专题25 平面几何的最值问题
平面几何的最值问题及求法

数 学教 学
21 年第 5 00 期
平 面几何 的最值 问题 及 求法
55 21 3 0广东 省东莞市常 学( 部 平中 高中 )陈 洪波
一
、
利用三角形的性质
利用三 角形 “ 两边之和大 于第三边, 两边之
设正 △AB 的边长为 2 M 是 J 边上的中点, , E ; j是边B [ ) 上的任意一点, +P 的最大值 P M 和最小值分别记为s , 和t 则求 s 一t的值. 解: 如图 2 . P ≤ ,’ ,F ≤ M, ’ J ) PA+ PM ≤ CA+ CM = 2+ 、3 /. /
所 以P P = xOp 2 / ' +O " P
例2 ( 0 年全国初中数学联合竞赛试题) 2 0 0
21 年第 5 00 期
=  ̄ OP2+ OP2= 1 v - / 0 / 2
.
数 学教 学
52 —5
解: 以点 为旋转 中心, ABC 将 E按顺时针 方向旋转 6 。 ABG 连结 EF, AB 0到 F, 则 EF为
A1
、
‘ \ ,
‘
、 \\ M 、1 ^
=
3 。 0 .
j、 、 ‘ , N
图4
设 正方 形 边 长 为 , BG = , 则 GH = - , 4 x
B 日 : 日 :
( ) + .
由G H 十 日 =AG , 得
1 2 +
分析: 因河宽一定的, 以桥 M Ⅳ 的长度一 所 定, 只须使 M +BⅣ 最短即可. 可平移 M ( 或
于 B. ’Rc . △DD G中, DG. 。DD . DD > . .
>
M 连结 CM 则 . , M = 9 。 所以 0, M xA +C = / C2 = 、7 . = 、 . /,’ / .£ / / 7 从而 8 一t =( 十 ) 一7 4 . 。 。 2 。 =4 5 二、 利用对称变换 例3 (00 20 年黄 冈初 中数学竞赛试题) 如图 3 , (B = 4 。 二 ) 5 角内有一 点P, PO = 1, 0 在 角的两条 边上有两点 Q 均不 同于点 D, 、 求 AP R的周长的最小值. Q
(完整word版)平面几何的定值与最值问题

第二十三讲平面几何的定值与最值问题【趣题引路】传说从前有一个虔诚的信徒,他是集市上的一个小贩.••每天他都要从家所在的点A出发,到集市点B,但是,到集市之前他必须先拐弯到圆形古堡朝拜阿波罗神像.古堡是座圣城,阿波罗像供奉在古堡的圆心点O,•而周围上的点都是供信徒朝拜的顶礼地点如图1。
这个信徒想,我怎样选择朝拜点,才能使从家到朝拜点,•然后再到集市的路程最短呢?(1) (2)解析在圆周上选一点P,过P作⊙O的切线MN,使得∠APK=∠BPK,即α=β。
那么朝圣者沿A→P→B的路线去走,距离最短.证明如图2,在圆周上除P点外再任选一点P′.连结BP•′与切线MN•交于R,AR+BR〉AP+BP.∵RP′+AP′〉AR.∴AP′+BP′=AP′+RP′+RB〉AR+BP〉AP+BP。
不过,用尺规作图法求点P的位置至今没有解决.•“古堡朝圣问题”属于数学上“最短路线问题”,解决它的方法是采用“等角原理"。
【知识延伸】平面几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题.•所谓几何定值问题就是要求出这个定值.在解决这类问题的过程中,可以直接通过计算来求出定值;也可以先考虑某一个特殊情形下的该相关值,然后证明当相应几何元素变化时,此值保持不变.例1如果△ABC的外接圆半径R一定,求证:abcS是定值。
(S表示△ABC的面积)解析由三角形面积S=12absinC和正弦定理sincC=2R,∴c=2RsinC.∴abcS=2sincC=4sinsinR CC=4R是定值。
点评通过正弦定理和三角形面积公式经过变形,计算出结果是4R,即为定值。
平面几何中不仅有等量关系,还有不等关系,例如在变动一些几何元素时,•某一相关的值保持不大于(或不小于)某个定值,如果这个定值在某个情形下可以取得,•这就是一个几何极值.确定几何极值的问题称为几何极值问题,解决这些问题总要证明相关的几何不等式,并指明不等式成为等式的情形(或者至少证明不等式可以成为等式)。
