数学:18.1《勾股定理》(第1课时)教案(人教新课标八年级下)

合集下载

人教版八年级数学下册勾股定理第1节《勾股定理》教案

人教版八年级数学下册勾股定理第1节《勾股定理》教案

初中数学《勾股定理》教学设计
(一)教学目标
知识与技能:
1、了解勾股定理的文化背景,体验勾股定理的探索过程,了解利用拼图验证勾股定理。

2、了解勾股定理的内容。

3、能利用已知两边求直角三角形另一边的长。

过程与方法:
1、通过拼图活动,体验数学思维的严谨性,发展形象思维。

2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。

情感与态度:
1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。

2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培养合作意识和探索精神。

(二)教学重、难点
重点:探索和证明勾股定理。

难点:用拼图方法证明勾股定理。

(三)教学手段:
1、使用导学法,讨论法。

2、运用合作交流学习的方式。

3、运用多媒体辅助教学。

4、调动学生动手操作,帮助理解。

(四)准备工作:
多媒体课件片段,辅助难点突破。

(五)教学程序
B
C
D
E
4和6,求底边上的高能够成为直角三角形三条边长的三个正整数,我们称之为勾股数,观察下列表格所给的三个数a,。

新人教版八年级数学下册勾股定理(第一课时)教案(精品教学设计)

新人教版八年级数学下册勾股定理(第一课时)教案(精品教学设计)

