职高数学真题数列解析及答案
职高数列知识点及例题(有答案)汇编

数列、数列的定义: 按定顺序排列成的列数叫做数列. 记为:{a n }.即{a n }: a i , a 2,…* a1、本质:数列是定义在正整数集(或它的有限子集)上的函数.2、通项公式:a n =f(n)是a n 关于n 的函数关系. 三、前n 项之和:S n = a i +a 2+…+a例1、已知数列{100-3n},(1)求a 2、a 3 ; (2)此数列从第几项起开始为负项.例2已知数列a?的前n 项和,求数列的通项公式: (1) S n = n 2+2 n ; (2) S n =n 2-2 n-1.解:(1)①当n 莹时,a n= S n -S nA =(n 2+2n)-[(n-1)2+2(n-1)]=2n+1;② 当n=1 时,a i =S i =12 +2X 1=;3注求数列通项公式的一个重要方法:Si (n=1)a n — *[Sn — Sn 4 ( n 王 2)二、通项公式:用项数n 来表示该数列相应项的公式 ,叫做数列的通项公式。
③经检验,当n=1时,2n+1=2 x 1+1=3 /. a n=2n+1为所求.(2)① 当n》时,a n二S n-S n」=(n2-2n-1)-[(»1)2+2(n_1)_1]=2n-3;②当n=1 时,a i=S i=l2-2 x 1-1=-2f- 2(n = 1)③经检验,当n=1 时,2n-3=2 x 1-3=2,「• % = ;n_3(n>2)为所求. 注:数列前n项的和S n和通项a n是数列中两个重要的量,在运用它们的关系式a n二S n-S n」时,一定要注意条件门一2,求通项时一定要验证內是否适合例3当数列{100-2n}前n项之和最大时,求n的值.「a n 王0分析:前n项之和最大转化为a彳岂0.等差数列1•如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.即:a ni-a n=d(常数)(n N*)2•通a n = a1 (n -1)d,推广:a n 二a m (n - m)d .项:3•求S n - ( 12n)"务•葺卫d .(关于n的没有常数项的二次函数).和:4冲项:若a、b、c等差数列,贝卩b为a与c的等差中项:2b=a+c5•等差数列的判定方法(1)定义法:a n 1 " a n = d(常数)(n N(2)中项法:2a n 1 = a n a n 吃_ 2(3)通项法:a i (n T)d ⑷前n项和法:S^ An Bn 练习:已知数列{ a n}满足:a i=2,a n = a n岀+3求通项a n.例1在等差数列On冲,已知a4 =9,a9八6,& =63,求n-解:设首项为ai ,公差为d ,例2 (1)设{a n }是递增等差数列,它的前3项之和为12,前3项之积为48, 求这个数列的首项.分析2:三个数成等差数列可设这三个数为:a-d , a , a+d 拓展:(1)若 n+m=2p ,则 a n +a m =2a p .推广:从等差数列中抽取等距离的项组成的数列是一个等差数列。
数学职高高一试题及答案

数学职高高一试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. -3.14C. πD. 0.1010010001…答案:C2. 函数f(x) = 2x^2 - 4x + 3的零点是:A. x = 1/2B. x = 2C. x = -1D. x = 3答案:B3. 等差数列{an}中,a1 = 2,公差d = 3,那么a5的值是:A. 14B. 17C. 20D. 23答案:A4. 已知集合A = {1, 2, 3},B = {2, 4, 6},那么A∩B的值是:A. {1, 2, 3}B. {2, 4, 6}C. {2}D. 空集答案:C5. 直线y = 2x + 1与x轴的交点坐标是:A. (-1/2, 0)B. (0, 1)C. (-1, 0)D. (1, 0)答案:A6. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 100πD. 25答案:C7. 以下哪个选项是复数?A. 3 + 4iB. -2C. √2D. 0.5答案:A8. 函数f(x) = x^3 - 3x^2 + 2x的导数是:A. 3x^2 - 6x + 2B. x^2 - 6x + 2C. 3x^2 - 3x + 2D. x^2 - 3x + 2答案:A9. 一个等边三角形的边长为a,那么它的高是:A. a√3/2B. a√3/3C. a√3D. a/√3答案:A10. 一个圆的周长是6π,那么它的直径是:A. 3B. 6C. 2D. 1答案:A二、填空题(每题4分,共20分)1. 一个数的平方根是2,那么这个数是______。