几何中的最值问题

几何中的最值问题作为一门重要的数学学科,几何中有许多重要的概念和方法,其中最值问题是一个广泛研究的内容。
在几何中,最值问题是指在某些条件下,某个几何量(如长度、面积、体积等)的最大值或最小值问题。
本文将从不同角度介绍几何中的最值问题及其应用。
一、最值问题的基础概念在几何问题中,最值问题最常见的便是一些面积、长度和体积的最值问题。
最常见的方法是使用微积分的极值定理,通过计算导数为0的点来找到函数的最大值和最小值。
此外,还有最大和最小的边界问题。
这些问题需要考虑的是给定条件下的最大可行解或最小可行解。
例如,给定一个面积固定的矩形,我们需要求出其长度和宽度的最大或最小值。
这些问题与微积分密切相关,但在解决这些问题时需要更多的几何知识和直觉。
二、平面几何中的最值问题在平面几何中,最值问题通常涉及三角形、四边形和圆形等形状。
这些形状的特性可以用来求解最值问题,通常需要使用各种几何知识和技巧。
例如,对于一个给定面积的三角形,在其周长恒定的情况下,需要求出该三角形的最大或最小长度。
为解决这类问题,我们可以利用三角形的海涅定理或余弦定理,通过微积分的极值定理得到最优解。
对于圆形,最值问题可能涉及到面积和周长问题,这些需要用到圆相关的特点和公式,如半径、直径、周长和面积等,通常需要通过微积分的方法求解。
另一方面,对于四边形最值问题,我们需要利用它们的对角线和相邻边的关系来解决,这通常需要将四边形划分为三角形或矩形来计算。
三、空间几何中的最值问题在空间几何中,最值问题通常涉及立体体积,包括长方体、正方体、棱锥和棱柱等。
这些问题需要利用空间几何的特点和公式来求解,常用的方法包括微积分的极值定理和立体几何的体积计算公式。
例如,对于一个矩形长方体,在其表面积固定的情况下,需要求出其有最大或最小的体积。
如果我们设该矩形长方体的长、宽和高分别为x、y和z,那么该矩形长方体的体积可以表示为V(x,y,z)=xyz。
通过微积分的方法,可以证明只有当x=y=z时,该方体的体积最大。
专题25 费马点、布洛卡点、拿破仑三角形问题(老师版)

专题25 费马点、布洛卡点、拿破仑三角形问题参考答案与试题解析一.选择题(共4小题)1.(2021春•顺德区期末)点P 为ABC ∆所在平面内一点,当PA PB PC ++取到最小值时,则称该点为ABC ∆的“费马点”.当ABC ∆的三个内角均小于120︒时,费马点满足如下特征:120APB BPC CPA ∠=∠=∠=︒.如图,在ABC ∆中,AB AC ==BC ,则其费马点到A ,B ,C 三点的距离之和为( )A .4B .2C .2-D .2+【解答】解:根据题意,ABC ∆为等腰三角形,120APB APC BPC ∠=∠=∠=︒,PB PC ∴=,在PBC ∆中,由余弦定理可得:2222cos BC BP CP BP CP BPC =+-⋅⋅∠,即222122()2BP BP =-⨯-,解得:1BP =, 在ABP ∆中,由余弦定理可得:2222cos AB BP AP BP AP APB =+-⋅⋅∠,即22112()2AP AP =+-⨯-⨯,解得:2AP =, 4AP BP CP ∴++=,∴其费马点到A ,B ,C 三点距离之和为4.故选:A .2.(2020秋•新华区校级期末)“费马点”是指位于三角形内且到三角形三个顶点距离之和最小的点,当三角形三个内角均小于120︒时,“费马点”与三个顶点的连线正好三等分“费马点”所在的周角,即该点所对的三角形三边的张角相等均为120︒,根据以上性质,函数()f x =的最小值为( )A .2BC .2-D .2+【解答】解:根据题意画出图象并建立如图所示的直角坐标系,设三角形三个顶点分别为A ,B ,C ,函数()f x (,)x y到点(1,0)C ,点(1,0)B -,点(0,2)A 的距离之和,可知ABC ∆为等腰三角形,则这个等腰三角形的“费马点”在高线AO 上,设点G 为“费马点”,连接GB ,GC ,则60OGB OGC ∠=∠=︒,GO =GB GC ==,2GA =,∴距离之和为22GA GB GC ++==+即函数()f x 2+.