职教高考数学真题及答案解析
2024年广西中职对口数学高考真题-+参考答案

2024年广西壮族自治区中等职业教育对口升学考试真题数学注意事项:1.本试卷共4页,总分100分,考试时间60分钟,请使用黑色中性笔直接在试卷上作答.2.试卷前的项目填写清楚.题号一二三总分评分人得分一、单项选择题(本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个是正确的,请将正确选项填入相应题号下)1.已知集合M ={—1,1,x 2},则x 满足()A.x ≠0且x ≠1B.x ≠-1且x ≠0C.x ≠0D.x ≠±12.函数y=ln √x -1+的定义域为()A.{x |x ≠0且x ≠1} B.{x |x >1}C.{x |x ≥1}D.{x |0<x <1}3.下列函数为奇函数的是()A.f (x )=x 2—1B.f (x )=|x |C.21)(x x x f +=D.f (x )=sin 2x 4.下列各值的大小不正确的是()A.2ln 21<log 23B.(-2)3<(-3)3C.6-2<(-5)-2D.log 23<log 39_____1x (x -1)___5.圆心为(4,-5)且与x 轴相切的圆的方程为()A.(x -4)2+(y +5)2=42B.(x +4)2+(y -5)2=42C.(x +4)2+(y -5)2=52D.(x -4)2+(y +5)2=526.下列说法正确的是()A.若直线l 平行于平面α内的无数条直线,则l //α;B.若直线l 在平面α外,则l //α;C.若l //b,直线b ⊂α,则l //α;D.若l //b ,直线b ⊂α,则l 平行于平面α内无数条直线.7.一个笔筒有2B 24支,另一个笔筒有HB 30支,从中任取一支,则有取法.()A.24种B.30种C.54种D.720种8.从编号为1,2,3,…,10的大小相同的求中任取4个,则4个球中号码最大为7的概率()A.212B.152C.74 D.31二、填空题(本大题共5小题,每小题6分,共30分)9.不等式x 2-x -30≤0的解集为.10.已知α是第二象限的角,且tan α=-3,则cos α=.11.已知平面向量a =(1,k),向量b =(-2,5),则a //b,则k=.12.过点M(a ,-1),N(2,a )的直线,且与直线2y -x +1=0平行,则a =.13.如图,在正方体ABCD-A1B 1C 1D 1中,则异面直线A 1B 与AD 1所成角大小为.三、解答题(本大题共2小题,共30分,答题时应写出文字说明、证明过程或验算步骤)14.在等差数列{a n}中,a n=n+8,求S10.(10分)15.某宾馆有相同标准床位100张,根据经验,当宾馆每天的床价不超过100元时,床位可以全部租出去;当床价超过100元时,每提高10元将有5张床空闲,为了提高效益,该宾馆要给床位定一个合适的价格,而且该宾馆每天支出的费用是5000元.(1)当床价为150元时,当天有多少张空床?(2)写出该宾馆一天出租床位的纯收入y与床价x之间的函数关系式.(3)宾馆床价多少时,纯收入最多?2024年广西壮族自治区中等职业教育对口升学考试真题数学(参考答案)一、选择题。
职高数学试卷高考答案解析

1. 下列各数中,绝对值最小的是()A. -2B. 0C. 1D. -3答案:B解析:绝对值表示一个数与0的距离,0的绝对值为0,其他数的绝对值都大于0,因此绝对值最小的是0。
2. 已知函数f(x) = x^2 - 2x + 1,求f(2)的值。
答案:1解析:将x=2代入函数f(x) = x^2 - 2x + 1中,得到f(2) = 2^2 - 2×2 + 1 = 1。
3. 若|a| + |b| = 5,|a - b|的最大值为()A. 5B. 3C. 2D. 4答案:D解析:由三角不等式可知,|a - b| ≤ |a| + |b|,所以|a - b|的最大值为5。
4. 下列各式中,正确的是()A. a^2 + b^2 = (a + b)^2B. a^2 + b^2 = (a - b)^2C. (a + b)^2 = a^2 + b^2D. (a - b)^2 = a^2 + b^2答案:C解析:根据平方差公式可知,(a + b)^2 = a^2 + 2ab + b^2,(a - b)^2 = a^2 - 2ab + b^2,因此C选项正确。
5. 已知方程x^2 - 4x + 3 = 0,求x的值。
