神奇的数学及英文字母

合集下载

数学手抄报神奇的e文字稿

数学手抄报神奇的e文字稿

数学手抄报神奇的e
有一个数字,它是变量数学中不可缺少的常数,它是描述自然界各种连续变化的有力工具,它是自然界纷繁复杂背后隐藏的基本规律,它是伟大的数学家。

Euler的杰出创造,它能使微积分的运算简洁方便,它是数学家看着就亲切的一个数字。

这就是:
e=2.71828182845…
假如你把一块钱存入一家银行,银行的年利率是百分之百(这只是一个比方,不必用生活中的常识来评价),银行允许中间取本息,而且利息是平均分到各个时段的。

比如吧:你要是只存一个月,你将拿到13/12这么多的本息。

这时如果不嫌麻烦,你可以选择半年取一次钱,再连本带利的存入银行,这时年末你将得到
(1+1/2)×(1+1/2)=2.25元
如果你还想多得钱,可以把一年分三段来取款,连本带息存入,你将得到
(1+1/3)×(1+1/3)×(1+1/3)
如果你不嫌麻烦,银行允许,你将多跑几次,甚至坐在银行取款台那里不走,如果你把一年分成n次,你将得到
(1+1/n)×(1+1/n)×(1+1/n)…×(1+1/n)
以上一共n项乘积。

不需要太深入思考,你就会断定取的次数越多,最后得到的钱越多。

但是最多能得到多少呢?最多就
能得到e=2.718281828…这么多了。

如果把利息由1变为x,那么
最多能得到e的x次幂这么多。

这个数是用来描述自然界连续累加变化不可缺少的常数,自然界的经济增长和衰退,放射性元素的衰变,冰层的厚度,等
等都离不开这个数字来描述。

世界上最神奇的数字

世界上最神奇的数字

世界上最神奇的数字PS:友情提示:是不是看着上图有点晕,哈哈,接下去看正文,也许会更晕。

世界上最神奇的数字看似平凡的数字,为什么说他最神奇呢?我们把它从1乘到6看看142857 X 1 = 142857142857 X 2 = 285714142857 X 3 = 428571142857 X 4 = 571428142857 X 5 = 714285142857 X 6 = 857142同样的数字,只是调换了位置,反复的出现。

那么把它乘与7是多少呢?我们会惊奇的发现是999999而 142 + 857 = 99914 + 28 + 57 = 99最后,我们用 142857 乘与 142857答案是:20408122449 前五位+上后六位的得数是多少呢?20408 + 122449 = 142857关于其中神奇的解答“142857”它发现于埃及金字塔内,它是一组神奇数字,它证明一星期有7天,它自我累加一次,就由它的6个数字,依顺序轮值一次,到了第7天,它们就放假,由999999去代班,数字越加越大,每超过一星期轮回,每个数字需要分身一次,你不需要计算机,只要知道它的分身方法,就可以知道继续累加的答案,它还有更神奇的地方等待你去发掘!也许,它就是宇宙的密码┅┅142857×1=142857(原数字)142857×2=285714(轮值)142857×3=428571(轮值)142857×4=571428(轮值)142857×5=714285(轮值)142857×6=857142(轮值)142857×7=999999(放假由9代班)142857×8=1142856(7分身,即分为头一个数字1与尾数6,数列内少了7)142857×9=1285713(4分身)142857×10=1428570(1分身)142857×11=1571427(8分身)142857×12=1714284(5分身)142857×13=1857141(2分身)142857×14=1999998(9也需要分身变大)继续算下去……以上各数的单数和都是“9”。