答案:42. 等比数列{bn}中,b1 = 8,公比q = 1/2,那么b4的值是______。
答案:23. 一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是______。
答案:54. 函数f(x) = x^2 - 6x + 8的最小值是______。
中职数学学业水平测试数列真题汇总

学测考等差数列真题汇总(2015-2019学年)2019:6.在等差数列{}n a 中,已知12a =,98a =,则5=a ( ▲ )A .5B .4±C .6D .1018.已知数列{}n a 中,112n n a a a n +==+,*()n N ∈,则3a =( ▲ )A .3B .4C .5D . 823.2361111+++2222+=( ▲ ) A .55212-B .66212-C .77212-D .6212-29.已知三个数 m ,1, 3 成等比数列,则m 的值为 ▲ .2018:15.已知4,m ,9成等比数列,则=m ( ▲ )A .6B .-6C .213 D .6或-6 16.已知等差数列}{n a 中,首项21=a ,公差3=d ,若32m a =,则m =( ▲ )A .9B .10C .11D .1225.已知数列}{n a 满足121n n a a +=+,且11=a ,则=4a ( ▲ )A .2B .3C .7D .1530.已知等比数列}{n a 中,31=a ,123=a ,则=4a ▲ .35.(6分)已知等差数列}{n a 的前两项11a =,23a =,求:(1)4a ;(2)前10项的和10S .2017:7.在等比数列}{n a 中,若31=a ,244=a ,则公比q 等于( ▲ )A .2B .4C .6D .813.在等比数列}{n a 中,若21=a ,公比3=q ,则其前3项和=3S ( ▲ )A .18B .26C .12D .2424.在等差数列}{n a 中,已知52=a ,114=a ,则其前5项和=5S ( ▲ )A .30B .40C .50D .6030.在数列}{n a 中,若11=a ,()2 351≥∈-=+-n N n a a n n ,,则=3a ▲ .32.(6分)已知等差数列}{n a 的前3项依次为1,m ,7,求:(1)m 的值; (2)的值10a .2016:7.在等差数列{}n a 中,11=a ,2=d ,则这个等差数列的通项公式为( ▲ ) A .22-=n a n B .12-=n a n C .n a n 2= D .12+=n a n9.已知数列{}n a 的通项公式12-=n a n ,则99是它的( ▲ )A .第8项B .第9项C .第10项D .第11项11.等比数列{}n a 满足41=a ,163=a ,则2a =( ▲ )A .10B .20C .4±D .8±17.在等比数列}{n a 中,31=a ,2q =,则该数列的第5项为( ▲ )A .12B .24C .48D .9622.已知数列}{n a 中,12,111+==+n n a a a ()+∈N n ,则=4a ( ▲ )A .1B .3C .7D .1525.在等差数列}{n a 中,已知10615=+a a ,则=20S ( ▲ )A .50B .100C .150D .20028.已知三个数2,m ,8成等差数列,则=m ▲ . 32.(6分)(1)在图中的空格内填数字,要求横向的三个数成等差数列,纵向的三个数成等比数列.第32题图(2)若一个等差数列}{n a 前两项为1,4,求该数列的前8项的和8S .2015:9.已知数列{}n a 的通项公式41n a n =+,则401是它的( ▲ ) A .第98项B .第99项C .第100项D .第101项11.已知三个数2,a ,8成等比数列,则a 的值为( ▲ )A .5B .5±C .16D .4±17.在等比数列}{n a 中,412a =,公比2q =,则7a =( ▲ ) A .1B .116C .4D .222.已知数列}{n a 中,122113(1)n n na a a a a n ++===+≥,,,则4a =( ▲ )A .4B .5C .7D .1124.等差数列}{n a 满足144a =,公差3d =-,当数列前n 项和n S 取到最大值时,n 的值为( ▲ ) A .14B .15C .16D .1728.等差数列{}n a 满足11=a ,39a =,则2a = ▲ . 32.(6分)在等差数列}{n a 中,7342==a a ,,求:(1)该数列的通项公式;(2)该数列的前10项和.14.已知等差数列{}112n a a d =-=中,,,则其前5项和=5S ( ) A. 15 B. 16 C.14 D.1315.已知数列{}1112)n n n a a a a n -=≥中,,=1+2(,则5a =( ) A. 31 B. 7 C. 15 D. 11。
