高中数学 选修4-4参数方程讲义
高中数学人教A版选修4-4第二讲 一 1. 参数方程的概念 课件

[解] 法一:设 P 点的坐标为(x,y),过
P 点作 x 轴的垂线交 x 轴于 Q.如图所示,则 Rt△OAB≌Rt△QBP.
∴xy==bascions
θ, θ.
这就是所求的轨迹方程.
9.如图所示,OA是圆C的直径,且OA=2a, 射线OB与圆交于Q点,和经过A点的切线 交于B点,作PQ⊥OA,PB∥OA,试求点P 的轨迹方程.
解:设 P(x,y)是轨迹上任意一点,取∠DOQ=θ, 由 PQ⊥OA,PB∥OA,得 x=OD=OQcosθ=OAcos2θ= 2acos2θ,y=AB=OAtan θ=2atan θ. 所以 P 点轨迹的参数方程为xy==22aatcaons2θθ,, θ∈-π2,π2.
解析:x轴上的点横坐标可取任意实数,纵坐标为0.
答案:D
2.若点P(4,a)在曲线x=2t , (t为参数)上,则a等于(
)
y=2 t
A.4
B.4 2
C.8
D.1
解析:根据题意,将点P坐标代入曲线方程中得
4=2t , a=2 t
⇒ta==84,2.
答案:B
3.在方程
参数方程是曲线方程的另一种表达形式,点与曲线 位置关系的判断,与平面直角坐标方程下的判断方法是 一致的.
1.已知点 M(2,-2)在曲线 C:x=t+1t , (t 为参数)上, y=-2
则其对应的参数 t 的值为________. 解:由 t+1t =2 知 t=1. 答案:1
2.已知某条曲线 C 的参数方程为xy==a1t+2 2t, (其中 t 为参数, a∈R).点 M(5,4)在该曲线上,求常数 a.
人教版高中数学选修4-4课件 参数方程的概念

参数方程是曲线方程的另一种表达形式,点与曲线 位置关系的判断,与平面直角坐标方程下的判断方法是 一致的.
16
3.曲线(x-1)2+y2=4上的点可以表示为( )
A.(-1+cos θ,sin θ)
B.(1+sin θ,cos θ)
C.(-1+2cos θ,2sin θ) D.(1+2cos θ,2sin θ)
a2-t2,
(0<t<a).
7
法二:设点 P 的坐标为(x,y),过点 P 作 x 轴的垂线 交 x 轴于点 Q,如图所示.
取∠QBP=θ, θ 为参数(0<θ<π2), 则∠ABO=π2-θ. 在 Rt△OAB 中, |OB|=acos(π2-θ)=asin θ.
8
在 Rt△QBP 中,
|BQ|=acos θ,|PQ|=asin θ.
∴点 P 在第一象限的轨迹的参来自方程为x=asin θ+cos θ, y=asin θ.
(θ 为参数,0<θ<π2).
9
求曲线参数方程的主要步骤 第一步,画出轨迹草图,设M(x,y)是轨迹上任 意一点的坐标.画图时要注意根据几何条件选择点的 位置,以利于发现变量之间的关系.
10
第二步,选择适当的参数.参数的选择要考虑以下两点: 一是曲线上每一点的坐标x,y与参数的关系比较明显,容易列 出方程;二是x,y的值可以由参数唯一确定.例如,在研究运 动问题时,通常选时间为参数;在研究旋转问题时,通常选旋 转角为参数.此外,离某一定点的“有向距离”、直线的倾斜角、 斜率、截距等也常常被选为参数.
1
2
1.参数方程的概念 在平面直角坐标系中,曲线上任一点的坐标 x,y 都是 某个变数 t(θ,φ,…)的函数:xy==gftt ①,并且对于每一 个 t 的允许值,方程组①所确定的点(x,y)都在这条曲线上, 那么方程组①就叫这条曲线的 参数方程 ,t 叫做参数,相对 于参数方程而言,直接给出坐标间关系的方程叫普通方程 .
人教A版数学【选修4-4】ppt课件:2-2第二讲-参数方程

【解】
如图所示:
由动点C在该椭圆上运动,故可设C的坐标为(6cosθ,3sinθ), 点G的坐标为(x,y),由题意可知A(6,0),B(0,3),由三角形重心坐 标公式可知:
x=6+0+6cosθ=2+2cosθ, 3 0+3+3sinθ y= =1+sinθ. 3 x-22 由此,消去参数θ,得到所求的普通方程为 4 +(y-1)2= 1.
x-1=cosθ, 3 【解】 (1)由题意可设 y+2 =sinθ, 5
x=1+ 3cosθ, y=-2+ 5sinθ
即
(θ为参数)为所求.
2 2 x y (2)x2-y2=4变形为: 4 - 4 =1.
x=2secα, ∴参数方程为 y=2tanα
2 x = 2 pt , 2 2.抛物线y =2px(p>0)的参数方程为 y=2pt
y 1 由于 x = t ,因此参数t的几何意义是抛物线上除顶点外的点与 抛物线的顶点连线的斜率的倒数. 3.几个结论 x2 y2 (1)焦点在y轴上的椭圆的标准方程为 b2 + a2 =1(a>b>0),其参 数方程是 [0,2π).
x2 y2 a2+b2=1
x=acosφ, y=bsinφ
x2 y2 a2-b2=1
x=asecφ, y=btanφ
点的坐标
(rcosθ, rsinθ)
(acosφ,bsinφ)
(asecφ,btanφ)
这三种曲线的参数方程都是参数的三角形式.其中圆的参数θ 表示旋转角,而椭圆、双曲线的参数φ表示离心角,几何意义是不 同的,它们的参数方程主要应用价值在于: (1)通过参数(角)简明地表示曲线上任一点的坐标; (2)将解析几何中的计算问题转化为三角问题,从而运用三角 函数性质及变换公式帮助求解最值、参数的取值范围等问题.