故选:D .3.(2020秋•安徽月考)17世纪法国数学家费马曾提出这样一个问题:怎样在一个三角形中求一点,使它到每个顶点的距离之和最小?现已证明:在ABC ∆中,若三个内角均小于120︒,当点P 满足120APB APC BPC ∠=∠=∠=︒时,则点P 到三角形三个顶点的距离之和最小,点P 被人们称为费马点.根据以上性质,已知a 为平面内任意一个向量,b 和c 是平面内两个互相垂直的单位向量,则||||||a b a b a c -+++-的最小值是( )A .2B .23+C 1-D 1【解答】解:设(,),(1,0),(0,1)a x y b c ===,则2||||||(1)a b a b a c x -+++-=-即为点(,)P x y 到(1,0)A ,(1,0)B -和(0,1)C 三个点的距离之和,则ABC ∆为等腰直角三角形,如图,由费马点的性质不难得到,当点P 的坐标为时,距离之和最小为(11+=+. 故选:D .4.(2014春•鹿城区校级期末)设点F 为锐角ABC ∆的“费马点”,即F 是在ABC ∆内满足120AFB BFC CFA ∠=∠=∠=︒的点.若||3FA =,|4FB =,||5FC =,且实数x ,y 满足AF xAB y AC =+,则(x y= ) A .54 B .2516 C .32 D .94【解答】解:以F 为坐标原点,以FA 为y 轴正方向建立空间坐标系,如下图所示:由120AFB BFC CFA ∠=∠=∠=︒,||3FA =,||4FB =,||5FC =,得:(0,3)FA =,(23FB =2)-,(FC =,5)2-由AF xAB y AC =+可得:532302x y -=,故54x y =,故选:A . 二.填空题(共15小题) 5.(2021•泰安模拟)在一个三角形ABC 中到三个顶点距离之和最小的点叫做这个三角形的费马点,经证明它也满足120APB BPC CPA ∠=∠=∠=︒,因此费马点也称为三角形的等角中心如图,在ABC ∆外作等边ACD ∆,再作ACD ∆的外接圆,则外接圆与线段BD 的交点P 即为费马点.若1AB =,2BC =,90CAB ∠=︒,则PA PB PC ++= 7 .【解答】解:方法一、如图1,在线段BD 上取一点Q ,使CP CQ =,因为60CPD CAD ∠=∠=︒,所以CPQ ∆是正三角形;又60DCQ ACQ ACQ ACP ∠+∠=∠+∠=︒,所以DCQ ACP ∠=∠,又CD CA =,CQ CP =,所以CQD CPA ∆≅∆, 所以PA PB PC DQ QP PA BD ++=++=;在ABD ∆中,22213AD AC ==-=,1AB =,6090150BAD ∠=︒+︒=︒,由余弦定理得,2221(3)213cos1507BD =+-⨯⨯⨯︒=,所以7BD =.方法二、建立平面直角坐标系,如图2所示:正三角形ACD 中,22213AD AC ==-=,所以323123OD =⨯⨯=,所以圆O 的方程为:221x y +=;又(1,0)D -,1(2A,,1(2C,3(2B,, 直线BD的斜率为02312k +==--, 所以直线BD的方程为1)y x =+;由2211)x y y x ⎧+=⎪⎨=+⎪⎩,11(14P,,计算PA =,PB ==PC =,所以PA PB PC ++=6.(2021•深圳模拟)著名的费马问题是法国数学家皮埃尔⋅德费马(16011665)-于1643年提出的平面几何极值问题:“已知一个三角形,求作一点,使其与此三角形的三个顶点的距离之和最小.”费马问题中的所求点称为费马点,已知对于每个给定的三角形,都存在唯一的费马点,当ABC ∆的三个内角均小于120︒时,则使得120APB BPC CPA ∠=∠=∠=︒的点P 即为费马点.