线性方程组的直接解法
线性方程组直接解法

在求解线性规划问题时,高斯消元法 可以用于求解单纯形表中的方程组,
从而得到最优解。
矩阵求逆
通过高斯消元法可以将一个可逆矩阵 化为单位矩阵,从而求出其逆矩阵。
计算机图形学
在计算机图形学中,高斯消元法可以 用于求解三维变换矩阵,实现图形的 旋转、平移等操作。
2023
PART 03
克拉默法则
REPORTING
2023
PART 02
高斯消元法
REPORTING
高斯消元法的基本思想
通过对方程组的增广矩阵进行初等行 变换,将其化为行阶梯形矩阵,然后 逐步回代求解未知数。
高斯消元法的基本思想是将方程组中 的未知数逐一消去,从而得到一个易 于求解的三角形方程组。
高斯消元法的步骤
将方程组的增广矩阵写出来, 并对其进行初等行变换,化为 行阶梯形矩阵。
未来研究方向
高性能计算
随着计算资源的不断发展,研究如何 在高性能计算环境中更有效地应用直 接解法和迭代解法具有重要意义。
预处理技术
研究更有效的预处理技术,以 改善迭代解法的收敛性和稳定 性。
并行化与分布式计算
探索并行化和分布式计算技术 在解线性方程组中的应用,以 提高计算效率和可扩展性。
自适应算法
开发能够自适应地选择最合适 算法和参数的线性方程组求解 器,以提高求解效率和精度。
2023
THANKS
感谢观看
https://
REPORTING
从行阶梯形矩阵中,选取一个 主元,通过行变换将主元所在 的列的其他元素消为0。
重复上述步骤,直到所有未知 数都被消去,得到一个上三角 形方程组。
从上三角形方程组中,逐个回 代求解未知数。
求解线性方程组的直接解法

求解线性方程组的直接解法5.2LU分解① Gauss消去法实现了LU分解顺序消元结束时的上三角矩阵U和所用的乘数,严格下三角矩阵。
将下三角矩阵的对角元改成1,记为L,则有A=LU,这事实是一般的,我们不难从消去的第k个元素时的矩阵k行及k列元素的历史得到这一点.因为从消元的历史有u kj=a kj-m k1u1j- m k2u2j -…- m k,k-1u k-1,j, j=k,k+1,…,nm ik=(a ik-m i1u1k- m i2u2k -…-m i,k-1u k-1,k>/u kk i=k+1,k+2,…,n于是a kj=m k1u1j+m k2u2j+…+m k,k-1u k-1,j+u kj, j=k,k+1,…,na ik=m i1u1k+m i2u2k+…+m i,k-1u k-1,k+m ik u kk i=k+1,k+2,…,n从前面两个式子我们可以直接计算L和U(见下段>.将矩阵分解为单位下三角矩阵和上三角矩阵之积称为矩阵的LU分解.顺序消元实现了LU分解,同时还求出了g, Lg=b的解.②直接LU分解上段我们得到(l ij=m ij>u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j, j=k,k+1,…,nl ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk i=k+1,k+2,…,n2诸元素对应乘积,只不过算L的元素时还要除以同列对角元.这一规律很容易记住.可写成算法(L和U可存放于A>:for k=1:n-1for j=k:nu kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,jendfor i=k+1:nl ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kkendend这一算法也叫Gauss消去法的紧凑格式,可一次算得L,U的元素,不需逐步计算存储.考察上面的表格会发现还可安排其它计算次序,只要在这一次序下每个元素左边的L的元素与上方的U的元素已计算在先。
数值分析第三章线性方程组解法

数值分析第三章线性方程组解法在数值分析中,线性方程组解法是一个重要的主题。
线性方程组是由一组线性方程组成的方程组,其中未知数的次数只为一次。
线性方程组的解法包括直接解法和迭代解法两种方法。
一、直接解法1.1矩阵消元法矩阵消元法是求解线性方程组的一种常用方法。
这种方法将方程组转化为上三角矩阵,然后通过回代求解得到方程组的解。