答案:x1 = 1,x2 = 3解析:将方程x^2 - 4x + 3 = 0因式分解得(x - 1)(x - 3) = 0,所以x1 = 1,x2 = 3。
二、填空题1. 若a > 0,b < 0,则|a| + |b| = ________。
答案:a - b解析:由于a > 0,|a| = a;b < 0,|b| = -b,所以|a| + |b| = a - b。
2. 已知函数f(x) = -x^2 + 2x - 1,求f(1)的值。
答案:-2解析:将x=1代入函数f(x) = -x^2 + 2x - 1中,得到f(1) = -1^2 + 2×1 - 1 = -2。
2023年广西中职对口数学高考真题 +参考答案

2023年广西壮族自治区中等职业教育对口升学考试真题数学注意事项:1.本试卷共4页,总分100分,考试时间60分钟,请使用黑色中性笔直接在试卷上作答.2.试卷前的项目填写清楚.一、单项选择题(本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个是正确的,请将正确选项填入相应题号下) 1.下列关系成立的是( )A.0∈∅B.2∈NC.3∈{x |-1<x <3}D.3∈{x |-1<x ≤3} 2.过点(2,0)且与y =2x -1平行的直线方程为( ) A.y =2x -4 B.121+=x yC.y =2x +4D.1-21-x y=3.函数的定义域是( ) A.[2,3] B.[1,3) C.[2,3) D.[1,3] 4.下列函数中,偶函数的是( )A.f (x )=x 2-2xB.f (x )=x 2-3C.f (x )=|x -2|D.f (x )=x+cos x22)3ln(-+-=x x y5.下列各组值的大小正确的是( ) A.log 0.50.7<log 0.53B.0.32<0.33C.ln3<1D.40.8<21.86.已知直线l 和三个不重合的平面α,β,γ,下列说法正确的是( ) A.若α⊥ β,l ⊥β,那么l ⊥ αB.若l // α,l ⊥β,那么α // βC.若α // β,l ⊥α,那么l // βD.若α ⊥ β,β⊥γ,那么α ⊥ γ7.用4种不同的颜色对下图3个区域涂色,要求相连的区域不能使用同一个颜色,则不同的涂法有( ).A.24种B.36种C.48种D.64种8.从数字1,2,3,4中任取两个不同的数字构成一个两位数,则所取位数大于40的概率为( )A.51 B.31C.41D.21二、填空题(本大题共5小题,每小题6分,共30分) 9. 不等式3x 2+2x -1≤0的解集为 . 10.已知角α是锐角,且tan α=21,则sin α= .11.已知平面向量a=(2,-1),向量b =(m,2),则b +7a =(5,-5),则m= .12.已知圆的一般方程为x 2+2x +y 2-4y =0,则圆心坐标为 . 13.如图,在正方体ABCD-A 1B 1C 1D 1,AB=AC=1,则异面直线A 1B 与AD 1所成角大小为 .1 23三、解答题(本大题共2小题,共30分,答题时应写出文字说明、证明过程或验算步骤).(10分)14.已知数1+2,3+22,5+23,......,求数列前6项之和S615.(20分)某医药研发一种甲流新药,如果成年人按规定的剂量服用,据监测:服药后每亳升血液中含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.M(1,4)y=2a-t(1)结合图像,求k与a的值;(2)写出服药后y与t之间的函数关系式;(3)据进一步测定:每毫升血液中含药不少于0.5微克时治疗疾病有效,求服药一次治疗有效时间的范围.2023年广西壮族自治区中等职业教育对口升学考试真题数学(参考答案)一、选择题。
2024河南省中职对口高考数学试题 答案

河南省2024年普通高等学校对口招收中等职业学校毕业生考试数学考生注意:所有答案都要写在答题卡上,写在试卷上无效。
一、选择题(每小题3分,共30分。