勾股定理(第一课时)(新授课)【理论支持】《数学课程标准》中指出:学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地观察、实验、猜想、验证、推理与交流等数学活动.有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式.同时新课程改革要求我们:将数学教学置身于学生自主探究与合作交流的数学活动中;将知识的获取与能力的培养置身于学生形式各异的探索经历中;关注学生探索过程中的情感体验,并发展实践能力及创新意识.为学生的终身学习及可持续发展奠定坚实的基础.勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大.教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用.【教学目标】【教学重难点】1.重点:勾股定理的证明及运用.2.难点:勾股定理的证明.【课时安排】一课时【教学设计】课前延伸一、思考下列问题:(1)三角形三边关系(2)分别画一个锐角三角形和一个钝角三角形,用刻度尺量出各边的长度(3)分别计算锐角三角形和钝角三角形较小两边的平方和与较大边的平方有何大小关系?(4)猜想直角三角形中较小两边的平方和与第三边的平方的关系.〖答案〗(1)略.(2)略.(3)锐角三角形较短两边的平方和大于较大边的平方,钝角三角形较短两边的平方和小于较大边的平方.(4)相等.〖设计说明〗心理学认为:认知从感知开始,感知是认知的门户,是一切知识的来源.让学生通过画图、测量、比较,从感性上认识到直角三角形三边之间的特殊数量关系.二、预习思考题1.一个直角三角形的两条直角边分别为5cm、12cm,那么这个直角三角形斜边为.2.如图,要将楼梯铺上地毯,则需要米长的地毯.〖答案〗(1)13;(2)7.〖设计说明〗让学生在课前预习时初步了解勾股定理的内容,从而不由自主地用“勾股定理”来解题,同时又体会到了勾股定理在实际生活中的应用.课内探究一、导入新课:创设情境,唤出勾股定理学生观看教材封面图形,大家对它有什么样的了解?〖设计说明〗使学生在上这节课时就对勾股定理历史背景有全面的理解,从而使学生认识到勾股定理的重要性,学习勾股定理是非常必要的,激发学生的学习兴趣,同时,这一活动,也是一次对学生进行爱国主义教育、培养民族自豪感的好机会,可以激励他们奋发向上,同时培养他们的自学能力、归类总结等能力.二、探索新知问题:毕达哥拉斯是古希腊著名的数学家.相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系.(1)同学们,请你也来观察下图中的地面,看看能发现些什么?地面(2)你能找出图中正方形A、B、C面积之间的关系吗?(3)图中正方形A、B、C所围等腰直角三角形三边之间有什么特殊关系?〖答案〗(1)略.(2)正方形A与正方形B的面积和等于正方形C的面积.(3)两直角边的平方和等于斜边的平方.〖设计说明〗通过讲述故事来进一步激发学生学习兴趣,使学生在不知不觉中进入学习的最佳状态.“问题是思维的起点”,通过层层设问,引导学生发现新知.三、深入探究(1)等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也具有“两直角边的平方和等于斜边的平方”呢?如图,每个小方格的面积均为1,以格点为顶点,有一个直角边分别是2、3的直角三角形.仿照上一活动,我们以这个直角三角形的三边为边长向外作正方形.(2)想一想,怎样利用小方格计算正方形A、B、C面积?(3)猜想:直角三角形三边有何数量关系?〖答案〗(1)一般的直角三角形也具备两直角边的平方和等于斜边的平方.(2)略.(3)两直角边的平方和等于斜边的平方.〖设计说明〗渗透从特殊到一般的数学思想.为学生提供参与数学活动的时间和空间,发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力,使学生在相互欣赏、争辩、互助中得到提高.四、动手、观察、验证(1)让学生利用学具进行拼图.(2)多媒体课件展示拼图过程及证明过程,理解数学的严密性.〖设计说明〗通过这些实际操作,学生进行一步加深对数形结合的理解,拼图也会产生感性认识,也为论证勾股定理做好准备.利用分组讨论,加强了学生之间的合作意识.同时让学生经历所拼图形与多媒体展示图形的联系与区别.这样加强了数学严密教育,从而更好地理解代数与图形相结合.五、检查预习情况:六、随堂练习1.在Rt△ABC,∠C=90°.⑴已知a=b=5,求c.⑵已知a=1,c=2,求b.⑶已知c=17,b=8,求a.⑷已知a:b=1:2,c=5,求a.2.已知直角三角形的两边长分别为5和12,求第三边.〖答案〗(2,(3)15,(4)1.(1)〖设计说明〗刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系.⑴已知两直角边,求斜边直接用勾股定理.⑵⑶已知斜边和一直角边,求另一直角边,用勾股定理的便形式.⑷⑸已知一边和两边比,求未知边.通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边.最后一题让学生明确已知一边和两边关系,也可以求出未知边,学会见比设参的数学方法,体会由角转化为边的关系的转化思想.第2题中已知两边中较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进形计算.让学生知道考虑问题要全面,体会分类讨论思想.七、实际应用1.小明的妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?2.如图,一根旗杆在离地面9m处断裂,旗杆顶部落在离旗杆底部12m处,旗杆折断之前有多高?〖答案〗1.不同意.英寸应该是电视屏幕对角线的长.2.由勾股定理可求得旗杆断裂处到杆顶的长度是:22=15(m),再加上断裂处到地面的距离9m,所以旗912杆折断之前高为24m.〖设计说明〗问题1、2是贴近学生生活有趣的实例,学生可利用勾股定理解决.直角三角形的三边关系告诉我们已知两边可求出第三边.体验勾股定理解决生活中问题的过程.课后提升1.填空题(1)在Rt△ABC,∠B=90°,a=3,b=4,则c= .(2)在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a= ,b= .(3)一个直角三角形的三边为三个连续偶数,则它的三边长分别为.(4)已知直角三角形的两边长分别为3cm和5cm,,则第三边长为.(5)已知等边三角形的边长为2cm,则它的高为,面积为.2.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积.3.一根竹子高5米,折断后竹子顶端落在离竹子底端2米处,问折断处离地面的高度是多少?〖答案〗(5)1.(1)5;(2)6,8;(3)6,8,10;(4)42.48.3.2.1米.〖设计说明〗通过本组练习使学生进一步巩固勾股定理的运用,更有利于让学生及时了解本节课的学习情况,根据答题进行查漏补缺,使自身的一些模糊认识在第一时间得到澄清.美好的未来不是等待,而是孜孜不倦的攀登!。

18.1 .1勾股定理(1)

18.1 .1勾股定理(1)

CA b a八年级(下)数学教学案系列编号班级:姓名:课题:18.1.1勾股定理(第1课时)主备:张荣审核:yz 时间:2012 年 3 月第 5 周尊敬的家长:孩子成绩的提高需要家长的配合,为了孩子的进步,请督促您的孩子在家认真预习,并完成课堂前置和反馈练习。