1.2LU分解法LU分解法是将系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U的乘积,然后通过解两个三角方程组求解线性方程组。
这种方法可以减少计算量,提高计算效率。
1.3 Cholesky分解法Cholesky分解法是对称正定矩阵进行分解的一种方法。
它将系数矩阵A分解为一个下三角矩阵L和它的转置的乘积,然后通过解两个三角方程组求解线性方程组。
Cholesky分解法适用于对称正定矩阵的求解,具有较高的精度和稳定性。
二、迭代解法2.1 Jacobi迭代法Jacobi迭代法是一种迭代求解线性方程组的方法。
它通过分解系数矩阵A为一个对角矩阵D和一个余项矩阵R,然后通过迭代更新未知数的值,直至达到一定精度要求为止。
Jacobi迭代法简单易懂,容易实现,但收敛速度较慢。
2.2 Gauss-Seidel迭代法Gauss-Seidel迭代法是一种改进的Jacobi迭代法。
它通过使用新计算出的未知数值代替旧的未知数值,达到加快收敛速度的目的。
Gauss-Seidel迭代法是一种逐步逼近法,每次更新的未知数值都会被用于下一次的计算,因此收敛速度较快。
2.3SOR迭代法SOR迭代法是一种相对于Jacobi和Gauss-Seidel迭代法更加快速的方法。
它引入了一个松弛因子,可以根据迭代的结果动态地调整未知数的值。
SOR迭代法在理论上可以收敛到线性方程组的解,而且收敛速度相对较快。
三、总结线性方程组解法是数值分析中的一个重要内容。
直接解法包括矩阵消元法、LU分解法和Cholesky分解法,可以得到线性方程组的精确解。
线性方程组的直接解法实验报告

本科实验报告
课程名称:数值计算方法B
实验项目:线性方程组的直接解法
最小二乘拟合多项式
实验地点:ZSA401
专业班级:学号:201000
学生姓名:
指导教师:李志
2012年4月13日
for(i=1;i<=n;i++)
{
for(j=1;j<=n+1;j++)
printf("%lf\t",A[i][j]);
printf("\n");
}
double answer[N];
Gauss_eliminate(n,answer);
/*输出解*/
for(i=1;i<=n;i++)
printf("a[%d]=%lf\t",i-1,answer[i]);
getchar();
getchar();
}
四、实验结果与讨论、心得
讨论、心得:
刚开始调试代码的时候有时候就是很小的错误导致整个程序不能运行,需要我们一步一步慢慢来,经过无数次的检查程序错误的原因,以及在老师的帮助下,完成了这次实验。
这段时间的实验课提高了我的分析问题,解决问题的能力,特别提高了对一个程序的整。
线性方程组的直接解法1

(续3)
设为
A
(k )
(k ) x b
Step k: 若 a ( k ) kk
o
,令
l ik
a ik
(k )
a kk
(k )
, (i=k+1,k+2,…n)
用- l ik 来乘以第k个方程,加到第i个方程,并保留第k 个方程, 得: (i=k+1,k+2,…n)
August 6, 2012 yfnie@ 9
Step1: 若a
(1 ) 11
0 ,令 l i 1
a i1
(1 )
a 11
(1 )
( i 2 ,3 ,... n )
,用
l i1 乘
第一个方程加到第 i 个方程 式,得
( i 2 , 3 ,... n ) ,并保留第一
August 6, 2012
yfnie@
k 1 1
k 1
n
n ( n 1) 2
11
yfnie@
• 计算量
• Gauss顺序消去法消去过程所需的乘除运算次数为
2 ( n k ) ( n k )
2 k 1
n 1
n
3
n
2
n 3
5n 6
O (n )
3
3
n
2
a kk 0
(k )
(1 k n )
k 0
(1 k n )
August 6, 2012
yfnie@
14
命题证明
A A
(1 )ቤተ መጻሕፍቲ ባይዱ
A
(k )
数值分析-线性方程组的直接解法

算法 Gauss(A,a,b,n,x)
1. 消元 For k=1,2, … , n-1 1.1 if akk=0 , stop; 1.2 For i=k+1,k+2, …, n 1.2.1 l ik=aik /akk => aik 1.2.2 For j=k+1,k+2, … ,n ai j -aik ak j =>aij 1.2.3 bi -aik bk=> bi 2. 回代 2.1 bn / an=>xn; 2.2 For i=n-1,n-2, …, 2,1 2.2.1 bk => S 2.2.2 For j=k+1,k+2, … ,n S –akj xj =>S 2.2.3 S/ akk => xk a1 1 a1 2 a13 a2 1 a2 2 a23