每小题中只有一个选项是正确的,请将正确选项涂在答题卡上)1.已知集合A =a ,b ,c ,d ,下列说法错误的(C )A .a ∈AB .b ∈AC .c ∈AD .c ,d ∈A2.设a =2+7,b =3+6,c =2+5下列结论正确的是(A )A .a <b <cB .a <c <bC .b <a <cD .c <b <a解析:a 2=9+214,b 2=9+218,c 2=9+220,因为c 2>b 2>a 2所以c >b >a3.下列函数中,在0,+∞ 上单调递减的为(D )A.y =2x -5B .y =-x 2+x +6C .y =2x 2x +1D .y =1x +14.log 313+log 31+log 313的值为(B )A .-23B .-32C .-43D .-345.设第二象限角α满足tan α=-33,则sin α+π =(B )A .12B .-12C .32D .-32解析:α=5π6,sin (α+π)=-sin 5π6=-126.在复数集中,方程x 2+6x +10=0的根为(D )A .x 1,2=3±i B .x 1,2=±3+i C .x 1,2=±3-iD .x 1,2=-3±i解析:因为(-3+i )+(-3-i )=-6=-b a ,(-3+i )(-3-i )=10=ca,故选D7.等比数列a n a 1≠0 的公比q =2,则a 24a 2⋅a 3=(C )A .2B .4C .8D .168.在空间中,“两直线互相垂直”是“两直线相交”的(D )A .充分条件B .必要条件C .充要条件D .既非充分又非必要条件9.x +1x8的展开式中包含的项有(C)A .常数项B .含x 的项C .含x 2的项D .含x 3的项解析:通项公式为T r +1=C r 8x 8-r (1x)r =C r 8x 8-32r当8-32r =0时,r =163,不成立,当8-32r =1时,r =143,不成立当8-32r =2时,r =4,成立,故选C10.现在有5张相同奖券,其中2张有奖,3张无奖,则连刮2张都中奖的概率为(A )A .110B .15C .310D .25解析:连刮两张都中奖包含1种,共有C 25=10种,概率为110二、填空题(每小题3分,共24分)11.设全集U 是所有小写英文字母组成的集合,A =a ,b ,c ,d ,e ,B =b ,c ,d ,则A ∩C U B ={a ,e }。
中职生高考数学试卷带答案

一、选择题(每题5分,共50分)1. 若函数f(x) = 2x - 3的图像上所有点的横坐标增加1,则对应的函数图像是:A. y = 2x - 2B. y = 2x - 4C. y = 2x - 3D. y = 2x + 1答案:A2. 下列哪个数是无理数?A. √9B. √16C. √25D. √49答案:C3. 已知三角形ABC的三个内角分别为A、B、C,且A = 60°,B = 70°,则角C的度数是:A. 50°B. 60°C. 70°D. 80°答案:A4. 下列哪个不等式是正确的?A. 2x + 3 > 5B. 2x + 3 < 5C. 2x - 3 > 5D. 2x - 3 < 5答案:B5. 若a、b、c是等差数列,且a = 3,b = 5,则c等于:A. 7B. 8C. 9D. 10答案:B6. 已知等比数列的前三项分别为a、ar、ar^2,若a = 2,r = 3,则该数列的第四项是:A. 18B. 24C. 30D. 36答案:D7. 函数y = x^2 - 4x + 4的图像与x轴的交点个数是:A. 1B. 2C. 3D. 4答案:A8. 在直角坐标系中,点A(2, 3),点B(5, 7),则线段AB的长度是:A. 3B. 4D. 6答案:C9. 已知函数y = kx + b的图像是一条直线,且k ≠ 0,则该直线与y轴的交点坐标是:A. (0, k)B. (0, b)C. (k, 0)D. (b, 0)答案:B10. 若a、b、c是等差数列,且a + b + c = 12,则a^2 + b^2 + c^2等于:A. 36B. 48C. 60D. 72答案:A二、填空题(每题5分,共25分)11. 函数f(x) = -x^2 + 4x - 3的顶点坐标是______。
12. 已知等差数列的前三项分别为1,3,5,则该数列的公差是______。
2025职教高考中职数学-三角函数典型例题讲解

7.将函数y=sinx的图象上所有的点向右平移 个单位
10
长度,再把所得各点的横坐标伸长到原来的 2倍(纵坐标
不变),所得图象的函数解析式是
函数y=sinx的图象上的点向右平移 个单位长度可得函数y
10
=sin(x- )的图象;横坐标伸长到原来的2倍(纵坐标不变)可
10
1
1
得函数y=sin( x- )的图象,所以y=sin( x- ).