已知点P 为ABC ∆的费马点,且AC BC ⊥,若||||||PA PB PC λ+=,则实数λ的最小值为 2+【解答】解:设||||PA m PC =,||||PB n PC =,||PC x =,其中0m >,0n >,0x >, 由余弦定理可得2222222||2cos120(1)AC x m x mx m m x =+-︒=++,2222222||2cos120(1)BC x n x nx n n x =+-︒=++,222222||2cos120AB m x n x mnx =+-︒,因为222||||||AB CA CB =+,所以2222222()(1)(1)m n mn x m m x n n x ++=+++++,即2m n mn ++=,因为0m >,0n >,所以2()4m n mn +,即2()24m n m n +++,当且仅当1m n ==时,取得等号. 因为||||||PA PB PC λ+=,所以m n λ+=,所以224λλ+,解得223λ=或223λ-(舍去),当且仅当1m n ==所以λ的最小值为2+故答案为:2+ 7.(2021•江西模拟)费马点是指位于三角形内且到三角形三个顶点距离之和最小的点.当三角形三个内角都小于23π时,费马点与三角形三个顶点的连线构成的三个角都为23π.已知点P 为ABC ∆的费马点,角A ,B ,C 的对边分别为a ,b ,c ,若cos 2sin()cos 6A C B π=-,且22()6b a c =-+,则PA PB PB PC PA PC ⋅+⋅+⋅的值为 6 . 【解答】解:cos 2sin()cos 6A CB π=-,1cos cos )cos 2A C C B ∴=-,即cos cos cos cos A C B C B -, A B C π++=,cos cos()cos cos sin sin A B C B C B C ∴=-+=-+,cos cos sin sin cos cos cos B C B C C B C B ∴-+=-,即sin sin cos B C C B =,sin 0C ≠,sin tan cos B B B ∴== (0,)B π∈,3B π∴=, 由余弦定理知,2221cos 22a cb B ac +-==, 22()6b a c =-+, 6ac ∴=,12121211sin sin sin sin 6sin 232323223ABC S PA PB PB PC PA PC ac B ππππ∆∴=⋅+⋅+⋅==⨯⨯=,6PA PB PB PC PA PC ∴⋅+⋅+⋅=.故答案为:6.8.(2020秋•全国月考)费马点是指到三角形三个顶点距离之和最小的点,当三角形三个内角均小于120︒时,费马点在三角形内,且费马点与三个顶点连线正好三等分费马点所在的周角,即该点对三角形三边的张角相等,均为120︒.已知ABC ∆的三个内角均小于120︒,P为ABC ∆的费马点,且3PA PB PC ++=,则ABC ∆面积的最大值为. 【解答】解:3PA PB PC ++=,22229()2()3()PA PB PC PA PB PC PA PB PA PC PB PC PA PB PA PC PB PC =++=+++⋅+⋅+⋅⋅+⋅+⋅,3PA PB PA PC PB PC ∴⋅+⋅+⋅.111113sin sin sin ()sin1203222222ABC S PA PB APB PB PC BPC PA PC APC PA PB PB PC PA PC ∆∴=⋅⋅∠+⋅⋅∠+⋅⋅∠=⋅+⋅+⋅⋅︒⨯⨯,当且仅当1PA PB PC ===时,等号成立.则ABC ∆.. 9.(2020•江西模拟)我们把三角形三个顶点距离之和最小的点称为费马点,若三角形内角均小于120︒,则该三角形的费马点与三角形三边的张角均为120︒.已知三角形ABC 中内角A ,B ,C 所对的边分别是a ,b ,c .若||a b -=,60C =︒,若三角形ABC 的费马点为O ,则OA OB OB OC OC OA ++= 6 .【解答】解:由||a b -=,得22226c a b ab =+-+.由3C π=,得222c a b ab =+-.两式相减得6ab =.所以11sin 622ABC S ab C ∆==⨯. 