线性方程组的直接解法
刘 斌
线性方程组的直接解法
§1 Gauss消去法 1.1 顺序Gauss消去法
1.2
§2 2.1 2.2 2.3
列主元Gauss消去法
Gauss消去法的矩阵运算 Doolittle分解法 平方根法
直接三角分解方法
2.4
追赶法
引入
在科学计算中,经常需要求解含有n个未知量 的n个方程构成的线性方程组 a11 x1 a12 x2 a1n xn b1 a21 x1 a22 x2 a2 n xn b2 (1) an1 x1 an 2 x2 ann xn bn
(1) a12 ( 2) a22 0
(1) (1) a13 a1 n ( 2) ( 2) a23 a2 n ( 3) ( 3) a33 a3 n
0
数值分析小论文线性方程组的直接解法

数值分析小论文线性方程组的直接解法线性方程组的直接解法是指通过一系列的代数运算直接求解线性方程组的解。
线性方程组是数值分析中非常重要的问题,广泛应用于工程、科学、计算机图形学等领域。
在线性方程组的直接解法中,最常用的方法是高斯消元法,它是一种基于矩阵变换的方法。
高斯消元法将线性方程组表示为增广矩阵,并通过一系列的行变换将增广矩阵转化为行阶梯形矩阵,从而得到方程组的解。
高斯消元法的主要步骤包括消元、回代和得到方程组的解。
消元是高斯消元法的第一步,通过一系列的行变换将增广矩阵的元素转化为上三角形式。
在消元过程中,我们首先找到主元素,即矩阵的对角线元素,然后将其它行的元素通过消元操作转化为0,从而使得矩阵逐步变成上三角形矩阵。
回代是高斯消元法的第二步,通过一系列的回代操作求解线性方程组。
回代操作是从上三角形矩阵的最后一行开始,通过依次求解每个未知数的值,最终得到方程组的解。
高斯消元法的优点是算法简单易于实现,可以在有限的步骤内求解线性方程组,适用于一般的线性方程组问题。
但是高斯消元法也存在一些问题,例如当矩阵的主元素为0时,无法进行消元操作,此时需要通过行交换操作来避免这种情况。
另外,高斯消元法对病态矩阵的求解效果较差,容易引起舍入误差累积,导致解的精度下降。
在实际应用中,为了提高求解线性方程组的效率和精度,人们常常使用一些改进的直接解法,例如列主元高斯消元法和LU分解法。
列主元高斯消元法通过选择最大主元来避免主元为0的情况,进一步提高了求解线性方程组的精度。
LU分解法将矩阵表示为两个矩阵的乘积,从而将线性方程组的求解问题转化为两个三角形矩阵的求解问题,提高了求解效率。
综上所述,线性方程组的直接解法是一种基于矩阵变换的方法,通过一系列的代数运算求解线性方程组的解。
高斯消元法是最常用的直接解法之一,它简单易于实现,适用于一般的线性方程组问题。
在实际应用中,可以通过改进的直接解法来进一步提高求解效率和精度。
线性方程组的直接解法程序设计

线性方程组的直接解法程序设计一、高斯消元法高斯消元法是解线性方程组最常用的方法之一、它通过消元和回代的方式,将线性方程组转化为上三角形式,进而求解未知数的值。
程序设计步骤如下:1.读入线性方程组的系数矩阵A和常数向量b;2.进行初等行变换,将系数矩阵A转化为上三角矩阵U,并同时对常数向量b进行相应的变换;3.判断是否有唯一解,如果主对角线上存在零元素,则方程组无解;如果主对角线上所有元素都非零,则方程组有唯一解;4.进行回代计算,求解未知数的值。
高斯消元法的优点是简单直观,容易理解和实现。
但是在一些情况下,会出现主对角线上有零元素的情况,此时需要进行行交换,增加了额外的计算量。
二、LU分解法LU分解法是另一种常用的线性方程组直接解法。
它将系数矩阵A分解为下三角矩阵L和上三角矩阵U的乘积,即A=LU。
程序设计步骤如下:1.读入线性方程组的系数矩阵A和常数向量b;2.进行LU分解,找到下三角矩阵L和上三角矩阵U;3.解第一个方程Ly=b,先求解向前替代方程,计算出y的值;4.解第二个方程Ux=y,再求解向后替代方程,计算出x的值。
LU分解法的优点是可以在多次需要解线性方程组的情况下重复使用LU分解的结果,提高计算效率。