家长签字:【教学目标】1、了解利用拼图验证勾股定理的方法2、掌握勾股定理的简单应用3、理解勾股定理的一般探究方法【课堂前置】1、任意三角形的三边关系2、三角形中,较小两边的平方和与第三边的平方大小有什么关系?3、观察图1、图2,图中的等腰Rt△ABC的三边,数量上有什么关系?4、图4,你认为在其他Rt△中,图3中的结论还成立吗?5、归纳:如果Rt△ABC的两直角边长为a、b,斜边为c,那么_________________6、你能将上面的结论,用右下图加以证明吗?证明过程:二次备课图1 图2图3B C a b cAD 【学习探究】1、下面图形都是由三个正方形拼成的图形,试求出第三个正方形面积:S 1,S 22、依据题意,填空①在Rt △ABC 中,∠C=90°,a=5,b=12,则c=________②在Rt △ABC 中,∠B=90°,a=3,b=4,则c=③在等腰Rt △ABC 中,∠C=90°,则AC :BC :AB=________________④在Rt △ABC 中,∠C=90°,∠A=30°,则AC :BC :AB=________________⑤已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为_____________3、如图,在Rt △ABC 中,∠C=90°,CD 是斜边AB 上的高 ①若a=6,b=8,求CD 的长;②a=40,c=41,求b ;③若a :b=3 :4, c=15,求b【课堂检测】1、如图,在等腰△ABC 中,AB=10,BC 边上的高AD=8,求BC 的长;S △ABCS 181144400625S 22、已知直角三角形的两边长为4和3,求第三边的长?3、在Rt △ABC 中,周长为12cm ,一直角边为4cm,求斜边的长?【能力提升】1、已知:如图,四边形ABCD 中,AD ∥BC ,AD ⊥DC ,AB ⊥AC ,∠B=60°,CD=25cm ,求AC 、BC 的长。

八年级数学下册18.1勾股定理教案1新人教版

八年级数学下册18.1勾股定理教案1新人教版

第十八章勾股定理科目数学主备人年级八时间课题第十八章勾股定理§18.1勾股定理(一)课时一课时1、了解勾股定理的文化背景,体验勾股定理的探索过程.让学生叙述猜想、画图命题1:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么222c b a =+到目前为止,对这个命题的证明方法已有几百种. 下面,我们就来看一看我国数学家赵爽是怎样证明这个命题的 提问:拼接后的图形是否是由原4个直角三角形和小正方形没有重叠、没有空隙地拼成的?拼接后的图形是什么图形?由此得到:222c b a =+ 小结:这种证法是面积证法.图形割补拼接后,只要没有重叠、没有空隙,面积不会改变 下面介绍另一种拼图的证法:(选讲)做八个全等的直角三角形和分别以a 、b 、c 为边长的三个正方形. 拼成如下两个图形: 大正方形的面积可以表示为 ; 也可以表示为利用这两个图形证明:222c b a =+勾股定理:(P65)如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么222c b a =+.几何语言:∵Rt △ABC 中,∠C =90°∴222a b c +=(勾股定理)例:求出下列直角三角形中未知边的长度(课件) 例:如图,一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?练习:三、课堂小结。

四、作业:习题18.1的第1—3题教学后记:5米BA C12米C ABba ca cba b c a bab abba C AB ba c科目数学主备人年级八时间课题第十八章勾股定理§18.1勾股定理(二)课时一课时教学目标1、利用勾股定理解决实际问题.2、从实际问题中抽象出数学模型,利用勾股定理解决,渗透建模思想和数形结合思想和方程思想.3、运用勾股定理解决与直角三角形相关的问题4、通过研究一系列富有探究性的问题,培养学生与他人交流、合作的意识和品质.5、通过对勾股定理的运用体会数学的应用价值教材分析教学重点:勾股定理的应用.教学难点:勾股定理在实际生活中的应用教法提示启发式教学教学过程设计(含作业安排)一、复习提问1、勾股定理?应用条件?练习1、在直角三角形中,三边长分别为a 、 b 、 c,其中c为斜边1). (1)a=3, b=4, 则c=(2)a=5, b=12, 则c=2). (1)a=6, c=10, 则b=(2)b=20, c=25, 则a=3). a:b=3:4,c=10,则a= ,b=2.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形E的边长为7cm,求正方形A,B,C,D的面积的和二、新课例1、一个门框的尺寸如图所示:若有一块长3米,宽2.2米的薄木板,能否从门框内通过?分析:(3) 木板的宽2.2米大于1米,所以横着不能从门框内通过.木板的宽2.2米大于2米,所以竖着不能从门框内通过.因为对角线AC的长度最大,所以只能试试斜着能否通过.所以将实际问题转化为数学问题.解:(3) ∵在Rt△ABC中,∠B=90°∴AC2=AB2 +BC2 (勾股定理)BC DA2m1m∴AC =2212+=5≈2.236 ∵AC ≈2.236>2.2∴木板能从门框内通过(书上P67填空)小结:此题是将实际为题转化为数学问题,从中抽象出Rt △ABC ,并求出斜边AC 的长.例2、如图,一个3米长的梯子AB ,斜靠在一竖直的墙AO 上,这时AO 的距离为2.5米.如果梯子的顶端A 沿墙下滑 0.5米,那么梯子底端B 也外移0.5米吗? (计算结果保留两位小数)分析:要求出梯子的底端B 是否也外移0.5米,实际就是求BD 的长,而BD =OD -OB解:∵在Rt △ABO 中,∠AOB =90°∴OB 2=AB 2-AO 2(勾股定理)∴OB =22AO AB -=225.23-=75.2≈1.658∵OC =AO -AC∴OC = 2.5-0.5=2∵在Rt △COD 中,∠COD =90°∴OD 2=CD 2-CO 2 (勾股定理)∴OD =22CO CD -=2223-=5≈2.236 ∴BD =OD -OB ≈2.236 -1.658≈0.58答:梯的顶端A 沿墙下滑0.5米时,梯子的底端B 外移约0.58米.归纳与小结(1)将实际问题转化为数学问题, 建立数学模型 (2)运用勾股定理解决生活中的一 些实际问题. 三、课堂练习 书上练习。