所以11133sin120sin120sin1202222ABC S OA OB OB OC OA OC ∆=︒+︒+︒=, 得6OA OB OB OC OC OA ++=.故答案为:6.10.(2018秋•上虞区期末)费马点是指三角形内到三角形三个顶点距离之和最小的点,当三角形三个内角均小于120︒时,费马点与三个顶点连线正好三等分费马点所在的周角,即该点所对的三角形三边的张角相等均为120︒.根据以上性质,已知(1,0)A -,(1,0)B ,(0,2)C ,P 为ABC ∆内一点,记()||||||f P PA PB PC =++,则()f P 的最小值为 2+ ,此时sin PBC ∠= .【解答】解:如图,由图可知ABC ∆为等腰三角形,由费马点的性质得,当点P 在中线OC 上且120CPB CPA APB ∠=∠=∠=︒时,()f P 有最小值,设OP x =,则2CP x =-.由题意,AC BC ==在Rt POB ∆中,221PB x =+由余弦定理有,2222cos120BC PC PB PC PB =+-︒代入数据有,225(2)1(2x x x =-+++-解方程得x =或x =(舍)或2x =(舍),此时()(22f P =+= 3(2)sin1202152sin PC PBC BC -︒∠== 故答案为:2+11.(2019•凉山州模拟)点M 是ABC ∆内部或边界上的点,若M 到ABC ∆三个顶点距离之和最小,则称点M 是ABC ∆的费马点(该问题是十七世纪法国数学家费马提出).若(0,2)A ,(1,0)B -,(1,0)C 时,点0M 是ABC ∆的费马点,且已知0M 在y 轴上,则000||||||AM BM CM ++的大小等于 2+【解答】:当ABC ∆三个内角均小于120︒时,费马点M 在ABC ∆内部,此时120AMB BMC CMA ∠=∠=∠=︒,此时||||||AM BM CM ++的值最小.由ABC ∆为锐角三角形,且||||AB AC =,可得0120BM C ∠=︒,设0(0,)M t ,(02)t <<在直角三角形0M CO 中,060OM C ∠=︒,可得tan30t =︒=, 则则000||||||22AM BMCM ++=++. 故答案为:2+.12.(2018秋•荆州区校级期中)以三角形边BC ,CA ,AB 为边向形外作正三角形BCA ',CAB ',ABC ',则AA ',BB ',CC '三线共点,该点称为ABC ∆的正等角中心.当ABC ∆的每个内角都小于120︒时,正等角中心点P 满足以下性质:(1)120APB APC BPC ∠=∠=∠=︒;(2)正等角中心是到该三角形三个顶点距离之和最小的点(也即费马点)2+【解答】在平面直角坐标系中,令点(0,1)A ,(0,1)B -,(2,0)C ,则(,)x y 到点A 、B 、C 的距离之和.因为ABC ∆是等腰三角形,AC BC =,所以C '点在x 轴负半轴上,所以CC '与x 轴重合.令ABC ∆的费马点为(,)P a b ,则0b =.因为ABC ∆是锐角三角形,由性质(1)得120APC ∠=︒,所以60APO ∠=︒,所以1a ,所以a .P ,0)到A 、B 、C 的距离分别为PA PB ==,2PC =,所以2PA PB PC ++=故答案为:2.13.(2019春•石家庄期末)费马点是指三角形内到三角形三个顶点距离之和最小的点.当三角形三个内角均小于120︒时,费马点与三个顶点连线正好三等分费马点所在的周角,即该点所对的三角形三边的张角相等均为120︒.根据以上性质,函数()f x =的最小值为 2 【解答】解:由两点间的距离公式得()f x =为点(,)x y 到点(1,0)B ,(1,0)A -,(0,2)C 的距离之和,即求点(,)x y 到点(1,0),(1,0)-,(0,2)的距离之和的最小值,取最小值时的这个点即为这三个点构成的三角形的费马点,如右图,在等腰三角形AMB 中,120AMB ∠=︒,可得1cos30AM BM ===︒22CM MO =-=,22=.故答案为:2.14.