高三数学精品课件: 选修4-4 坐标系与参数方程

首页 上页 下页 尾页
[主干知识·自主梳理]
小题诊断
重温教材 自查自纠
1.椭圆 C 的参数方程为
x=5cos φ, y=3sin φ
(φ
为参数),过左焦
点
F1
的直线
l
与
C 相交于 18
A,B
两
点,则|AB|min=___5_____.
由yx==35scions
φ, φ
(φ 为
参数)得,2x52 +y92=1,
将 ∴xy==直 t1-+2线-1t2+3=l t的,2-t参2(,数t 为t方1t参2程=数代-),入74曲,y线2=C4x的,极整坐理标得方4程t2+为8ρt-sin72=θ=0,4cos
θ.设直线 l ∴ |AB| =
与-曲3线2+C 2相2 |t交1 -于t2A| =,B1两3 ×点,t则1+|At2B2|=-_4_t1_t2_1=_4_3__1.3
-圆4心sinCθ的相坐交标于为A(1,,B-两2)点,,半若径|ArB=|=52,3所,以则圆实心数Ca 到的直值线为
_的_-_距_5_离或__为-__|11_+__2.+a|= 2
r2-|A2B|2= 2,解得 a=-5 或 a
=-1.故实数 a 的值为-5 或-1.
[主干知识·自主梳理] [考点分类·深度剖析] 课时作业
[主干知识·自主梳理] [考点分类·深度剖析] 课时作业
首页 上页 下页 尾页
[主干知识·自主梳理] 重温教材 自查自纠
解析:∵ρsin2α-4cos α=0,∴ρ2sin2α=4ρcos α, ∴曲线 C 的直角坐标方程为 y2=4x. 由xy==22tt,+1, 消去 t,得 x=y+1. ∴直线 l 的普通方程为 x-y-1=0. 点 M(1,0)在直线 l 上,
人教版高中数学选修4-4课件:第二讲一第2课时圆的参数方程

3.参数方程x=11-+tt22,(t 为参数),化为普通方程为 y=1+2tt2
() A.x2+(y-1)2=1
B.(x-1)2+y2=1
C.(x-1)2+(y-1)2=1 D.x2+y2=1
1-t2 1-x 解析:x=1+t2,1+x=t2
代入
y=1+2tt2,
|1-(-2)+m|
则
2
=2,解得 m=-3±2 2.
类型 2 利用圆的参数方程求轨迹
[典例 2] 如图,圆 O 的半径为 2,P 是圆上的动点, Q(6,0)是 x 轴上的定点,M 是 PQ 的中点.当点 P 绕点 O 作匀速圆周运动时,求点 M 的轨迹的参数方程.
解:设点 M 的坐标为(x,y),∠POQ=θ,取 θ 为参
(2)圆(x-x0)2+(y-y0)2=r2 的参数方程为 ___xy_==__yx_00++__rr_sc_ion_s_θθ_,__(_θ_为__参__数__)_.__
温馨提示 圆的参数方程不唯一,选取的参数不同,
相应的参数方程也不同.
[思考尝试·夯基]
1.思考判断(正确的打“√”,错误的打“×”).
(1)求圆 C 的普通方程及直线 l 的直角坐标方程; (2)设圆心 C 到直线 l 的距离等于 2,求 m 的值.
解:(1)消去参数 t,得到圆的标准方程为(x-1)2+(y
+2)2=9. 由 2ρsin(θ-π4)=m,得 ρsin θ-ρcos θ-m=0. 所以直线 l 的直角坐标方程为 x-y+m=0. (2)依题意,圆心 C 到直线 l 的距离等于 2,
2.利用圆的参数方程容易解决一些与圆有关的最值 和取值范围问题.
求最值问题时,利用圆的参数方程来将问题合理地转 化,常用的方法是建立代数与三角函数的联系,利用三角 函数的值域求解,解决此类问题还要注意数形结合思想的 应用.
选修4-4参数方程PPT课件

实 战 沙 场
切
点
脉 搏
为极轴建立极坐标系,曲线 C2 的极坐标方程是 ρ=2,正方形
兵
核
心 突
ABCD 的顶点都在 C2 上,且 A,B,C,D 依逆时针次序排列,
破
课
点 A 的极坐标为(2,π3).
时 提 升
练
菜单
高三总复习·数学(理)
提
素
养
满
分
研
指
动
导
向
考
纲 考
(1)求点 A,B,C,D 的直角坐标;
由于当 t>0 时,t+1t ≥2;
演 实
战
切
当 t<0 时,t+1t ≤-2,于是|x|≥2.
沙 场 点
脉
兵
搏 核
∴方程 y=0(|x|≥2)表示 x 轴上以(-2,0)和(2,0)为端点的
心
突 向左和向右的两条射线.
破
课
时
提
升
练
菜单
高三总复习·数学(理)
提
素
养
满
分
研
指
动
导
向
考
纲
参数方程、普通方程互化的方法:
指 导
向
考 线.
纲
考
演
向
x=1-3t, (1)y=4t
(t 为参数);
实 战 沙 场
切
点
脉 搏 核 心
x=1+4cos t, (2)y=-2+4sin t
(t 为参数,0≤t≤π);
兵
突
破
x=2+sin2θ, (3)y=-1+cos 2θ
(θ 为参数).