(完整)职高数列知识点及例题(有答案),推荐文档

数列一、数列的定义: 按一定顺序排列成的一列数叫做数列. 记为:{a n }.即{a n }: a 1, a 2, … , a n .二、通项公式:用项数n 来表示该数列相应项的公式,叫做数列的通项公式。
1、本质:数列是定义在正整数集(或它的有限子集)上的函数. 2、通项公式: a n =f(n)是a n 关于n 的函数关系. 三、前n 项之和:S n = a 1+a 2+…+a n注 求数列通项公式的一个重要方法: ⎩⎨⎧≥-==-)2()1(11n s s n s a n nn例1、已知数列{100-3n},(1)求a 2、a 3;(2)此数列从第几项起开始为负项.例2 已知数列{}n a 的前n 项和,求数列的通项公式:(1) n S =n 2+2n ; (2) n S =n 2-2n -1. 解:(1)①当n≥2时,n a =n S -1-n S =(n 2+2n)-[(n -1)2+2(n -1)]=2n+1; ②当n=1时,1a =1S =12+2×1=3;③经检验,当n=1时,2n+1=2×1+1=3,∴n a =2n+1为所求. (2)①当n≥2时,n a =n S -1-n S =(n 2-2n -1)-[(n -1)2+2(n -1)-1]=2n -3; ②当n=1时,1a =1S =12-2×1-1=-2; ③经检验,当n=1时,2n -3=2×1-3=-1≠-2,∴n a =⎩⎨⎧≥-=-)2(32)1(2n n n 为所求. 注:数列前n 项的和n S 和通项n a 是数列中两个重要的量,在运用它们的关系式1n n n a S S -=-时,一定要注意条件2n ≥ ,求通项时一定要验证1a 是否适合例3 当数列{100-2n}前n 项之和最大时,求n 的值.分析:前n 项之和最大转化为10n n a a +≥⎧⎨≤⎩.等差数列1.如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.即:)()(1•+∈=-N n d a a n n 常数2.通项:d n a a n )1(1-+=,推广:d m n a a m n )(-+=.3.求和:d n n na a a n S n n 2)1(2)(11-+=+=.(关于n 的没有常数项的二次函数). 4.中项:若a 、b 、c 等差数列,则b 为a 与c 的等差中项:2b=a+c 5.等差数列的判定方法(1)定义法: )()(1•+∈=-N n d a a n n 常数 (2)中项法:212+++=n n n a a a (3)通项法:d n a a n )1(1-+= (4)前n 项和法:Bn An S n +=2 练习:已知数列{ a n }满足:a 1=2,a n = a 1+n +3,求通项a n .例1 在等差数列{}n a 中,已知.,63,6,994n S a a n 求=-==解:设首项为1a ,公差为d ,则⎩⎨⎧-==⎩⎨⎧+=-+=3188639111d a d a d a 得76:)1(231863==--==∴n n n n n S n或得 例2(1)设{a n }是递增等差数列,它的前3项之和为12,前3项之积为48,求这个数列的首项.分析2:三个数成等差数列可设这三个数为:a -d ,a ,a+d拓展:(1)若n+m=2p ,则a n +a m =2a p .推广:从等差数列中抽取等距离的项组成的数列是一个等差数列。
职高数学基础模块下册复习题及答案

复习题61. 选择题:(1) 已知数列{a n }的通项公式为a n =2n-5,那么a 2n =〔 B 〕。
A 2n-5B 4n-5C 2n-10D 4n-10〔2〕等差数列-7/2,-3,-5/2,-2,··第n+1项为〔 A 〕A )7(21-nB )4(21-nC 42-nD 72-n 〔3〕在等差数列{ a n }中,已知S 3=36,则a 2=〔 B 〕A 18B 12C 9D 6〔4〕在等比数列{a n }中,已知a 2=2,a 5=6,则a 8=〔 C 〕A 10B 12C 18D 242.填空题:〔1〕数列0,3,8,15,24,…的一个通项公式为an=n^2-1.〔2〕数列的通项公式为a n =〔-1〕n+1•2+n,则a 10=8.〔3〕等差数列-1,2,5,…的一个通项公式为an=3n-4.〔4〕等比数列10,1,101,…的一个通项公式为an=10^(2-n) 3.数列的通项公式为a n =sin ,4πn 写出数列的前5项。