最新人教版数学八年级下 勾股定理教案

最新人教版数学八年级下  勾股定理教案
板书设计:
课后反思:
学生的拼图活动不彻底,没有充分发挥他们的创造性。
活动4
欣赏图片了解历史
学生已经知道勾股定理后,教师展现勾股定理的有关有关背景知识,使学生对勾股定理的发展过程有所了解,感受勾股定理的丰富文化内涵,培养民族自豪感,提高学习兴趣。
活动5
简单应用勾股定理
通过一组练习让学生熟悉勾股定理,了解直角三角形三边之间的数量关系,初步掌握在直角三角形中知道两边求第三边的方法,利用勾股定理进行公式变形,建立运用勾股定理解决直角三角形相关问题的意识,及为下节课研究勾股定理的应用做好铺垫。
(2)、交流怎样求出正方形C的面积?
(3)、三个正方形A、B、C的面积之间有什么关系?
(4)、你能用直角三角形的三边长a、b、c表示上述面积关系吗?
3、观察探究二
将等腰直角三角形变换为一个一般直角三角形,上述结论是否依然成立?观察图形、回答问题:
(1)、正方形A、B、C的面积分别是多少?
(2)、三个正方形A、B、C的面积之间有什么关系?
活动7:布置作业
(A)、巩固训练
教材第78页习题第7、8题
(B)、知识拓展
①、你还能用其它方法证明勾股定理吗?
②、查阅、收集有关勾股定理的历史资料及证明方法,下节课展示交流
1、教师布置作业
2、学生课后独立完成。
作业中包含两项任务,体现出分层教学思想。给学生留有继续学习的空间和兴趣,让不同的人在数学上得到不同的发展。
让学生在轻松的氛围中积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理他人的见解,能从交流中获益。
活动3:
是不是所有的直角三角形都有这一特点?这就需要对一个一般的直角三角形进行证明:
1、证法一:面积计算

勾股定理(第一课时)教学设计

勾股定理(第一课时)教学设计

§18.1勾股定理(第1课时)教学目标:知识与技能:探索直角三角形三边关系,了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

过程与方法:经历探索与发现直角三角形三边关系的过程,体会数形结合和从特殊到一般的思想方法。

情感态度与价值观:初步了解勾股定理的文化内涵.教学重点:探索并发现勾股定理的过程。

教学难点:勾股定理的面积法证明教学过程一、创设情境引入利用与外星文明交流的设想引入新课二、学习新知探究一:你能发现图1中正方形A、B、C的面积之间有什么数量关系吗?1、正方形A的面积是:;正方形B的面积是:;正方形C的面积是:。

结论:图1中三个正方形A,B,C的面积之间的数量关系是: S A+S B=S C探究二:S A+S B=S C在图2中还成立吗?正方形A的面积是个单位面积.正方形B的面积是个单位面积.正方形C的面积是个单位面积.你是怎样得到正方形C的面积的?与同伴交流交流.结论:图1中三个正方形A,B,C的面积之间的数量关系是: S A+S B=S C至此,我们在网格中验证了:直角三角形两条直角边上的正方形面积之和等于斜边上的正方形面积,即S A+S B=S C。

探究三:借助几何画板进一步探究S A +S B =S C三、猜想:如果直角三角形的两直角边长分别为a ,b,斜边长为c ,那么a 2+b 2=c 2.四、证明(拼图证明)1、利用事先准备好的四块全等的直角三角形尝试拼成一个正方形学生们可能拼成的是以下两种情况:师生结合图形共同完成证明2.得出勾股定理:两直角边长分别为a 、b,斜边长为c ,那么 a 2 + b 2 = c 2 即:直角三角形两直角边的平方和等于斜边的平方。