2
10
2
10
8.函数y=4cos(2x+π)的图象关于
【解析】
因为y=4cos(2x+π)=-4cos2x,函数关于y轴对称
9. 化简sin(x+y)sin(x-y)+cos(x+
y)cos(x-y)的结果是(
)
【解析】
原式=cos(x+y)cos(x-y)+sin(x+y)·sin(x-y)
=cos[(x+y)-(x-y)]=cos2y.
11.计算sin 330°+cos 240°+tan 180°=
●【解析】
原式=-sin 30°-cos
1
60°+0=−
2
−
1
=-1.
2
2
.
2
2
2
,- ),
2
2
4 . 1 − cos 220 2 化简的结果为(
●解析
)
1 − cos 220 2 =|sin220°|,又220°为第三象限角,所
以sin220°<0,故 1 − cos 220 2 =-sin220°.
5.若sin(
【解析】
2
− )<0,且cos(
职教高考数学试卷答案解析

一、选择题1. 答案:A解析:根据题意,函数 $f(x) = x^2 - 4x + 4$ 是一个开口向上的抛物线,其顶点坐标为 $(2, 0)$,因此函数在 $x=2$ 时取得最小值。
故选 A。
2. 答案:C解析:等差数列的通项公式为 $a_n = a_1 + (n-1)d$,其中 $a_1$ 是首项,$d$ 是公差。
根据题意,$a_5 = 15$,$a_8 = 23$,可以列出方程组:$$\begin{cases}a_1 + 4d = 15 \\a_1 + 7d = 23\end{cases}$$解得 $a_1 = 3$,$d = 3$。
所以等差数列的第五项为 $a_5 = 3 + 4 \times 3 = 15$,故选 C。
3. 答案:B解析:根据题意,等比数列 $\{a_n\}$ 的前三项之和为 $21$,公比为 $q$,可以列出方程:$$a_1 + a_1q + a_1q^2 = 21$$当 $q = 1$ 时,$a_1 = 7$;当 $q \neq 1$ 时,$a_1 = 3$。
因此,等比数列的第三项为 $a_3 = 3 \times 3 = 9$,故选 B。
4. 答案:D解析:根据题意,函数 $y = ax^2 + bx + c$ 的图象开口向下,对称轴为 $x = -1$,顶点坐标为 $(-1, -2)$。
因此,$a < 0$,$b = -2a$,$c = -a - 2a = -3a$。
代入选项验证,只有选项 D 满足条件,故选 D。
二、填空题5. 答案:$\frac{1}{2}$解析:根据题意,等差数列 $\{a_n\}$ 的前 $n$ 项和为 $S_n = 2n^2 - n$,所以第 $n$ 项为 $a_n = S_n - S_{n-1} = 4n - 3$。
当 $n = 5$ 时,$a_5 = 4\times 5 - 3 = 17$,故填 $\frac{17}{2}$。
今年职高高考数学试卷答案

一、选择题(每题5分,共50分)1. 选择题答案:D解析:本题考查了实数的概念。
根据实数的定义,实数包括有理数和无理数。
选项D中既包含了有理数又包含了无理数,符合实数的定义。
2. 选择题答案:B解析:本题考查了函数的基本性质。
由于函数y=2x是增函数,所以当x1<x2时,有y1<y2。
因此,选项B正确。
3. 选择题答案:C解析:本题考查了三角函数的周期性。
正弦函数y=sin(x)的周期为2π,因此选项C正确。
4. 选择题答案:A解析:本题考查了二次函数的图像与性质。
由于二次函数y=ax^2+bx+c的开口方向由a的正负决定,a>0时开口向上,因此选项A正确。
5. 选择题答案:D解析:本题考查了数列的概念。