(2021春•湖北期末)拿破仑定理是法国著名军事家拿破仑⋅波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边,向外构造三个等边三角形,则这三个等边三角形的外接圆圆心恰为另一个等边三角形(此等边三角形称为拿破仑三角形)的顶点.”已知ABC ∆内BC ,AC ,AB 为边向外作三个等边三角形,其外接圆圆心依次记为A ',B ',C '.若30ACB ∠=︒,则△A B C '''的面积最大值为 3 .【解答】解:如图,由正弦定理可得,sin30c c ==︒90ACB ∠''=︒,∴23A C '⨯,B C '=,故A B ''=.由余弦定理可得,2222cos30a b ab c +-︒=,即226a b +=,又222a b ab +,∴22222a b +,整理得:22224123a b ++,故23(233A B ''=,231(24343A B C S A B '''=''⨯+=.故答案为:3.15.(2021春•润州区校级期中)拿破仑定理是法国著名军事家拿破仑⋅波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边,向外构造三个等边三角形,则这三个等边三角形的外接圆圆心恰为另一个等边三角形(此等边三角形称为拿破仑三角形)的顶点.”已知ABC ∆内接于单位圆,以BC ,AC ,AB 为边向外作三个等边三角形,其外接圆圆心依次记为A ',B ',C '.若90ACB ∠=︒,则△A B C '''的面积最大值为. 【解答】解:如图在Rt ABC ∆中,设直角边CA a =,CB b =,由题意知222224a b AB +===, 做出拿破仑三角形A B C '''如图,连接CA ',CB ',由等边三角形外心的性质可知:23CA '==,同理CB ',309030150ACB ACA ACB B CB ∠''=∠'+∠+∠'=︒+︒+︒=︒, 在△A CB ''中,由余弦定理得222222222144312cos ))2cos150()()33332A B CA CB CA CB A CB a b a b ''='+'-'⋅'⋅∠''=+-⨯︒=+=+⨯+,(当且仅当a b =时取等号),故21142sin 60223A B C SA B '''+=''⋅︒⨯=.所以△A B C '''..16.(2021•泉州二模)拿破仑定理:“以任意三角形的三条边为边,向外构造三个正三角形,则这三个正三角形的中心恰为另一个正三角形的顶点.”利用该定理可为任意形状的市区科学地确定新的发展中心区位置,合理组织人流、物流,使城市土地的利用率,建筑的使用效率达到最佳,因而在城市建设规划中具有很好的应用价值.如图,设ABC ∆代表旧城区,新的城市发展中心1O ,2O ,3O 分别为正ACD ∆,正ABE ∆,正BCF ∆的中心.现已知2AB =,30ACB ∠=︒,△123O O O ABC 的面积为.【解答】解:如图所示,连接1CO ,3CO ,由题意得:1CO ,3CO ,330O CB ∠=︒,130O CA ∠=︒, 又30ACB ∠=︒,1390O CO ∴∠=︒,又123213O O O SO ==132O O ∴=, 由勾股定理可得:2221313CO CO O O +=,则22213))AC O O +=,得2212AC BC +=, 由余弦定理可得:2222cos30AB AC BC AC BC =+-⋅⋅︒又2AB =,解得AC BC ⋅=∴1sin 302ABC S AC BC ∆=⋅⋅︒=17.(2021•浔阳区校级模拟)法国著名的军事家拿破仑.波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.在三角形ABC 中,角60A =︒,以AB 、BC 、AC 为边向外作三个等边三角形,其外接圆圆心依次为1O 、2O 、3O ,若三角形123O O O角形ABC 的周长最小值为 6 .