3.勾股定理文化介绍六、感悟收获学了本节课后我们有哪些收获?七、课后作业1.必做题:(1)课本第57页,习题18.1 第1、2、3、4题;(2)同步练习:18.1(一)。

2.选做题:阅读课本“数学史话”栏目并上网查阅了解勾股定理的有关知识。

18.1勾股定理(第一课时) 优质课评选教案

18.1勾股定理(第一课时) 优质课评选教案

课题:18.1勾股定理(第一课时)授课教师:刘健芬教材:义务教育课程标准实验教科书《数学》八年级下册(人民教育出版社)一、教学目标:【知识与能力目标】1、理解并掌握勾股定理的内容和证明,能够运用勾股定理进行简单的计算;2、培养学生动手操作、合作交流、逻辑推理的能力。

【过程与方法目标】让学生经历“观察-猜想-归纳-验证”的数学思想的形成过程,并体会数形结合和从特殊到一般的数学思想方法。

【情感态度与价值观】激发学生热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

二、教学重点和难点:【教学重点】勾股定理的发现、验证和简单应用。

【教学难点】用面积法、拼图法证明勾股定理。

三、教学方法与手段:【教学方法】引导探索法(让学生分小组讨论)【学法指导】自主探索、合作交流的研讨式学习方式【教具准备】多媒体课件,三角尺【学具准备】三角尺、剪刀和边长分别为a、b的两个连体正方形纸片四、教学过程教学过程设计活动1 创设情境→激发兴趣2002年在北京召开的第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”.这就是本届大会会徽的图案. 它象一个转动的风车,挥舞着手臂,欢迎来自世界各国的数学家们.(1)你见过这个图案吗?(2)你听说过“勾股定理”吗?会徽教师出示照片及图片.学生观察图片发表见解.教师作补充说明:这个图案是我国汉代数学家赵爽用来证明勾股定理的“赵爽弦图”加工而来,展现了我国古代对勾股定理的研究成果,是我国古代数学的骄傲.教师应重点关注:(1)学生对“赵爽弦图”及勾股定理的历史是否感兴趣;(2)学生对勾股定理的了解程度.通过欣赏图片,了解历史,介绍与勾股定理有关的背景知识,激发学生学习兴趣,自然引出本节课的课题.(板书课题)活动2 观察特例→发现新知毕达哥拉斯是古希腊著名的数学家.相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系.(1)同学们,请你也来观察下图中的地面,看看能发现些什么?地面图18.1-1(2)你能找出图18.1-1中正方形A、B、C面积之间的关系吗?(3)图中正方形A、B、C所围等腰直角三角形三边之间有什么特殊关系?教师展示图片,提出问题.学生独立观察图形,分析思考其中隐藏的规律.学生通过直接数等腰直角三角形的个数,或者用割补的方法将正方形A、B中小等腰直角三角形补成一个大正方形得到:正方形A、B的面积之和等于大正方形C的面积.教师引导学生,由正方形的面积等于边长的平方归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方.通过讲传说故事来进一步激发学生学习兴趣,使学生在不知不觉中进入学习的最佳状态.通过层层设问,引导学生发现新知.并且让学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

勾股定理 教学设计 第一课时

勾股定理 教学设计 第一课时

《勾股定理》教学设计一、教材分析1.本节知识在教材中的地位和作用勾股定理是人教版义务教育课程标准实验教科书八年级下册第十八章的内容。

勾股定理是几何中几个重要定理之一。

它解释了直角三角形三边之间的数量关系,它在数学发展中起着重要作用。

在现实生活中的地位也有举足轻重的作用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解,也是后续学习的基础。

2.教学重点、难点重点:勾股定理的证明与运用难点:用面积法和拼图法等方法证明勾股定理二、教学目标知识与技能:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

会用勾股定理进行简单的计算。

数学思考:经历通过实际分析、拼图等活动,使学生获得较为直观的印象;经历观察、归纳、猜想和验证的数学发现过程,发展合情合理的推理能力问题解决。

问题解决:能够运用勾股定理解决简单问题情感态度:通过获得成功的经验和克服困难的经历,增进数学学习的信心;对比介绍我国古代和西方数学家有关勾股定理的研究,对学生进行爱国主义教育。

三、教学策略勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,学生对几何图形的观察,几何图形的分析能力已初步形成。