高等数学里的神奇数字

高等数学里的神奇数字

高等数学里的神奇数字
0、1、e、π等都是高等数学里比较神奇的数字。

0是一个非常特殊的数字,在极限、导数的定义等很多概念中有着关键的意义。

例如,函数在某点的导数定义为极限,当自变量的增量趋近于0时函数增量与自变量增量比值的极限。

1也很特殊,在对数函数中,以e为底的对数函数在x = 1时的值为0,而且1的任何次幂都是1,在很多数学变换和计算中有特殊作用。

e是自然对数的底数,它在微积分、复利计算、极限计算等方面有着广泛的应用。

例如,函数y = e^x的导数就是它本身,这一特性使得e在解决很多复杂的数学问题,尤其是涉及到指数增长和衰减的问题时非常有用。

π是圆周率,在几何中表示圆的周长与直径的比值。

在高等数学的积分计算、傅里叶分析等领域也有着极为重要的地位,比如计算圆的面积、球的体积等几何问题,以及一些复杂的三角函数积分等。

史上最全数学符号、公式的英文读法,干货满满

史上最全数学符号、公式的英文读法,干货满满

史上最全数学符号、公式的英文读法,干货满满说起英语和数学,大概每个人都有难忘的回忆。

可是学了十几、二十年的英语和数学,你会用英语来表达数学吗?烂熟于心的数学符号和表达式用英语会说吗?想不想挑战一下自己?先来一个最简单的:1+2=3 用英语怎么说?One plus two equals three. 哎呦不错哦,继续!尝试:½ (x + y)英语怎么说?这个呢?这个呢?就知道你说不出来咯~今天这篇文章,将从小学到博士后的数学符号和表达式的英文读法一网打尽,全都总结好了!惊不惊喜?意不意外?!这篇文章囊括了从小学数学到高等数学,涉及到的主要符号和表达式的英文读法,查阅了很多资料,确保英文100%准确,请放心使用。

数学是所有理工学科的基础,是认识科学世界基本工具,数学的重要性不言而喻。

所以,这篇文章是老少咸宜的、吐血总结的干货。

可以帮助:中小学生:了解英语不仅是“I am a student.My name is XXX.”,而是真正用于学习数学、学习知识的工具。

大学生:在外教的课堂上,在国际会议上,在外企里,面对常见的数学符号,简单的数学问题时,不可能在茶壶里煮饺子。

留学党:缩短刚到国外理解老师课堂讲课的过渡期。

学生家长可以为你家宝宝留着哦~基本数学符号1. 加减乘除"+"当作运算符加号时读作plus,比如:1+2 ➡️ one plus two当"+"放在数字前表示正数时,读作positive,比如:+4 ➡️ positive four同样,“-”也有minus和negative两种读法,分别是减号和负数。

"×" 两种读法都可以,国外的教授会常常读成times,可能因为比较简单吧,比如:9x6 ➡️ nine times six“÷”只有一种读法divided by,就是被…分成几份15÷3 ➡️ fifteen is divided by three注意:其中plus和minus是不用第三人称单数形式的,因为plus和minus根本就不是动词,而是介词。

神奇的数学手抄报内容

神奇的数学手抄报内容

神奇的数学⼿抄报内容神奇的数学⼿抄报内容 数学在我们的⽇常⽣活中已经是密不可分,成为了我们的⽣活⼀部分,学好数学是我们每⼀个⼈的责任。

下⾯是⼩编整理收集的神奇的数学⼿抄报内容,欢迎阅读参考!神奇的数学⼿抄报内容:神奇的e 神奇的数学⼿抄报内容:神奇的 有⼀个数字,它是变量数学中不可缺少的常数,它是描述⾃然界各种连续变化的有⼒⼯具,它是⾃然界纷繁复杂背后隐藏的基本规律,它是伟⼤的数学家。

Euler的杰出创造,它能使微积分的运算简洁⽅便,它是数学家看着就亲切的⼀个数字。

这就是: e=2.71828182845 假如你把⼀块钱存⼊⼀家银⾏,银⾏的年利率是百分之百(这只是⼀个⽐⽅,不必⽤⽣活中的常识来评价),银⾏允许中间取本息,⽽且利息是平均分到各个时段的。

⽐如吧:你要是只存⼀个⽉,你将拿到13/12这么多的本息。

这时如果不嫌⿇烦,你可以选择半年取⼀次钱,再连本带利的存⼊银⾏,这时年末你将得到 (1+1/2)×(1+1/2)=2.25元 如果你还想多得钱,可以把⼀年分三段来取款,连本带息存⼊,你将得到 (1+1/3)×(1+1/3)×(1+1/3) 如果你不嫌⿇烦,银⾏允许,你将多跑⼏次,甚⾄坐在银⾏取款台那⾥不⾛,如果你把⼀年分成n次,你将得到 (1+1/n)×(1+1/n)×(1+1/n)×(1+1/n) 以上⼀共n项乘积。