解:sin π/4=根号2/2sin π/2=1sin 3π/4=根号2/2sin π =0sin 5π/4=-根号2/24.在等差数列{ a n }中,a 1=2,a 7=20,求S 15.解:an=a1+(n-1)da1=2a7=a1+(7-1)d20=2+6d 所以d=3sn=na1+n(n-1)/2*d 所以s15=15*2+15*14/2*3=3455.在等比数列{ a n }中,a 5=43,q=21-,求S 7. 解:a5=a1*q^(5-1),∴a1=12S7=a1(1-q^6)/(1-q)=63/86. 已知本金p=1000元,每期利i=2%,期数n=5,按复利计息,求到期后的本利和 解:由于以复利计息,故到期时得到的钱为P*〔1+i 〕的n 次〔n 为年数〕此处n=5故本利和为1000*〔1+2%〕的5次方=1104.08元7.在同一根轴上安装五个滑轮,它们的直径成等差数,最小与最大的滑轮直径分别为120厘米与216厘米,求中间三个滑轮的直径.解:216-120=9696/4=24就是说差值为24所以中间3个分别是120+24*1=144120+24*2=168120+24*3=192单位厘米。
数学等比数列试题答案及解析

数学等比数列试题答案及解析1.设数列是等比数列,满足,且,,则()A.B.C.D.【答案】B【解析】由已知得,,又,∵,∴,∴,故,,,所以.【考点】本题考查等比数列通项公式等基础知识,意在考查学生推理和基本的运算能力.2.设是等比数列的前项和,若,则.【答案】【解析】设等比数列的公比为,由已知得,,故,解得,故.【命题意图】本题考查等比数列前n项和以及通项公式等基础知识,意在考查基本运算能力.3.已知等比数列的公比为正数,且,则()A.B.C.D. 2【答案】B.【解析】由已知及等比数列的性质得,故选B.【考点】本题考查等比数列通项公式等知识,意在考查等比数列性质的应用及简单的计算能力.4.(本题满分16分)已知数列的前项和满足:(t为常数,且).(1)求的通项公式;(2)设,试求t的值,使数列为等比数列;(3)在(2)的情形下,设,数列的前项和为,若不等式对任意的恒成立,求实数的取值范围.【答案】(1)(2)见解析(3)【解析】(1)当时,,得. 2分当..时,由,即,①得,,②①②,得,即,所以,所以是首项和公比均为t的等比数列,于是. 5分(2)由(1)知,,即, 7分要使数列为等比数列,必须满足,而,于是,解得,当时,,由,知是首项和公比均为的等比数列. 10分(3)由(2)知,,所以,由不等式恒成立,得恒成立, 12分设,由,所以当时,,当时,, 14分而,所以,即.故k的取值范围是. 16分【命题意图】本题考查等比数列、数列前项和等知识,意在考查运算求解能力,数学综合论证能力.5. .【答案】63【解析】由方程,可得,【考点】本题考查解一元二次方程,等比数列的求和公式。
6. ·江西理)等比数列x,3x+3,6x+6,…的的第四项等于()A.-24B.0C.12D.24【答案】A【解析】由x,3x+3,6x+6成等比数列得选A.【考点】该题主要考查等比数列的概念和通项公式,考查计算能力.7.已知等比数列中,则其前3项的和的取值范围是()A.B.C.D.【答案】D【解析】【解1】∵等比数列中∴当公比为1时,,;当公比为时,,从而淘汰(A)(B)(C)故选D;【解2】∵等比数列中∴∴当公比时,;当公比时,∴故选D;【考点】此题重点考察等比数列前项和的意义,等比数列的通项公式,以及均值不等式的应用;【突破】特殊数列入手淘汰;重视等比数列的通项公式,前项和,以及均值不等式的应用,特别是均值不等式使用的条件;8.若数列{an }是首项为1,公比为a=的无穷等比数列,且{an}各项的和为a,则a的值是()A.1B.2C.D.【答案】B【解析】由.9.已知等比数列{an }为递增数列,且,则数列{an}的通项公式an=______________。
职高数学高考试题及答案

职高数学高考试题及答案题目一:选择题(每题4分,共25题)1. 已知函数$f(x) = 2x^2 + 3x - 4$,则$f(-1)$的值等于()。
A. -8B. -7C. -6D. -52. 在等差数列$\{a_n\}$中,已知$a_1 = 5$,$d = 2$,若$a_{10} = 23$,则$a_2$的值等于()。
A. 9B. 10C. 11D. 123. 函数$f(x) = a^x$($a > 0$)的定义域为全体实数,当$a > 1$时,$f(x)$是()函数。
A. 增函数B. 减函数C. 常数函数D. 正值函数4. 若方程$x^3 - mx^2 + (m - 4)x - 4 = 0$的一个实根是4,则$m$的值等于()。
A. 2B. 4C. 6D. 85. 在等差数列$\{a_n\}$中,已知$a_5 - a_3 = 8$,若$a_2 = 7$,则$d$的值等于()。
A. 1B. 2C. 3D. 46. 抛物线$y = ax^2 + bx + c$的图象关于直线$x = 1$对称,则$a + b + c$的值等于()。