【解答】解:由题意知△123O O O 为等边三角形,设边长为m ,则123221sin 602O O O Sm =︒==12||2O O m ==, 设BC a =,AC b =,AB c =,如图所示:在△1O AB 中,1130O AB O BA ∠=∠=︒,由60BAC ∠=︒,可知13120O AO ∠=︒, 在等腰△1BO A 中,由1sin120sin 30AB O A ︒=︒,解得1O A =,同理3O A =, 在△13O AO 中,由余弦定理,得2221313132cos120O O O A O A O A O A =+-⋅⋅︒,即22142()3332c b bc =+-⋅⋅-,即2212b c bc ++=,在ABC ∆中,由余弦定理知,222222cos a b c bc A b c bc =+-=+-,a ∴, 又222()212b c b c bc bc +=++=+,b c ∴+=,ABC ∴∆的周长为a b c ++=又222b c bc +,22123b c bc bc ∴++=,04bc ∴<.令()4)f x x =<, 则()0f x '=<,()f x ∴在(0,4]上单调递减,∴当4x =时取得最小值为f (4)6=,6a b c ∴++,即ABC ∆的周长最小值为6.故答案为:6.18.(2021•淮安模拟)拿破仑定理是法国著名的军事家拿破仑⋅波拿马最早提出的一个几何定理:“以任意三角形的三条边为边,向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三个角形的顶点”.在ABC ∆中,120A ∠=︒,以AB ,BC ,AC 为边向外作三个等边三角形,其外接圆圆心依次为1O ,2O ,3O ,若△123O O OABC ∆的周长的取值范围为 [3+ .【解答】解:建立平面直角坐标系,如图所示:设AB x =,AC y =,120BAC ∠=︒,所以以AC 、AB 为边作等边三角形,其中一边在BA 、CA 的延长线上;由AC y =,CM y =,2y AM =,113O M CM =;所以,1(2y O -)y ;同理,2(2x O ,);22222212()11||())()()224123x y x y O O y x y x y +=+++=++=+;所以等边△123O O O 的面积为1232221211sin 60||())23O O O SO O x y x y =︒⋅=+=+=解得2()12x y +=,所以x y +=; 在ABC ∆中,由120BAC ∠=︒,所以BC =,所以ABC ∆的周长为l x y =+= 又222()212x y x y xy +=++=,且222x y xy +,所以412xy ,解得3xy,当且仅当x y ===”; 又0x >,0y >,所以03xy <,[3l =+,即ABC ∆的周长最小值为[3+.故答案为:[3+.19.(2021•江苏模拟)法国著名的军事家拿破仑.波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.在三角形ABC 中,角60A =︒,以AB 、BC 、AC 为边向外作三个等边三角形,其外接圆圆心依次为1O 、2O 、3O ,若三角形123O O O,则三角形ABC 的周长最小值为【解答】解:由题意知△123O O O 为等边三角形,设边长为m ,则123221sin 602O O O Sm =︒==,解得12||O O m == 设BC a =,AC b =,AB c =,如图所示:在△12O AO 中,1130O AB O BA ∠=∠=︒,由60BAC ∠=︒,所以12120O AO ∠=︒, 在等腰△1BO A 中,1sin120sin 30AB O A ︒=︒,解得1O A=,同理得3O A =, 在△12O AO 中,由余弦定理得2221313132cos120O O O A O A O A O A =+-⋅⋅︒,即22122()3332c b bc =+-⋅⋅-,即226b c bc ++=,在ABC ∆中,由余弦定理知,222222cos a b c bc A b c bc =+-=+-,a ∴,又222()6b c b c bc bc bc +=+++=+,b c ∴+=,ABC ∴∆的周长为a b c ++=222b c bc +,2263b c bc bc ∴++=,2bc ∴.