学生对从一般直角三角形中找出存在的面积关系可能有难点,让学生充分交流,结合课件展示帮助学生解决问题。

学生在拼图游戏和通过拼图验证勾股定理这两个环节存在学习困难,因此学习过程中通过学习小组讨论,合作交流,教师引导帮助学生形成解决问题的思路。

本节课学习中渗透由特殊到一般、数形结合的数学思想。

学生通过自主探索,小组合作交流,结合信息化手段的使用,能够达到学习目标。

这样有利于提高学生的思维能力,能有效地激发学生的思维积极性。

四、教学过程(一)创设情境(课件-视频图像)毕达哥拉斯有一次应邀参加一位朋友的餐会,这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形磁砖,但他不只是欣赏磁砖的美丽,而是想到它们和数之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18.1 勾股定理(一)教学时间第一课时三维目标一、知识与技能让学生通过观察、计算、猜想直角三角形两条直角边的平方和等于斜边的平方的结论.二、过程与方法1.在学生充分观察、归纳、猜想、•探索直角三角形两条直角边的平方和等于斜边的平方的过程中,发展合情推理能力,体会数形结合的思想.2.在探索上述结论的过程中,发展学生归纳、•概括和有条件地表达活动的过程和结论.三、情感态度与价值观1.培养学生积极参与、合作交流的意识.2.在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气.教学重点探索直角三角形两条直角边的平方和等于斜边的平方的结论,从而发展勾股定理.教学难点以直角三角形的边为边的正方形面积的计算.教具准备学生准备若干张方格纸;多媒体课件演示.教学过程一、创设问题情境,引入新课.活动1问题1:在我国古代,人们将直角三角形中的短的直角边叫做勾,•长的直角边叫做股,斜边叫做弦.根据我国古算书《周髀算经》记载,在约公元前1100年,人们已经知道,如果勾是三,股是四,那么弦是五,你知道是为什么吗?问题2:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取出6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队能否进入三楼灭火?问题3:我们再来看章头图,在下角的图案,它有什么意义?•为什么选定它作为2002年在北京召开的国际数学大会的会徽?设计意图:问题设计具有一定的挑战性,目的是激发学生探究的欲望.反映了数学来源于实际生活,数学是从人的需要中产生这一基本观点.师生行为:教师可引导学生将问题2转化为数学问题,也就是“已知直角三角形的两边,•求第三边”的问题,学生会感到困难.从而教师指出:学习本章,我们就能回答上述问题.首先我们先来看一个传说.二、实际操作,探索直角三角形的三边关系活动2问题1:毕达哥拉斯是古希腊著名的哲学家、数学家、天文学家,相传2500•年前,一次,毕达哥拉斯去朋友家作客.在宴席上,其他的宾客都在尽情欢乐,高谈阔论,只有毕达哥拉斯却看着朋友家的方砖地而发起呆来.原来,朋友家的地是用一块块直角三角形形状的砖铺成的,黑白相间,非常美观大方.主人看到毕达哥拉斯的样子非常奇怪,就想过去问他.谁知毕达哥拉斯突破恍然大悟的样子,站起来,大笑着跑回家去了.同学们,我们也来观察下面图中的地面,看看你能发现什么?是否也和大哲学家有同样的发现呢?问题2:你能发现下图中等腰直角三角形ABC有什么性质吗?问题3:等腰直角三角形都有上述性质吗?观察下图,并回答问题:(图中每个小方格代表一个单位面积)(1)观察图1.正方形A中含有______个小方格,即A的面积是______个单位面积;正方形B中含有______个小方格,即B的面积是______个单位面积;正方形C中含有______个小方格,即C的面积是______个单位面积.(2)在图2、图3中,正方形A、B、C中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?与同伴交流.(3)请将上述结果填入下表,你能发现正方形A,B,C的面积关系吗?A的面积(单位面积) B的面积(单位面积)C的面积(单位面积)图1图2图3设计意图:通过让学生观察计算,发现对于等腰直角三角形而言,满足两直角边的平方和等于斜边的平方,让学生亲历发现、探究结论的过程,也有利于培养学生的语言表达能力,体会数形结合的思想.