不需要太深⼊思考,你就会断定取的次数越多,最后得到的钱越多。

但是最多能得到多少呢?最多就能得到e=2.718281828这么多了。

如果把利息由1变为x,那么最多能得到e的x次幂这么多。

这个数是⽤来描述⾃然界连续累加变化不可缺少的常数,⾃然界的经济增长和衰退,放射性元素的衰变,冰层的厚度,等等都离不开这个数字来描述。

但是e不是有理数,也就是不能写成两个整数相除的形式,其实它的任何代数运算都不能得到整数,这说明它是超越的。

22748412_Digits_in_English_Are_Amazing_神奇的英文数字

22748412_Digits_in_English_Are_Amazing_神奇的英文数字

33每一种文字都承载着该文字所特有的文化,就连该文字中的数字也不例外。

英文中的数字也是如此,它不像我们想象的那么简单,例如:one 并不总是表示“一”,two 也并不总是表示“二”。

如果不了解这一点,就有可能望文生义,从而对特定语境中的英文数字产生错误的理解。

为了帮助读者正确地理解具体语境下英文中的数字所传达的意思,本文就英文中的基本数字one 、two 、three 、four 、five 、six 、seven 、nine 、ten 和zero 做一些简要的厘清。

但凡学英语的人都知道“one ”表示“一”,无论它用作代词、数词还是名词。

可是,如果有人说“a one ”,你会感到惊讶吗?请看例句:This morning, Robert asked Miss Smith how old she is. He is a one!今天早上,罗伯特问史密斯小姐多大岁数。

还真有他的!那么,在这句话中,“He is a one!”究竟是什么意思呢?直白地说,这句话就表示“除他之外,怕是没有第二个人会问这样的问题”。

事实上,关于“one ”的习惯用法还有许多。

这里再列举一个,即“at one with sb.”。

这个短语表示什么意思呢?请看下面的例句:We are at one with them on this subject.在这个问题上,我们的观点与他们的一致。

广东深圳市龙华区碧澜外国语小学 林 璇神奇的英文数字Digits in English Are Amazing1. one这句话实际上与“theirs.”意思一样。

因此,“见一致”。

3535“four ”这个词除了可以表示“四”,还可以表示人体的“四肢”。

例如:Look! The soldiers are crawling on all fours.瞧!战士们正在匍匐前进。

这里,“on all fours ”中的“on ”表示“依靠;凭借”;“all fours ”就与“on the arms and legs ”的意思一样。

外文翻译13个有趣的数字—当数学遇上美

外文翻译13个有趣的数字—当数学遇上美

外⽂翻译13个有趣的数字—当数学遇上美13个有趣的数字—当数学遇上美。

每个⼈都有必要知道的数字和数学概念。

每个⼈都有必要知道的数字和数学概念有时⼀些特别的数字会被发现于美丽的⽅程和公式。

由这些⽅程公式的结论所推导出的可视化结论也让他们拥有了数学之美。

下⾯列举出来了从超穷数到黄⾦⽐例的13个有趣的数字。

13. 阿列夫零:ℵ0阿列夫零是⼀个美丽的概念。

它是超穷基数中的最⼩的数,超穷数就是指⽆穷⼤那么⼤的数。

我知道你不相信这个,因为⽆穷⼤只是⼀个概念,不能被⽤来⽐较⼤⼩,所以超穷数的存在是没有意义的。

毕竟如果⼀个“⽆穷⼤”⼤于另⼀个“⽆穷⼤”,第⼀个“⽆穷⼤”就不应该被叫做⽆穷⼤了。

现在假设有⼀个⽆穷是什么的基本想法(我们会在之后的第⼗⼆条详细讨论)。

阿列夫零是指⼀个⾃然数的个数那么⼤的数,这个数需要在数值上⾜够⼤并能够很好的符合⽆穷的特征,因此把像阿列夫零这样的数称为超穷数。

那么如果把⾃然数输两遍甚⾄3遍呢?当构建好第⼀个集合后,我们可以按某种规律拓展⾃然数集并得到相应的超穷数。

让我们为这些数字排个序,或者就按之前得到它们的顺序排列。

阿列夫零之后的下⼀个数是ω,然后是ω+1。

后⾯这两个数是按顺序的但却不够基础,换句话说,它们只是代表了它们在数轴上的前后位置下⾯的图表是⼀个更好的简化版的说明。

图中每⼀组可以代表⼀个⾃然数集,每⼀组都包含基础的阿列夫零。

再增加1次⾃然数集并不改变这个构造模式(你可以仅仅改变顺序但你得到的仍然是以阿列夫零为基础的数)。

这有助于讨论它们的顺序。

因此,⾃然数集构造完成后的第⼀个超穷数是我们前⾯所讨论的“ω”。

A matchstick representation. Source of the image: Wikipedia.你不会拥有ω个苹果,但你可以花ω的时间完成⽐赛(如果你真的⽔平很低的话)。