A. -1B. 0C. 1D. 27. 在等差数列$\{a_n\}$中,已知$a_1 = 3$,$a_n = 17$,$S_n = 85$,则$n$的值等于()。
A. 5B. 6C. 7D. 88. 若$\log_2{x} = \log_{\frac{1}{2}}{y}$,则$x$与$y$的关系是()。
A. $x = \frac{1}{y}$B. $x = y$C. $xy = 1$D. $x + y = 0$9. 在等差数列$\{a_n\}$中,$a_1 = 3$,$a_2 = 5$,若$a_1 + a_2 +\ldots + a_n = 2n^2 + n$,则$n$的值等于()。
A. 3B. 4C. 5D. 610. 在平面直角坐标系中,点$A(1, 2)$到直线$2x - y + 3 = 0$的距离等于()。
专题06 数列-【中职专用】河南省近十年对口高考数学真题分类汇编(原卷版)

专题06数列1.(2021年河南对口高考)若工厂每年的总产值以10%的速度增长,如果2021年的总产值为1000万元,那么2024年该厂的总产值为()A.1331万元B.1320万元C.1310万元D.1300万元2.(2021年河南对口高考)在等差数列{}n a 中,13a =,1715a=,则数列{}n a 的公差d 为.3.(2021年河南对口高考)在等比数列{}n a 中,0n a >,24a =,4128S a -=,求数列{}n a 的公比q 为.4.(2020年河南对口高考)在等差数列{}n a 中,知3412a a +=,则数列{}n a 的前6项和6S 等于()A.18B.45C.36D.725.(2020年河南对口高考)在等比数列{}n a 中,23a =,53a =-,则数列{}n a 的公比q 为.6.(2020年河南对口高考)已知等比数列{}n a 中,公比1q ≠,且1n a +,n a ,2n a +成等差数列,求证:等比数列{}n a 的公比2q =-.7.(2019年河南对口高考)已知等差数列{}n a 的前项和为n S ,若32132S S -=,则数列{}n a 的公差d 的值为()A.12B.1-C.2D.38.(2019年河南对口高考)等比数列{}n a 中,公比1q ≠,它的前项和为n S ,若66332S =,且2a ,4a ,3a 成等差数列.(1)求数列{}n a 的通项公式(2)求数列{}n a 的前n 项和nS 9.(2019年河南对口)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为.10.(2018年河南对口高考)设首项为1,公比为32的等比数列{}n a 的前n 项和为n S ,则()A.12-=n n a SB.23-=n n a SC.nn a S 34-= D.nn a S 23-=11.(2018年河南对口高考)设等差数列{}n a 的前n 项和为n S ,若21-=-m S ,0=m S ,31=+m S ,则公差=d .12.(2018年河南对口)已知数列{}n a 是公比不为1的等比数列,n S 为其前n 项和,满足22a =,且116a ,49a ,72a 成等差数列,求3S 的值.13.(2017年河南对口高考)等差数列{}n a 的前n 项和为n S ,若5151912a a S ,则+==A.114B.228C.216D.10814.(2017年河南对口高考)在等差数列{}n a 中,若24351016a a a a ,+=+=,则通项n a =.15.(2017年河南对口)已知数列{}n a 为等差数列,n S 为其前n 项和,5632a a a +=+,则7S =()A .2B .7C .14D .2816.(2016年河南对口高考)若数列数列{}n a 的前n 项和2n S n n =+,则6a =.17.(2016年河南对口高考)在等差数列{}n a 中,若610a =,1420a=,则10a =.18.(2016年河南对口高考)在等比数列{a n }中,若311a a -=,422a a -=,求首项1a 及公比q .19.(2015年河南对口高考)等比数列{}n a 中,若62=a ,123=a ,则6S 等于()A .186B .192C .189D .19520.(2015年河南对口高考)已知三个数成等差数列,其和为18,其平方和为126,求此三个数.21.(2015年河南对口)记S n 为等比数列{a n }的前n 项和.若214613a a a ==,,则S 5=.22.(2014年河南对口高考)等差数列{}n a 中,若35a =,59a =,则6S 等于()A .38B .36C .48D .4623.(2014年河南对口高考)已知数列{}n a 的前n 项和为n S ,且满足11a =和21n n S a =-(其中n N *∈).(1)求数列{}n a 的前四项;(2)求数列{}n a 的通项公式.24.