地研究和设计自动控制系统,我们需要借助于各种软件和工具来进行仿真和设计,其中MATLAB是最为常用的一种
工具。
本文将介绍基于MATLAB的自动控制系统的仿真设计。
一、MATLAB的基本介绍
MATLAB是一种数学软件,它可以用来进行各种数学计算、数据
分析和可视化等操作。
同时,MATLAB还可以用来进行各种工程和科
学领域的模拟和仿真,包括自动控制系统的仿真设计。
MATLAB的优
点在于它具有较好的可扩展性和灵活性,可以通过各种工具箱和插件来扩展其功能。
二、自动控制系统的基本概念
自动控制系统是由各种传感器、执行器和控制器组成的一个系统,它的主要目的是对系统进行控制和调节,使其能够达到所需的状态。
自动控制系统一般可以分为开环控制和闭环控制两种类型。
开环控制是指控制系统中没有反馈回路的一种控制方式,它主要通过输入信号来控制输出信号。
闭环控制是指控制系统中有反馈回路的一种控制方式,它主要通过反馈信号来控制输出信号。
闭环控制相比于开环控制具有更好的稳定性和鲁棒性。
三、自动控制系统的仿真设计
自动控制系统的仿真设计是指通过计算机模拟和仿真来对自动控制系统进行设计和优化。
MATLAB是一种常用的自动控制系统仿真工具,它可以通过各种工具箱和插件来进行自动控制系统的仿真和设计。
下面我们将以一个简单的控制系统为例来介绍自动控制系统的仿真设计。
1.控制系统的建模
在进行自动控制系统的仿真设计前,我们需要先对控制系统进行建模。
控制系统的建模一般可以分为两种方式,一种是基于物理模型的建模,另一种是基于数学模型的建模。
在本例中,我们将采用基于数学模型的建模方式。
假设我们要设计一个简单的温度控制系统,它的控制目标是使得系统的温度保持在一个稳定的水平。
我们可以将该系统建模为一个一阶惯性系统,其数学模型可以表示为:
$$
G(s)=frac{K}{1+Ts}
$$
其中,$K$为系统的增益,$T$为系统的时间常数,$s$为Laplace 变换中的复变量。
通过对系统进行建模,我们可以得到系统的传递函数,从而进行仿真和设计。
2.控制系统的仿真
在进行控制系统的仿真时,我们需要首先确定仿真的目标,例如控制系统的稳态响应、动态响应、鲁棒性等指标。
然后,我们可以通过MATLAB中的Simulink工具来构建控制系统的仿真模型,并进行仿
真和分析。
在本例中,我们可以通过Simulink构建一个温度控制系统的仿真模型,如下图所示:

在该仿真模型中,我们可以设置系统的输入信号和输出信号,并对系统的控制器进行调节和优化,以达到所需的控制目标。
通过仿真和分析,我们可以得到系统的稳态响应、动态响应、鲁棒性等指标,并进行优化和调节。
四、自动控制系统的应用
自动控制系统在现代工业、交通、军事等领域中应用广泛。
例如,在工业生产中,自动控制系统可以用来控制生产流程、提高生产效率和质量;在交通运输中,自动控制系统可以用来控制车辆的速度和方向,提高交通安全和效率;在军事领域中,自动控制系统可以用来控制武器系统和战斗机器人等。
通过MATLAB的仿真设计,我们可以更好地设计和优化自动控制系统,提高其稳定性和鲁棒性,从而更好地应用于各种领域中。
五、总结
本文介绍了基于MATLAB的自动控制系统的仿真设计,包括控制系统的建模、仿真和应用等。
通过MATLAB的仿真设计,我们可以更好地设计和优化自动控制系统,提高其稳定性和鲁棒性,从而更好地应用于各种领域中。
同时,我们也需要注意仿真结果与实际应用之间的差异,并进行合理的调节和优化。