根据数列的定义,数列是由按照一定顺序排列的一列数构成的。
选项D中给出了数列的定义,因此正确。
二、填空题(每题10分,共30分)6. 填空题答案:-2解析:本题考查了解一元二次方程。
根据一元二次方程的解法,有x1=-b+√(b^2-4ac)/2a,x2=-b-√(b^2-4ac)/2a。
将a=1,b=3,c=1代入,得x1=-2,x2=1。
7. 填空题答案:π/3解析:本题考查了三角函数的值。
由于sin(π/3)=√3/2,因此选项π/3是正确的。
8. 填空题答案:-4解析:本题考查了二次函数的最小值。
二次函数y=ax^2+bx+c的最小值出现在顶点处,顶点的x坐标为-x/(2a)。
将a=1,b=-2代入,得x=1,将x=1代入函数得y=-4。
三、解答题(每题20分,共40分)9. 解答题答案:(1)函数y=f(x)在区间[0,2]上单调递增,因此f(2)>f(1)>f(0)。
(2)根据函数的单调性,有f(2)>f(1)>f(0)>f(-1)。
(3)由f(2)>f(1),得f(2)-f(1)>0;由f(1)>f(0),得f(1)-f(0)>0;由f(0)>f(-1),得f(0)-f(-1)>0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
职教高考数学真题及答案解析
职教高考是学生在职业教育阶段进行的一项重要考试。
数学是其中的一门必考科目,对于广大职教学子来说,数学的学习和备考都具有重要意义。
为了帮助学生更好地应对职教高考数学考试,本文将对一些过去的真题进行解析,以帮助学子们提高备考效率和应试水平。
第一部分:选择题
选择题是职教高考数学考试的重点。
以下是一道典型的选择题,我们一起来看一下如何解答。
【题目】某公司的成本与销量之间存在如下的函数关系:当月固定成本为4000元,每销售一件产品公司的盈利为销售额与100的差。
设某月销售量为x件,销售额为y元,则该月的成本为()
A. 4000元
B. 4000 + x * 100元
C. 4000 + y * 100元
D. 4000 + (x * y) / 100元
【选项分析】
根据题意可知,成本与销量之间存在函数关系,且成本包括固定成本和盈利。
因此,答案应为固定成本加上销售额与100的差。
【解答】
答案为B. 4000 + x * 100元。
第二部分:填空题
填空题在职教高考数学考试中也有一定比重。
以下是一个典型的
填空题,我们一起来解答一下。
【题目】某公司一款产品的销售价格是x元,已知该产品的总销
售量为y件,总销售额为z元。
则z与x、y之间的关系为______。
【解答】
根据题目中的信息,我们可以得出销售额等于销售价格乘以销售量。
因此,z = x * y。
第三部分:解答题
解答题在职教高考数学考试中一般较为复杂,需要一定的计算和
推理能力。
以下是一个典型的解答题,我们一起来解答一下。
【题目】某公司预计某种产品的固定成本为2000元,每销售一
件产品公司的盈利为销售额与100的差,现该公司计划提高销售量以
增加盈利。
若每增加一件销售量,公司的总盈利将增加700元。
某月
销售量增加了多少件?
【解答】
设月销售量增加的件数为x件,那么根据题意可得,总盈利的增
加量为700元,根据每销售一件产品的盈利公式,我们可以列出方程:
700 = x * 100
解方程可得,x = 7。
因此,该月销售量增加了7件。
结语:
职教高考数学考试对学生们的数学基础和解题能力都提出了一定
的要求。
通过对真题的解析,我们希望能帮助学生们更好地理解考点
和解题技巧。
同时,我们也希望广大职教学子们能够在备考过程中保
持积极的学习态度,多做习题,不断提高自己的解题能力和应试水平,顺利通过职教高考。