课 时 提 升
练
北师大版数学高二选修4-4讲义第二讲参数方程1参数方程的概念

【综合评价】参数方程是以参变量为中介来表示曲线上的点的坐标的方程,是曲线在同一坐标系下的又一种表示形式.某些曲线上点的坐标,用普通方程描述它们之间的关系比较困难,甚至不可能,列出的方程既复杂又不易理解,而用参数方程来描述曲线上点的坐标的间接关系比较方便,学习参数方程有助于学生进一步体会数学方法的灵活多变,提高应用意识和实践能力.【学习目标】1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义.并掌握参数方程的概念.2.分析直线、圆和圆锥曲线的几何性质,选择适当的参数写出它们的参数方程.3.举例说明某些曲线用参数方程表示比用普通方程表示更方便,更能感受参数方程的优越性.4.借助教具或计算机软件,观察圆在直线上滚动时圆上定点的轨迹(平摆线)、直线在圆上滚动时直线上定点的轨迹(渐开线),了解平摆线和渐开线的生成过程,并能推导出它们的参数方程.5.通过阅读材料,了解其他摆线(变幅平摆线、变幅渐开线、外摆线、内摆线、环摆线)的生成过程;了解摆线在实际中应用的实例(例如,最速降线是平摆线,椭圆是特殊的内摆线——卡丹转盘,圆摆线齿轮与渐开线齿轮,收割机、翻土机等机械装置的摆线原理与设计,星形线与公共汽车门);了解摆线在刻画行星运动轨道中的作用.【学习计划】内容学习重点建议学习时间参数方程的概念参数方程的概念1课时直线和圆锥曲线的参数方程直线的参数,圆的参数方程,椭圆的参数方程,双曲线的参数方程5课时参数方程化成普通方程参数方程和普通方程的互化2课时平摆线和渐开线平摆线、渐开线2课时1.参数方程的概念(1)一般地,在取定的坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数⎩⎨⎧x=f(t),y=g(t),①并且对于t取的每一个允许值,由方程组①所确定的点P(x,y)都在这条曲线上,那么方程组①就叫作这条曲线的参数方程,联系x,y之间关系的变数t叫作参变数,简称参数.相对于参数方程,我们把直接用坐标(x,y)表示的曲线方程f(x,y)=0叫作曲线的普通方程.(2)在参数方程中,应明确参数t的取值范围.对于参数方程x=f(t),y=g(t)来说,如果t的取值范围不同,它们表示的曲线可能是不相同的.如果不明确写出其取值范围,那么参数的取值范围就理解为x=f(t)和y=g(t)这两个函数的自然定义域的交集.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.(2)在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.【思维导图】【知能要点】 1.参数方程的概念. 2.求曲线的参数方程. 3.参数方程和普通方程的互化.题型一 参数方程及其求法1.曲线的普通方程直接地反映了一条曲线上的点的横、纵坐标之间的联系,而参数方程是通过参数反映坐标变量x 、y 间的间接联系.在具体问题中的参数可能有相应的几何意义,也可能没有什么明显的几何意义.曲线的参数方程常常是方程组的形式,任意给定一个参数的允许取值就可得到曲线上的一个对应点,反过来对于曲线上任一点也必然对应着其中的参数的相应的允许取值.2.求曲线参数方程的主要步骤:第一步,画出轨迹草图,设M (x ,y )是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以利于发现变量之间的关系.第二步,选择适当的参数.参数的选择要考虑以下两点:一是曲线上每一点的坐标x ,y 与参数的关系比较明显,容易列出方程;二是x ,y 的值可以由参数惟一确定.第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略.【例1】 设质点沿以原点为圆心,半径为2的圆作匀角速度运动,角速度为π60rad/s.试以时间t 为参数,建立质点运动轨迹的参数方程. 解 如图所示,运动开始时质点位于点A 处,此时t =0,设动点M (x ,y )对应时刻t ,由图可知⎩⎨⎧x =2cos θ,y =2sin θ,又θ=π60t (t 的单位:S),故参数方程为⎩⎪⎨⎪⎧x =2cos π60t ,y =2sin π60t .【反思感悟】 以时间t 为参数,在图形中分别寻求动点M 的坐标和t 的关系.1.已知定直线l 和线外一定点O ,Q 为直线l 上一动点,△OQP 为正三角形(按逆时针方向转,如图所示),求点P 的轨迹方程. 解 以O 点为原点,过点O 且与l 垂直的直线为x 轴,过点O 与l 平行的直线为y 轴建立直角坐标系.设点O 到直线l 的距离为d (为定值,且d >0), 取∠xOQ =θ为参数, θ∈⎝ ⎛⎭⎪⎫-π2,π2, 设动点P (x ,y ).在Rt △OQN 中, ∵|OQ |=dcos θ,|OP |=|OQ |, ∠xOP =θ+π3, ∴x =|OP |cos ⎝ ⎛⎭⎪⎫π3+θ=d cos θ·cos ⎝ ⎛⎭⎪⎫π3+θ=⎝ ⎛⎭⎪⎫12-32tan θ·d , y =|OP |·sin ⎝ ⎛⎭⎪⎫π3+θ=d cos θ·sin ⎝ ⎛⎭⎪⎫π3+θ=⎝ ⎛⎭⎪⎫32+12tan θ·d . ∴点P 的参数方程为⎩⎪⎨⎪⎧x =⎝ ⎛⎭⎪⎫12-32tan θd ,y =⎝ ⎛⎭⎪⎫32+12tan θd ⎝ ⎛⎭⎪⎫-π2<θ<π2. 题型二 参数方程和普通方程的互化参数方程化为普通方程,消去参数方程中的参数即可,通过曲线的普通方程来判断曲线的类型.