但是LU分解法需要找到L和U的值,增加了额外的计算量。
三、数学实验在进行数学实验时,需要注意以下几点:1.线性方程组的系数矩阵应该是满秩的,以保证方程组有唯一解;2.对于大规模的线性方程组,可以使用稀疏矩阵存储和计算,减少内存和计算时间的消耗;3.在求解过程中,需要判断方程组是否有解,并且考虑特殊情况的处理;4.通过数学实验可以验证直接解法的正确性和有效性,分析计算结果的误差和稳定性。
综上所述,线性方程组的直接解法程序设计在计算方法和数学实验中都是重要的研究内容。
高斯消元法和LU分解法是常用的直接解法,通过编写程序并进行数学实验,可以深入理解和应用这些方法。
这些方法的有效性和稳定性对于解决实际问题具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(0) b1 (1)式变为A( 0) x b 则 (0) bn
b( 0)
a 0 0
(0) 11
a
a
(0) 12 (1) 22
(1) an 2
x1 b a x 2 b ( 1 ) b (1) x a nn n n a
2 3 2 n O( n ) 3
Gauss消去法工作量为
回代
求解三角形方程组(2), 得求解公式:
( n 1) b n x ( n 1) n ann n ( k 1) ( k 1) ( b a xj) k kj j k 1 ( k 1) xk a kk
( k- 1) 设akk 0,以第k行为基础, 将以后各行中 ( k- 1) 的aik ( i k 1, , n)化为0.
( k 1) ( k 1) 计算 lik aik / akk (i k 1, ..., n)
10
(0) a1 n (1) a2 n ( k 1) akn ( k 1) ann
2 5 1
0.1000 104 0.2000 10
0.1000104 0
0.1000 10 0.1000 10 r 210 r 0.1000 10 0.3000 10
0.100010 0.2000106 0.100010 0.2000106
(0) 1n (1) 2n
12
将(1)式化为(2)式的过程称为消元过程.
Gauss消去法的消元过程算法
for
k 1, 2, , n 1 for i k 1, k 2,, n aik aik ; akk for j k 1, k 2 , n aij aij aik akj
同解方程组: 2 x 1 x 2 x 3 7 3 x 2 3 x 3 -3 2 x 3 -6
下面我们来一般性地讨论求解n阶线性方程组的 高斯顺序消去法.
8
消元
( 0) 令A( 0) A (aij )nn ,b ( 0 )
(0) (0) (0) (0) a11 a12 a1 b n 1 (0) (0) A A , b b (0) (0) (0) (0) a a a n2 nn n1 bn ( 0) ( 0) (0) 0 ,计算因子 li 1 ai 1 / a11 (i 2, ..., n) Step 1:设 a11 将增广矩阵/* augmented matrix */ 第 i 行 li1 第1行,得到 与(1)式等价的方程组
Gauss消去法
思 首先将A化为上三角阵 /* upper-triangular matrix */, 路 再回代求解 /* backward substitution */。
=
一、 高斯顺序消去法 是一种古老的求解线性方程组的方法, 按自然顺序进 行消元的方法.
6
例1 解方程组 2 x 1 x 2 x 3 7
(0) 1n (1) 2n (0) 1 (1) 2
简记为A(1) x b(1) ,
(1) (0) (0) 其中aij aij l i 1a1 j , (0) bi(1) bi( 0 ) l i 1b1
( i , j 2,3, , n)
9
Step 2:一般第 k 次消元 (1≤k ≤n-1)
2
线性方程组及方法分类
线性方程组
{ {
稠密和稀疏(按系数矩阵含零元多少分)
高阶和低阶(按阶数的高低分)
对称正定、对角占优等(按系数矩阵的形状
性质分)
直接法(通过有限步计算得到精确解,适用于低
阶、大型带型阵) 迭代法(通过逐次迭代逼近得到近似解,适用于 大型稀疏、非带型阵)
基本解法
Ann Cramer x b 法则、消元法。 求解线性方程组: 对此方程组进行求解有两种方法:采用
严重失真.