有趣的是,ω + 1并不⼀定⽐ω⼤,它只是在ω的后⾯。

这有点难以理解了,所以只看某⼏个⾓度应该有帮助。

7 神奇的字母

7  神奇的字母

7 神奇的字母
——用字母表示数
知识导航
用字母表示数时:
1.如果两个字母相称可以省略乘号。

2.如果是字母和数字相乘,省略乘号时应将数字写在前面,字母写在后面。

数海拾贝
1.用含有字母的式子表示下面的数量关系:
(1)若用a表示等边三角形的边长,则等边三角形的周长可表示为。

(2)若用a表示等腰梯形的上底,用b表示下底,用c表示腰长,则等腰梯形的周长可表示为。

2.数列:3,6,9,12,…,若n表示不为零的自然数,则数列中第n个数可表示为。

3.数列:2,5,8,11,13,…,若n表示不为零的自然数,则数列中第n个数表示为。

4.数列:3,8,15,24,35,…,若n表示不为零的自然数,则数列中第n个数表示为。

5.超市销售苹果x千克,销售的梨是苹果的2.6倍。

(1)超市销售梨千克。

(2)超市销售苹果和梨共千克。

6.甲、乙两人分别从A、B两地同时出发,同向而行,且乙在前甲在后。

已知甲的速度为V甲,乙的速度为V乙,且V甲大于V乙,A、B两地距离S。

经过多长时间甲追上乙?
能力挑战
7.下表列出了一根弹簧长度与悬挂在其上的重物的关系,用含有字母n的式子表示“?”处是多少。

8.如下图所示是由若干个火柴棍连在一起的4个小正方体。

组成n个这样连在一起的小正方体需要根火柴棍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

數學之美
一個有趣又可愛的方法可看
到「數學之美」以及「神」
的神奇總和
Wonderful World
1 x 8 + 1 = 9
12 x 8 + 2 =98
123 x 8 + 3 = 987
1234 x 8 + 4 = 9876
12345 x 8 + 5 = 98765
123456 x 8 + 6 = 987654
1234567 x 8 + 7 = 9876543 12345678 x 8 + 8 = 98765432 123456789 x 8 + 9 = 987654321
1 x 9 +
2 = 11
12 x 9 + 3 = 111
123 x 9 + 4 = 1111
1234 x 9 + 5 = 11111
12345 x 9 + 6 = 111111
123456 x 9 + 7 = 1111111 1234567 x 9 + 8 = 11111111 12345678 x 9 + 9 = 111111111 123456789 x 9 +10= 1111111111
9 x 9 + 7 = 88
98 x 9 + 6 = 888
987 x 9 + 5 = 8888
9876 x 9 + 4 = 88888
98765 x 9 + 3 = 888888
987654 x 9 + 2 = 8888888 9876543 x 9 + 1 = 88888888 98765432 x 9 + 0 = 888888888 很炫,是不是?
再看看這個對稱式
1 x 1 = 1
11 x 11 = 121
111 x 111 = 12321
1111 x 1111 = 1234321
11111 x 11111 = 123454321 111111 x 111111 = 12345654321 1111111 x 1111111 = 1234567654321 11111111 x 11111111 =
123456787654321
111111111 x 111111111 =
12345678987654321
現在,注意看這個
101%
從一個嚴密的數學觀點
什麼等於100%?
給你超過100%代表什麼意思?
有些人說他們付出超過100%,可能嗎?
我們都曾經有過這種境遇,就是別人要求要你去
付出超過100%
甚至要求達到101%?
生活中什麼等於100%?
這裡有一個小小的數學公式或許能幫忙解答這些問題
如果
英文字母
A B C D E F G H I J K L M N O P Q R
S T U V W X Y Z
依序代表
下列相對數字
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26.
如果
努力工作
H-A-R-D-W-O-R-K
8+1+18+4+23+15+18+11 = 98%
還有
知識
K-N-O-W-L-E-D-G-E
11+14+15+23+12+5+4+7+5 = 96%
而態度
A-T-T-I-T-U-D-E
1+20+20+9+20+21+4+5 = 100%那麼看看「神的愛」能達到多少L-O-V-E-O-F-G-O-D
12+15+22+5+15+6+7+15+4 =
101%
因此我們從以上數學運算
得到一個確定的結論
那就是
努力工作和知識只能讓你接近目標,而態度能讓你達成目標唯「神的愛」能讓你超越顛峰
Have a great day…and that God bless you!。

相关文档
最新文档