由普通方程化为参数方程要选定恰当的参数,寻求曲线上任一点M 的坐标x ,y 和参数的关系,根据实际问题的要求,我们可以选择时间、角度、线段长度、直线的斜率、截距等作为参数.【例2】 已知某条曲线C 的参数方程为⎩⎨⎧x =1+2t y =at 2(其中t 是参数,a ∈R ),点M (5,4)在该曲线上. (1)求常数a ;(2)求曲线C 的普通方程.分析 本题主要应根据曲线与方程之间的关系,可知点M (5,4)在该曲线上,则点M 的坐标应适合曲线C 的方程,从而可求得其中的待定系数,进而消去参数得到其普通方程.解 (1)由题意可知有⎩⎨⎧1+2t =5,at 2=4,故⎩⎨⎧t =2,a =1.∴a =1.(2)由已知及(1)可得,曲线C 的方程为⎩⎨⎧x =1+2t ,y =t 2.由第一个方程得t =x -12代入第二个方程,得 y =⎝⎛⎭⎪⎫x -122,即(x -1)2=4y 为所求. 【反思感悟】 参数方程化为普通方程时,求参数的表达式应从简单的有唯一结论的式子入手,易于代入消参.2.把下列参数方程化为普通方程.⎩⎨⎧x =3+cos θ,y =2-sin θ,解 由已知得⎩⎨⎧cos θ=x -3,sin θ=2-y .由三角恒等式sin 2θ+cos 2θ=1,可知(x -3)2+(y -2)2=1这就是所求的普通方程.【例3】 选取适当的参数,把普通方程x 216+y 29=1化为参数方程. 解 设x =4cos φ,代入椭圆方程,得16cos 2φ16+y 29=1.∴y 2=9(1-cos 2φ)=9sin 2φ,即y =±3sin φ.由参数φ的任意性可知y =3sin φ.故所求参数方程为⎩⎨⎧x =4cos φ,y =3sin φ(φ为参数).【反思感悟】 选取的参数不同,所得曲线的参数方程不同,注意普通方程和参数方程的等价性.3.选取适当参数,把直线方程y =2x +3化为参数方程.解 选t =x ,则y =2t +3,由此得直线的参数方程⎩⎨⎧x =t ,y =2t +3(t ∈R ).也可选t =x+1,则y =2t +1,参数方程为⎩⎨⎧x =t -1,y =2t +1.1.已知曲线C 的参数方程是:⎩⎨⎧x =3t ,y =2t 2+1(t 为参数).(1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值.解 (1)把点M 1的坐标(0,1)代入方程组,得:⎩⎨⎧0=3t ,1=2t 2+1 解得:t =0.∴点M 1在曲线C 上.同理,可知点M 2不在曲线C 上. (2)∵点M 3(6,a )在曲线C 上,∴⎩⎨⎧6=3t ,a =2t 2+1,解得:t =2,a =9.∴a =9. 2.将下列曲线的参数方程化为普通方程,并指明曲线的类型. (1)⎩⎨⎧x =a cos θ,y =b sin θ(θ为参数,a 、b 为常数,且a >b >0);(2)⎩⎪⎨⎪⎧x =a cos φ,y =b tan φ (φ为参数,a 、b 为正常数); (3)⎩⎨⎧x =2pt 2,y =2pt (t 为参数,p 为正常数).解 (1)由cos 2θ+sin 2θ=1,得x 2a 2+y 2b 2=1 (a >b >0),它表示的曲线是椭圆.(2)由已知1cos φ=x a ,tan φ=yb ,由1cos 2φ=1+tan 2φ,有x 2a 2-y 2b 2=1,它表示的曲线是双曲线. (3)由已知t =y 2p ,代入x =2pt 2得y 24p 2·2p =x , 即y 2=2px 它表示的曲线是抛物线.3.两曲线的参数方程为⎩⎨⎧x =3cos θ,y =4sin θ (θ为参数)和⎩⎨⎧x =-3t 2,y =-4t 2(t 为参数),求它们的交点坐标.解 将两曲线的参数方程化为普通方程, 得x 29+y 216=1,y =43x (x ≤0).联立解得它们的交点坐标为⎝ ⎛⎭⎪⎫-322,-22. 4.△ABC 是圆x 2+y 2=r 2的内接三角形,已知A (r ,0)为定点,∠BAC =60°,求△ABC 的重心G 的轨迹方程.解 因为∠BAC =60°,所以∠BOC =120°,于是可设B (r cos θ,r sin θ),C (r cos(θ+120°),r sin(θ+120°)),重心坐标为(x ,y ), 则⎩⎪⎨⎪⎧x =r +r cos θ+r cos (θ+120°)3,y =r sin θ+r sin (θ+120°)3,消去θ得(3x -r )2+(3y )2=r 2,所以△ABC 重心G 的轨迹方程为⎝ ⎛⎭⎪⎫x -r 32+y 2=r29 (0≤x ≤r 2).[P 28思考交流]把引例中求出的铅球运动轨迹的参数方程消去参数t 后,再将所得方程与原方程进行比较,体会参数方程的作用.答⎩⎨⎧x =v 0t cos α,y =h +v 0t sin α-12gt2其中v 0、α,h 和g 都是常数.这里的g 是重力加速度.h 是运动员出手时铅球的高度.消去参数t 整理得:y =-g2v 20cos 2αx 2+x ·tan x +h .参数方程的作用:当参数t 每取一个允许值,就可以相应地确定一个x 值和一个y 值.这样铅球的位置就相应的确定了.这样建立的t 与x ,y 之间的关系不仅方便,而且清晰地反映了变数的实际意义.如x =v 0t cos α反映了铅球飞行的水平距离. y =h +v 0t sin α-12gt 2反映了铅球的高度与飞行时间的关系.