师生行为:对于问题1和问题2,教师要留给学生充分的思考时间,然后让学生交流合作,得出结论.生:在课本图18.1-1中,地面是由完全相同的小等腰直角三角形拼成,并且每两个小的等腰直角三角形拼成一个小正方形.设小正方形的面积为1,则以AB,AC为边的小正方形的面积都为1,而以斜边BC•为边的小正方形是由四个全等的等腰直角三角形拼成,因此它的面积为2,•我们可以发现等腰直角三角形以直角边为边的小正方形的面积和等于以斜边为边的稍大的正方形的面积.即两直角边的平方和等于斜边的平方.对于问题3,可让学生在自己准备好的小方格纸上画出,并计算A、B、C三个正方形的面积,并在小组内交流.学生计算C正方形的面积,可能有不同的方法.•不管是通过直接数小方格的个数,还是将C 划成为4个全等的等腰直角三角形来求,都应予以肯定,并鼓励学生用语言进行描述.生:我们从上面的图中更进一步验证了等腰直角三角形直角边的平方和等于斜边的平方.师:原来著名的哲学家毕达哥拉斯,他在朋友家地板砖的启发下,也发现了这个结论.并且还做了更为深入的研究,你知道是什么吗?生:等腰直角三角形有上述性质,其他的直角三角形是否也有这个性质呢?师:的确如此,想知道结果吗?我们不妨寻着大哲学家的足迹,也做更深入的探究.活动3问题1:等腰三角形有上述性质,其他的三角形也有这个性质吗?如下图,•每个小方格的面积均为1,请分别计算出下图中正方形A、B、C,A′、B′、C ′的面积,看看能得出什么结论.(提示:以斜边为边长的正方形的面积,等于虚线标出的正方形的面积减去四个直角三角形的面积.)问题2:给出一个边长为0.5,1.2,1.3,这种含小数的直角三角形,•也满足上述结论吗?设计意图:进一步让学生体会观察、猜想、归纳这一数学结论发现的过程,也让学生的分析问题和解决问题的能力在无形中得到提高,让学生体会到结论更具一般性.师生行为:同样让学生计算A、B、C,A′、B′、C′的面积,但正方形C和C ′的面积不易求出,可以让学生在预先准备好的方格纸上画图形,在剪一剪、拼一拼后发现求正方形C和C′的面积的方法.生:从图中不难观察出A、B两个正方形分别含有4个小方格和9个小方格;A ′、B′两个正方形分别含有9个小方格和25个小方格.生:正方形C•的面积可看作虚线标出的正方形的面积减去四个直角三角形的面积,即5×5-4×12×2×3=13.所以正方形A的面积+正方形B的面积等于正方形C的面积,即4+9=13.用同样的方法计算C′的面积可得8×8-4×12×3×5=64-30=34.所以正方形A ′的面积+正方形B′的面积=正方形C′的面积.师生共析:如果将虚线标出的正方形C和C′周围的四个直角三角形分别沿斜边折叠进去,你会得出什么结论呢?正方形C的面积就等于1+4×12×2×3=13.正方形C′的面积就等于4+4×12×3×5=34.和前面的结论一样.生:通过上面的折叠我发现了该图案正是2002年在北京召开的国际数学家大会的徽标.师:很正确.我们通过对A、B、C,A′、B′、C′几个正方形面积关系的分析可知:一般的以整数为边长的直角三角形两直角边的平方和也等于斜边的平方.一个边长为小数的直角三角形是否也有此结论?我们不妨设小方格的边长为0.1,•我们不妨在你准备好的方格纸上画出一个两直角边为0.5,1.2的直角三角形来进行验证.生:也有上述结论.师:当时大哲学家也发现并进一步深入探究的也正是这个结论,看似平淡无奇的现象有时却隐藏着深刻的道理.我们也应该向大哲学家学习,认真体验生活,努力发现生活中存在的各种奥秘.这一结论,在国外就叫做“毕达哥拉斯定理”,而在中国则叫做“勾股定理”.而活动1中的问题1提到的“勾三,股四,弦五”正是直角三角形三边关系的重要体现.勾股定理到底是谁最先发现的呢?我们可以自豪地说:是我们中国人最早发现的.证据就是《周髀算经》,不仅如此,我们汉代的赵爽曾用2002年在北京召开的国际数学家大会的徽标的图案证明了此结论,也正因为为了纪念这一伟大的发现而采用了此图案作徽标.下节课我们将要做更深入的研究.大哲学家毕达哥拉斯发现这一结论后,就已认识到,他的这个发现太重要了.所以,按照当时的传统,他高兴地杀了整整一百头牛来庆贺.三、例题剖析活动4问题1:小明的妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.•你同意他的想法吗?你能解释这是为什么吗?问题2:(1)如右图,一根旗杆在离地面9m处断裂,旗杆顶部落在离旗杆底部12m处,旗杆折断之前有多高?