(2014年河南对口)已知数列{}n a 满足211a a -=,其前n 项和为n S ,当2n ≥时,11n S --,n S ,1n S +成等差数列,求证:{}n a 为等差数列.25.(2013年河南对口高考)等比数列{}n a 中,若210a =,320a =,则5S 等于()A .155B .150C .160D .16526.(2013年河南对口高考)有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.27.(2013年河南对口)已知正项等比数列{}n a 的前n 项和为n S ,若418a =,3134-=S a ,则4S =()A .116B .18C .3116D .15828.(2012年河南对口高考)在等差数列{}n a 中,若31710a a +=,则19S 等于()A .65B .75C .85D .9529.(2012年河南对口高考)设{}n a 是公比为q 的等比数列,且243,,a a a 成等差数列,则q =.30.(2012年河南对口)已知等差数列{}n a 的前n 项和为n S ,若471S a =+,474a a +=,则10a =()A .133B .4C .113D .143。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
职高数学真题数列解析及答案
数学作为一门基础学科,在职业高中学习中占据重要的地位。
掌握数学的基本知识和解题技巧,对于职高学生的学业发展至关重要。
在数学考试中,题目类型繁多,其中数列题目常常出现。
本文将围绕
职高数学真题数列进行解析及给出相应答案,帮助读者更好地理解和
掌握数列的相关知识。
一、等差数列
等差数列是数学中最基础的数列类型之一。
考察等差数列的题目通常包括求前n项和、求通项公式等。
下面通过一个具体的例子来讲
解等差数列的解题方法。
例题:某等差数列的首项为3,公差为2,前n项和为120,求该等差数列的第n项。
解析:设该等差数列的第n项为an,则根据等差数列的性质可知:an = a1 + (n - 1)d,其中a1是首项,d是公差。
代入已知条件可得
3 + (n - 1)2 = 120,化简得到 n = 59。
所以第n项an = a1 + (n - 1)d = 3 + (59 - 1)2 = 120。
答案为120。
二、等比数列
等比数列是另一种常见的数列类型。
与等差数列不同的是,等比数列的相邻两项之比是一个固定的常数。
接下来通过一个例题来解析
等比数列的解题方法。
例题:某等比数列的首项是2,公比是3,前n项和是242,求该
等比数列的第n项。
解析:设该等比数列的第n项为an,则根据等比数列的性质可知:an = a1 * r^(n - 1),其中a1是首项,r是公比。
代入已知条件可得2 * 3^(n - 1) = 242, 化简得到 3^(n - 1) = 121。
由此可知 n - 1 = 2,即 n = 3。
所以第n项an = a1 * r^(n - 1) = 2 * 3^2 = 18。
答案为18。
三、无穷等差数列与无穷等比数列
无穷等差数列与无穷等比数列是数列的另外两种形式。
考查这两种数列的题目通常是求其前n项和或特定项的值。
下面通过一个例题
来解析无穷等差数列与无穷等比数列的解题方法。
例题:已知无穷等差数列的首项为5,公差为3,请计算其前10项的和。
解析:由题可知,无穷等差数列的首项为5,公差为3,因此该
等差数列的通项公式为an = 5 + (n - 1)3。
则前10项的和为 S10 = (a1 + a10) * 10 / 2 = (5 + (5 + (10 - 1)3)) * 10 / 2 = (5 + 32) * 10 / 2 = 37 * 5 = 185。
答案为185。
例题:已知无穷等比数列的首项为4,公比为2,请计算其前10项的和。
解析:由题可知,无穷等比数列的首项为4,公比为2,因此该
等比数列的通项公式为an = 4 * 2^(n - 1)。
则前10项的和为 S10 = a1 * (1 - r^10) / (1 - r) = 4 * (1 - 2^10) / (1 - 2) = 4 * (1 - 1024) / (-1) = 4 * (-1023) / (-1) = 4092。
答案为4092。
通过以上例题的解析,我们可以看到数列的解题方法其实并不难,
掌握了相关的公式和基本的数学知识,我们就能够轻松解答各种数列题目。
总结:
本文主要对职高数学真题中的数列题进行了解析,并提供了相关的答案。
数列作为数学中的一个重要知识点,掌握了数列的性质和解题方法,对于学习和了解数学的其他相关内容都非常有帮助。
希望本文对读者在职高数学学习中能够起到一定的辅助作用,并且帮助读者提高解题能力和对数列的理解。