总之它是物理学中弹道曲线的方程. 【规律方法总结】1.求轨迹的参数方程,可以通过对具体问题的分析,选择恰当的参数,建立参数方程.2.曲线的参数方程和普通方程可以互化,两种方程具有等价性.3.曲线上点的坐标如果需要单独表示,使用参数方程比较方便.一、选择题1.下列各点在方程⎩⎨⎧x =sin θ,y =cos 2θ(θ是参数)所表示曲线上的点是( )A.(2,-7)B.⎝ ⎛⎭⎪⎫13,23 C.⎝ ⎛⎭⎪⎫12,12 D.(1,0)解析 由已知可得⎩⎪⎨⎪⎧x =sin θ,y =1-2sin 2θ,将选项代入上式即可.∴x =12时,y =12.故应选C. 答案 C2.将参数方程⎩⎨⎧x =2+sin 2 θ,y =sin 2 θ(θ为参数)化为普通方程为( )A.y =x -2B.y =x +2C.y =x -2 (2≤x ≤3)D.y =x +2 (0≤y ≤1)解析 将参数方程中的θ消去,得y =x -2.又x ∈[2,3],故选C. 答案 C3.曲线(x -1)2+y 2=4上的点可以表示为( ) A.(-1+cos θ,sin θ) B.(1+sin θ,cos θ) C.(-1+2cos θ,2sin θ)D.(1+2cos θ,2sin θ)解析 可设⎩⎪⎨⎪⎧x -1=2cos θ,y =2sin θ,∴⎩⎪⎨⎪⎧x =1+2cos θ,y =2sin θ,∴曲线x 的点可表示为(1+2cos θ,2sin θ). 答案 D4.直线l 的参数方程为⎩⎨⎧x =a +t ,y =b +t (t 为参数),l 上的点P 1对应的参数是t 1,则点P 1与P (a ,b )之间的距离为( ) A.|t 1| B.2|t 1| C.2|t 1|D.22|t 1|解析 点P 1对应的点的坐标为(a +t 1,b +t 1), ∴|PP 1|=(a +t 1-a )2+(b +t 1-b )2=2t 21=2|t 1|.答案 C5.参数方程⎩⎪⎨⎪⎧x =t 2+2t +3y =t 2+2t +2表示的曲线是( )A.双曲线x 2-y 2=1B.双曲线x 2-y 2=1的右支C.双曲线x 2-y 2=1,但x ≥0,y ≥0D.以上结论都不对解析 平方相减得x 2-y 2=1,但x ≥2,y ≥1. 答案 D 二、填空题6.已知曲线⎩⎨⎧x =2sin θ+1,y =sin θ+3(θ为参数,0≤θ<2π).下列各点A (1,3),B (2,2),C (-3,5),其中在曲线上的点是________.解析 曲线方程可化为x -2y +5=0,将A ,B ,C 三点坐标代入曲线的参数方程可知只有A 符合. 答案 A7.物体从高处以初速度v 0(m/s)沿水平方向抛出,以抛出点为原点,水平直线为x 轴,物体所经路线的参数方程为________.解析 设物体抛出的时刻为0 s ,在时刻t s 时其坐标为M (x ,y ),由于物体作平抛运动,依题意,得⎩⎨⎧x =v 0t ,y =-12gt 2,这就是物体所经路线的参数方程. 答案 ⎩⎪⎨⎪⎧x =v 0t ,y =-12gt 2(t 为参数)8.以过点A (0,4)的直线的斜率k 为参数,将方程4x 2+y 2=16化成参数方程是__________.解析 设直线为y =kx +4,代入4x 2+y 2=16化简即可.答案⎩⎪⎨⎪⎧x =-8k 4+k 2,y =16-4k 24+k 29.将参数方程⎩⎨⎧x =sin θ+cos θy =sin θcos θ化成普通方程为__________. 解析 应用三角变形消去θ,同时注意到|x |≤ 2.答案 x 2=1+2y (|x |≤2)三、解答题10.已知曲线C :⎩⎨⎧x =cos θ,y =-1+sin θ,如果曲线C 与直线x +y +a =0有公共点,求实数a 的取值范围.解 ∵⎩⎨⎧x =cos θ,y =-1+sin θ,∴x 2+(y +1)2=1.圆与直线有公共点,d =|0-1+a |2≤1, 解得1-2≤a ≤1+ 2.11.已知圆的极坐标方程为ρ2-42ρcos ⎝ ⎛⎭⎪⎫θ-π4+6=0. (1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;(2)若点P (x ,y )在该圆上,求x +y 的最大值和最小值.解 (1)由ρ2-42ρcos ⎝ ⎛⎭⎪⎫θ-π4+6=0得ρ2-4ρcos θ-4ρsin θ+6=0, 即x 2+y 2-4x -4y +6=0为所求,由圆的标准方程(x -2)2+(y -2)2=2,令x -2=2cos α,y -2=2sin α,得圆的参数方程为⎩⎨⎧x =2+2cos α,y =2+2sin α(α为参数). (2)由上述可知x +y =4+2(cos α+sin α)=4+2sin(α+π4),故x +y 的最大值为6,最小值为2.12.如图所示,OA 是圆C 的直径,且OA =2a ,射线OB 与圆交于Q 点,和经过A 点的切线交于B 点,已知动点P 满足PQ ⊥OA 于D ,PB ∥OA ,试求点P 的轨迹方程. 解 设点P 坐标为(x ,y ), 则B (2a ,y ),D (x ,0).在Rt △OAB 中,tan θ=AB OA ,∴AB =OA ·tan θ,即y =2a ·tan θ.在Rt △OAQ 中,cos θ=OQ OA ,∴OQ =OA ·cos θ,在Rt △OQD 中,cos θ=OD OQ ,∴OD =OQ ·cos θ,∴OD =OA ·cos 2θ,即x =2a · cos 2θ.