( k 1) ik
/a
( k 1) kk 时,
会出现很
小的数作除数的现象,使舍入误差增大,导致解的
16
二、主元素消去法
例2 解方程组
x1 x2 1.00001 0.00001 x2 3 2 x1
用Gauss消去法计算:
/* 精确解为 x1 1, x2
1 */
A( k )
(k ) an ,k 1
11
Step 3:继续上述过程, 且设 aii(i-1)≠0(i=1,2,…,n-1),直 到完成第 n-1 次消元, 最后得到与 A(0)x=b(0) 等价的三角 形方程组 A(n-1)x=b(n-1).
A( n1) x b( n1)
(2)
(0) 1 (1) 2
得同解方程组 2 x1 x 2 x 3 7 3 x 2 3 x 3 -3 2 x 3 -6
7
r3 ( 2.5
2 0 0
1 3 0
1 3 2
7 3 6
Step2
对上三角形方程进行回代求解, 得
6 x 3 2 3 x 2 ( 3 3 x 3 ) / 3 2 x (7 x x ) / 2 1 2 3 1
解 step1
消元
4 x 1 5 x 2 x 3 11 x 2 x x 0 2 3 1
r2 2r1 r3 1 2 r1
2 4 1
1 5 2
7 1 11 1 0 1
3 )r2
2 0 0
1 1 7 3 3 3 2.5 0.5 3.5
a11 A a n1 a1n , x a nn x1 b1 , b xn bn
4
若 A 0, 解存在且唯一.
Cramer(克莱姆)法则
定理:如果线性方程组 a11 x1 a1n xn b1 a x a x b nn n n n1 1 的系数行列式非零,即
a11 a1n | A | 0 an1 ann
计算量大
则方程组有唯一解:x1
A1 A
, , xn
An A
其中Ak是将 A 的第 k 列元素依次换成常数项b1,…,bn得到的行列式。
对于20阶的线性方程组, 若用Cramer法则求解, 其乘、除运算 次数为9.7*1020, 用一亿次/秒的计算机, 要30.8万年!若用高斯消去 法进行数值求解,乘、除运算只需约3060次。 5
然后用第i 行减去第 k行乘以 lik ,即
a
(k) ij
a
( k 1) ij
lik a
( k 1) kj
, ( j k 1, ..., n)
bi( k ) bi( k1) lik b(k k1 )
a (0) 11
(0) a12
14
a11
... a1i
高斯顺序消去法流程图
输入方程阶数 n, 增广矩阵a(n, n 1), k 1, D 1
akk 0 F i k 1,, n,
k=k+1
aik aik / akk
输出失败信息 ,停
j k 1,, n, n 1, aij aij aik akj
a11 x1 a12 x 2 a1n x n b1 a 21 x1 a 22 x 2 a 2 n x n b2 a n1 x1 a n 2 x 2 a nn x n bn
(1)
线性方程组的矩阵形式为 Ann x b
由上例可以看出,为提高算法的数值稳定性, 应选取绝对值 尽可能大的元素作主元.主元消去法完 成k 1步消元(1 k n 1) 方程组变为 A( k 1) x b( k 1) , 此时增广矩阵为
(0) a11 ( A( k 1 ) , b ( k 1 ) ) (0) a12 (1) a 22
a
(0) 11
a
a
(0) 12 (1) 22
x1 b ... a x 2 b ... ( n 1 ) ( n 1 ) ann xn bn ... a
定义
称第k步消元时保留的第k 个方程为主方程,其首项
( k 1) 系数akk 为第k步的主元.
顺序消去法的缺点为:
1. 当主元akk(k -1)=0时, 消元过程不能继续进行;
2. 当akk (k -1) ≠0时, 虽然消元过程可以进行, 但若
akk (k -1) ≈0时, 计算 lik a
回代求解x2 1, x1 0 ? 若将1, 2两行互换得
0.200010 0.100010 0.300010 r2 0.5105 r1 0.100010-4 0.100010 0.100010 0.200010 0.100010 0.300010 x2 1, x1 1 0 0.100010 0.100010 17
设第k 1步计算已完成,即已计算出与 (1)式等价的方 程组A( k 1) x b( k 1) , 其中A( k 1)具有形式
(0) a11 (0) a12 (1) a22
A( k 1)
( k 1) akk ( k 1) an k