(2)求斜边长17cm,一条直角边长15cm的直角三角形的面积.设计意图:问题1、2是贴近学生生活有趣的实例,学生可利用勾股定理解决.直角三角形的三边关系告诉我们已知两边可求出第三边.体验勾股定理解决生活中问题的过程.师生活动:问题1:我们通常所说的29英寸和74厘米的电视机,•是指其荧屏的对角线的长度,而不是其荧屏的长和宽,同时,荧屏的边框遮盖了一部分,所以实际测量存在一些误差.问题2:(1)解:由勾股定理可求得旗杆断裂处到杆顶的长度是:22912+=15(m );•15+9=24(m ). 所以旗杆折断之前高为24m .(2)解:另一直角边的长为221715-=8(cm ),所以此直角三角形的面积为12×8×15=60(cm 2). 师:你能用直角三角形的三边关系解答活动1中的问题2.请同学们在小组内讨论完成.四、课时小结1.掌握勾股定理及其应用;2.会构造直角三角形,利用勾股定理理解简单应用题.主要通过学生回忆本节课所学内容,从内容、应用、数学思想方获取新知的途径等方面进行小结,后由教师总结.板书设计活动与探究11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高30肘尺(•肘尺是古代的长度单位),另外一棵高20肘尺;两棵树树干间的距离是50肘尺.每棵树上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离比较高的棕榈树的树根有多远?过程:首先应将此经典名题的内容抽象成数学问题,画图形(如下图)由题可知这两只鸟同时看见鱼A ,立刻出发,同时到达目标,因此AB=AC .设所求的距离为x 肘尺.根据直角三角形的三边关系,有AB 2=302+x 2,AC 2=202+(50-x )2.∵AB=AC;∴302+x 2=202+(50-x )2.经过化简整理,得100x=2 000.这是一个一元一次方程,解得x=20.结论:因此,这条鱼出现的地方距比较高的树的树根20肘尺.备课资料:勾股定理──千古第一定理在古代,许多民族发现了这个事实即直角三角形的三条边长为a,b,c,则a2+b2=c2,其中a,b是直角边长,c为斜边长.我国的算术《周髀算经》中,就有关于勾股定理的记载,为了纪念我国古人的伟大成就,就把这个定理定名为“勾股定理”或“商高定理”.在西方,被称为“毕达哥拉斯”定理,而西方的数学和科学又来源于古希腊,古希腊流传下来的最古老的著作是欧几里得的《几何原本》,而其中许多定理再往前追溯,就落在毕达哥拉斯的头上.不管怎么说,勾股定理是数学中的伟大定理,它的应用范围是非常广泛的,它给人们的巨大力量可说是难以估量,几乎所有生产技术和科学研究都离不开它;而且有许多发展目前还探索不够,说不上什么时候会出现创新出奇的崛起,它的前程未可估量.人类远征太空的梦想正在实现.当年,周公憧憬“天可阶而升”的幻想竟变成了现实.今天,人们普遍认为,与世外交明生物对话的日子虽很遥远,但却势在必行.很难想象,他们是什么模样,智能高低如何,总不能按照几千来人们创造神的形象那样,谁也未曾见过神,于是,神就被模塑得与人一样.可是,人类的智慧毕竟贫乏,无法确定“世外人”的分辨能力,只好将“地球人”的意识强加给“世外人”.因此,为了寻找与“世外人”接触的可能性,人类已向太空发射一批物件,其中包括:地球人的男、女形象,各种物质和元素符号,有代表性的乐曲……数学家华罗庚提出一种新颖的独特设想:最好带两个图形去,一个“数”,一个“数形关系”.他提供的“数”如上图(左),这是“洛书”,相传大禹治水时,洛水中爬出一只神龟,背负着这幅象征吉祥的图,它构成了一个“幻方”,纵、横和对角线的数字和都为15.“数形关系”,则如上图(右),这分别是一幅人们所熟悉的“勾股弦关系”图.这两个图形说明数学的基础扎根于它们之中,不论在我们居住的地球上,或是某个神秘的天体上,绝无例外.为什么说勾股定理如此重要,是千古第一定理呢?除以上所述外,更重要的在于:(1)勾股是联系数学最基本的,也是最原始的两个对象──数与形第一定理;(2)勾股定理导致无理数的发现.这就是所谓的第一次数学危机;(3)勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学;(4)勾股定理中的公式是第一个不定方程,有许许多多组数满足这个方程,•也是最早得出完整解答的不定方程,它一方面引导出各式各样的不定方程,包括著名的费马大定理,另一方面也为不定方程的解题程序树立了一个范式.。

相关文档
最新文档