即有⎩⎨⎧x =2a cos 2θ,y =2a tan θθ∈⎝ ⎛⎭⎪⎫-π2,π2,化为普通方程为:xy 2+4a 2x =8a 3. 13.在长为a 的线段AB 上有一个动点E ,在AB 的同侧以AE 和EB 为斜边,分别作等腰直角三角形AEC 和EBD ,点P 是CD 的定比分点,且CP ∶PD =2∶1,求点P 的轨迹.解 建立如图所示坐标系(设C ,D 在x 轴上方).设E (t ,0)(t 为参数,t ∈[0,a ]),B (a ,0),则点C 的坐标为⎝ ⎛⎭⎪⎫t 2,t 2,点D 的坐标为⎝ ⎛⎭⎪⎫a +t 2,a -t 2. ∵CP ∶PD =2∶1,即λ=2.由定比分点公式,有⎩⎪⎨⎪⎧x =t 2+2·12(a +t )1+2=16(2a +3t ),y =t 2+2·12(a -t )1+2=16(2a -t )t ∈[0,a ],这就是点P 运动轨迹的参数方程.习题2-1 (第28页)1.解 以摩托车起飞点为原点,水平向前方向为x 轴正方向建立平面直角坐标系,则摩托车飞行轨迹的参数方程为⎩⎪⎨⎪⎧x =19t cos 12°,y =19t sin 12°-12gt 2(g 为重力加速度,时间t 为参数) 2.物体受三个力的作用;地球对物体的引力(重力)mg ;向上的支撑力F 1=mg cos θ;摩擦力F 2=mg sin θ.3.解 以炮弹的出发点为原点,水平向前方向为x 轴正方向建立平面直角坐标系,则炮弹的弹道轨迹的参数方程为⎩⎪⎨⎪⎧x =v 0t cos α,y =v 0t sin α-12gt 2(g 为重力加速度,时间t 为参数).。
高考数学大一轮复习 第2节 参数方程课件(选修4-4)

完整版ppt
1
[考情展望] 1.了解参数方程,了解参数的意义.2.能选择 适当的参数写出直线、圆和椭圆曲线的参数方程.
完整版ppt
2
1.曲线的参数方程 一般地,在平面直角坐标系中,如果曲线上任意一点的
x=ft, 坐标 x,y 都是某个变数 t 的函数y=gt 并且对于 t 的每一个
x=a-2t, y=-4t
(t
为参数),圆
C
的参数方程为xy==44csions
θ, θ
(θ
为参数).
(1)求直线 l 和圆 C 的普通方程;
(2)若直线 l 与圆 C 有公共点,求实数 a 的取值范围.
完整版ppt
9
【解】 (1)直线 l 的普通方程为 2x-y-2a=0, 圆 C 的普通方程为 x2+y2=16. (2)因为直线 l 与圆 C 有公共点, 故圆 C 的圆心到直线 l 的距离 d=|-25a|≤4, 解得-2 5≤a≤2 5.
完整版ppt
14
对点训练 (2014·课标全国卷Ⅰ)已知曲线 C:x42+y92=1, 直线 l:xy= =22+ -t2,t (t 为参数).
(1)写出曲线 C 的参数方程,直线 l 的普通方程; (2)过曲线 C 上任意一点 P 作与 l 夹角为 30°的直线,交 l 于点 A,求|PA|的最大值与最小值.
(φ 为参数)
完整版ppt
5
考向一 参数方程与普通方程的互化
(2015·郑州质检)在平面直角坐标系 xOy 中,直线
l 的参数方程为xy= =t2+t 1, (t 为参数),曲线 C 的参数方程为
x=2tan2θ, y=2tan θ
(θ 为参数).试求直线 l 和曲线 C 的普通方程,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
——基础梳理——1.椭圆的参数方程(1)中心在原点,焦点在x 轴上的椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是__________.规定参数φ的取值范围为__________.(2)中心在(h ,k)的椭圆的普通方程为-a2+-b2=1,则其参数方程为__________. 2.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x2a2-y2b2=1(a >0,b >0)的参数方程是__________.规定参数φ的取值范围为__________.(2)中心在原点,焦点在y 轴上的双曲线y2a2-x2b2=1(a >0,b >0)的参数方程是__________. 3.抛物线的参数方程(1)抛物线y2=2px(p >0)的参数方程为__________,t ∈__________.(2)参数t 的几何意义是__________.[答案]1.(1)⎩⎪⎨⎪⎧x =acos φy =bsin φ(φ为参数) [0,2π) (2)⎩⎪⎨⎪⎧ x =h +acos φy =k +bsin φ(φ为参数) 2.(1)⎩⎪⎨⎪⎧ x =asec φy =btan φ(φ为参数) [0,2π),且φ≠π2,φ≠3π2(2)⎩⎪⎨⎪⎧ x =btan φy =asec φ(φ为参数) 3.(1)⎩⎪⎨⎪⎧ x =2pt2y =2pt (t 为参数) (-∞,+∞)(2)抛物线上除顶点外的任意一点与原点连线的斜率的倒数自主演练1.已知方程x2+my2=1表示焦点在y 轴上的椭圆,则()A .m <1B .-1<m <1C .m >1D .0<m <1[解析]方程化为x2+y21m=1,若要表示焦点在y 轴上的椭圆,需要1m>1,解得0<m <1.故应选D.2.已知90°<θ<180°,方程x 2+y 2cos θ=1表示的曲线是( )A .圆B .椭圆C .双曲线D .抛物线[解析]当90°<θ<180°时,-1<cos θ<0,方程x 2+y 2cos θ=1表示的曲线是双曲线.故应选C.[答案]C3.直线y =ax +b 经过第一、二、四象限,则圆⎩⎪⎨⎪⎧x =a +rcos θ,y =b +rsin θ(θ为参数)的圆心位于第几象限() A .一 B .二 C .三 D .四[解析]直线y =ax +b 经过第一、二、四象限,则a <0,b >0,而圆心坐标为(a ,b),所以位于第二象限.[答案]B4.椭圆⎩⎪⎨⎪⎧x =acos θ,y =bsin θ(θ为参数),若θ∈[0,2π],则椭圆上的点(-a,0)对应的θ为( ) A .π B.π2 C .2π D.32π [解析]由已知acos θ=-a ,∴cos θ=-1,又θ∈[0,2π],∴θ=π.故选A.[答案]A5.二次曲线⎩⎪⎨⎪⎧ x =5cos θ,y =3sin θ(θ是参数)的左焦点的坐标为__________.[解析]原方程消去参数θ,得普通方程为x225+y29=1.它是焦点在x 轴上的椭圆,a2=25,b2=9,c2=a2-b2=16,c =4,所以左焦点坐标是(-4,0).6.圆锥曲线⎩⎪⎨⎪⎧ x =4sec θ,y =3tan θ(θ是参数)的渐近线方程是________________,实轴长是__________.[解析]原方程可化为⎩⎪⎨⎪⎧ x 4=sec θ,y 3=tan θ,因为sec2θ-tan2θ=1,所以x216-y29=1.它是焦点在x 轴上的双曲线,∴a2=16.∴双曲线的渐近线为y =±34x ,且实轴长为8. [答案]y =±34x 8——题型探究——题型一 椭圆的参数方程及应用【例1】已知A ,B 分别是椭圆x 236+y 29=1的右顶点和上顶点,动点C 在该椭圆上运动,求△ABC 的重心G 的轨迹方程. 【分析】△ABC 的重心G 取决于△ABC 的三个顶点的坐标,为此需要把动点C 的坐标表示出来,可考虑用参数方程的形式.【解析】由题意知A(6,0),B(0,3),由于动点C 在椭圆上运动,故可设动点C 的坐标为(6cos θ,3sin θ),点G 的坐标设为(x ,y),由三角形重心的坐标公式可得⎩⎪⎨⎪⎧ x =6+0+6cos θ3y =0+3+3sin θ3,即⎩⎪⎨⎪⎧ x =2+2cos θy =1+sin θ,消去参数θ得到-24+(y -1)2=1. 【评析】本题的解法体现了椭圆的参数方程对于解决相关问题的优越性,运用参数方程显得很简单,运算更简便. 变式训练在椭圆x225+y216=1中有一内接矩形,问内接矩形的最大面积是多少? [解析]椭圆的参数方程为⎩⎪⎨⎪⎧ x =5cost ,y =4sint (t 为参数),设第一象限内椭圆上任一点M(x ,y),由椭圆的对称性,知内接矩形的面积为S =4xy =4³5cost³4sint=40sin2t.当t =π4时,面积S 取得最大值40,此时,x =5cos π4=522,y =4sin π4=22,因此,矩形在第一象限的顶点为⎝ ⎛⎭⎪⎫522,22,此时内接矩形的面积最大,且最大面积为40. 题型二 双曲线的参数方程及应用【例2】求点M0(0,2)到双曲线x2-y2=1的最小距离(即双曲线上任一点M 与点M0距离的最小值).【分析】化双曲线方程为参数方程,对||MM0建立三角函数求最值.【解析】把双曲线方程化为参数方程⎩⎪⎨⎪⎧ x =sec θ,y =tan θ.设双曲线上动点M(sec θ,tan θ),则||M0M 2=sec2θ+(tan θ-2)2=(tan2θ+1)+(tan2θ-4tan θ+4)=2tan2θ-4tan θ+5=2(tan θ-1)2+3,当tan θ-1=0即θ=π4时,||M0M 2取最小值3,此时有||M0M =3,即M0点到双曲线的最小距离为 3. 【评析】在求解一些最值问题时,用参数方程来表示曲线的坐标,将问题转化为三角函数求最值,能简化运算过程.变式训练设P 为等轴双曲线x2-y2=1上的一点,F1,F2为两个焦点,证明:||F1P ²||F2P =||OP 2.[解析]如图所示,设双曲线上的动点为P(x ,y),焦点F1(-2,0),F2(2,0),双曲线的参数方程为⎩⎪⎨⎪⎧ x =sec θ,y =tan θ,得(||F1P ²||F2P )2=[(sec θ+2)2+tan2θ]²[(sec θ-2)2+tan2θ]=(sec2θ+22sec θ+2+tan2θ)²(sec2θ-22sec θ+2+tan2θ)=(2sec2θ+1)2-(22sec θ)2=4sec4θ-4sec2θ+1=(2sec2θ-1)2,又||OP 2=sec2θ+tan2θ=2sec2θ-1,由此得||F1P ²||F2P =||OP 2.题型三 抛物线的参数方程及应用【例3】如图,O 是直角坐标原点,A ,B 是抛物线y2=2px(p >0)上异于顶点的两动点,且OA ⊥OB ,点A ,B 在什么位置时,△AOB 的面积最小?最小值是多少?【分析】利用抛物线的参数方程,将△AOB 面积用其参数表示,再利用均值不等式求最值.【解析】根据题意,设点A ,B 的坐标分别为(2pt21,2pt1),(2pt22,2pt2)(t1≠t2,且t1²t2≠0),则 ||OA =21+=2p ||t1t21+1, ||OB =2+=2p ||t2t22+1.因为OA ⊥OB ,所以OA →²OB →=0,即2pt21²2pt 2+2pt1²2pt2=0,所以t1²t2=-1.△AOB 的面积为S △AOB =12||OA ²||OB =12²2p ||t1t21+1²2p ||t2t22+1 =2p2||t1t221+2+=2p2t21+t22+2=2p2t21+1t21+2 ≥2p22+2=4p2. 当且仅当t21=1t21,即t1=1,t2=-1时,等号成立. 所以点A ,B 的坐标分别为(2p,2p),(2p ,-2p)时,△AOB 的面积最小,最小值为4p2.变式训练已知抛物线y2=2px ,过顶点两弦OA ⊥OB ,求以OA 、OB 为直径的两圆的另一个交点Q 的轨迹方程.[解析]设A(2pt21,2pt1),B(2pt22,2pt2),则以OA 为直径的圆的方程为x2+y2-2pt21x -2pt1y =0,以OB 为直径的圆的方程为x2+y2-2pt22x -2pt2y =0,即t1,t2为方程2pxt2+2pty -x2-y2=0的两根,∴t1t2=-+2px .又OA ⊥OB ,∴t1t2=-1,∴x2+y2-2px =0(x≠0),∴另一交点Q 的轨迹是以(p,0)为圆心,p 为半径的圆(除去(0,0)点).题型四 圆锥曲线参数方程的综合应用【例4】已知双曲线x2a2-y2b2=1(a >0,b >0)的动弦BC 平行于虚轴,M 、N 是双曲线的左、右顶点. (1)求直线MB 、CN 的交点P 的轨迹方程;(2)若P(x1,y1),B(x2,y2),求证:a 是x1,x2的比例中项.【分析】将双曲线方程化为参数方程.(1)利用交轨法求解;(2)即x1x2=a2【解析】(1)由题意可设点B(asec θ,btan θ),则点C(asec θ,-btan θ),又M(-a,0),N(a,0),∴直线MB的方程为y =btan θasec θ+a (x +a),直线CN 的方程为y =btan θa -asec θ(x -a).将以上两式相乘消去参数θ,得点P 的轨迹方程为x2a2+y2b2=1. (2)证明:因为点P 既在MB 上,又在CN 上,由两直线方程消去y1得x1=a sec θ,而x2=asec θ,所以有x1x2=a2,即a 是x1,x2的比例中项.【评析】利用圆锥曲线的参数方程解决圆锥曲线综合问题时要根据条件使用不同方法,如方程的思想、函数思想、数形结合思想等.变式训练抛物线y2=4x 的内接三角形的一个顶点在原点,其重心恰是抛物线的焦点,求内接三角形的周长.[解析]如图,y2=4x 焦点F(1,0),设A 点坐标为(4t2,4t),t 为参数,且t >0,则B 点坐标为(4t2,-4t). AF 斜率为kAF =4t 4t2-1,∴AF :y =4t 4t2-1(x -1). 而OB 的中点(2t2,-2t)应在直线AF 上,∴-2t =4t 4t2-1(2t2-1),∵t≠0,∴-1=24t2-1(2t2-1), ∴t2=38,t =64,∴A 点坐标为⎝ ⎛⎭⎪⎫32,6, 则||AB =26,||OA =⎝ ⎛⎭⎪⎫322+6=332. ∴△OAB 的周长为||AB +2||OA =26+33.课内巩固1.椭圆⎩⎪⎨⎪⎧ x =4+5cos φy =3sin φ(φ为参数)的焦点坐标为( )A .(0,0),(0,-8)B .(0,0),(-8,0)C .(0,0),(0,8)D .(0,0),(8,0) [解析]利用平方关系化为普通方程-25+y29=1,c2=16,c =4,中心(4,0),焦点在x 轴上,∴焦点为(0,0),(8,0).也可以直接画出椭圆的示意图,排除A ,B ,C.故应选D.2.与参数方程为⎩⎨⎧ x =t ,y =21-t (t 为参数)等价的普通方程为( )A .x2+y24=1 B .x2+y24=1(0≤x≤1) C .x2+y24=1(0≤y≤2) D .x2+y24=1(0≤x≤1,0≤y≤2)[解析]x2=t ,y24=1-t =1-x2,x2+y24=1,而t≥0,0≤1-t≤1,得0≤t≤1,即0≤x≤1,0≤y≤2.3.参数方程⎩⎪⎨⎪⎧ x =et -e -t ,y =et +e -t (t 为参数)表示的曲线是( )A .双曲线B .双曲线的下支C .双曲线的上支D .圆[解析]由已知得x +y =2et ,y -x =2e -t ,两式相乘得y2-x2=4.又y =et +e -t≥2.∴方程表示双曲线y24-x24=1上支.4.椭圆⎩⎪⎨⎪⎧ x =3+17cos θ,y =8sin θ-2(θ为参数)的中心坐标为______.[解析]将椭圆的参数方程化为普通方程得-172++82=1,∴椭圆的中心为(3,-2).5.若曲线⎩⎪⎨⎪⎧ x =2pt y =2pt2(t 为参数)上异于原点的不同两点M1,M2所对应的参数分别是t1,t2,则弦M1M2所在直线的斜率是__________.[解析]设M1(2pt1,2pt21),M2(2pt2,2pt22),∴k =2pt21-2pt222pt1-2pt2=t21-t22t1-t2=t1+t2.[答案]t1+t26.求点M0(2,0)到双曲线y2-x2=1的最小距离(即双曲线上任一点M 与点M0距离的最小值).[解析]把双曲线方程化为参数方程⎩⎪⎨⎪⎧ x =tan θ,y =sec θ.设双曲线上动点M(tan θ,sec θ),则||M0M 2=sec2θ+(tan θ-2)2=(tan2θ+1)+(tan2θ-4tan θ+4)=2tan2θ-4tan θ+5=2(tan θ-1)2+3,当tan θ-1=0即θ=π4时,||M0M 2取最小值3,此时有||M0M =3,即M0点到双曲线的最小距离为 3.。