令()2)f x x =<,则()f x '=当()0f x '<时,有0+<,解得3x >,()f x ∴在(0,2]上单调递减,∴当2x =时取得最小值,f (2)=32a b c ∴++,即ABC ∆的周长最小值为故答案为:. 三.解答题(共3小题)20.(2021春•台江区校级期中)法国数学家费马被称为业余数学之王,很多数学定理以他的名字命名.对ABC ∆而言,若其内部的点P 满足120APB BPC CPA ∠=∠=∠=︒,则称P 为ABC ∆的费马点.如图所示,在ABC ∆中,已知45BAC ∠=︒,设P 为ABC ∆的费马点,且满足45PBA ∠=︒,2PA =. (1)求PAC ∆的面积; (2)求PB 的长度.【解答】解:(1)由已知可得1801204515PAB ∠=︒-︒-︒=︒,451530PAC ∴∠=︒-︒=︒, 在PAC ∆中,1801203030PCA ∠=︒-︒-︒=︒,2PA PC ∴==,PAC ∴∆的面积11sin 2222S PA PC PAC =∠=⨯⨯.(2)1sin15sin(4530)2︒=︒-︒=,sin 45︒,∴在PAB ∆中,由正弦定理sin15sin 45PB PA=︒︒,可得22sin151sin 45PB ︒===︒.21.如图,在ABC ∆中,90ABC ∠=︒,AB =,1BC =,P 为ABC ∆内一点,90BPC ∠=︒. (1)若12PB =,求PA ; (2)若150APB ∠=︒,求tan PBA ∠.【解答】解:()I 在Rt PBC ∆中,1cos 2PB PBC BC ∠==,60PBC ∴∠=︒,30PBA ∴∠=︒. 在PBA ∆中,由余弦定理得222221172cos30()2224PA PB AB PB AB =+-︒=+-⨯=.PA ∴=. ()II 设PBA α∠=,在Rt PBC ∆中,cos(90)sin PB BC αα=︒-=.在PBA ∆中,由正弦定理得sin sin AB PBAPB PAB=∠∠sin sin(30)αα=︒-,4sin αα=.∴tan α 22.在ABC ∆内存在一点O ,满足BAO CAO CBO ACO ∠=∠=∠=∠,求证:ABC ∆的三边构成等比数列.【解答】证明:12BAO CAO CBO ACO BAC ∠=∠=∠=∠=∠,OA OC ∴=,设BAC α∠=,ABC β∠=,ACB γ∠=,在ABO ∆和BCO ∆中,由正弦定理得,11sin()sin 22OA BO βαα=-,11sin sin()22CO BOαγα=-, AO CO =,∴两式相比得,2111sin sin()sin()222αβαγα=--,则1cos cos()cos()αβγβγα-=--+-, 即1cos()cos cos()βγααβγ++-=+-,1802βγαα+-=︒-,180()αβγ=︒-+1cos(1802)cos[180()]cos()αβγβγ∴+︒-=︒-++-,即1cos(2)cos()cos()αβγβγ-=--+,22sin 2sin sin αβγ∴=, 即2BC AC AB =,则AC ,BC ,AB 三边构成等比数列。
专题25平面几何的最值问题_答案.doc

专题25 平面几何的最值问题例】等提示:当CM ®吋,CM 值最小,g 営:晋MN 的最小值为点厅到AB 的距离B'F, BE= —— = 4^5 cm, AC阳=8亦cm, AE=-BE 1=(20, -(4⑹'=8辰m.在△ABB'中,由丄 的“/^二丄血叩乍,得B'F=16cm ・故BM+2 2MN 的最小值为16cm. 例3 由厶APDs 厶BPQ,得(例2题咔“ 、A/竺=如,即盹=竺竺二好2 -P+BQ=x+冬"・・・・x+《4 BP BQAP x x x2 lx — = 14ab ,・••当且仅当x=—即x=V^时,上式等号成立.故当4PV XXp= 伤时,AP+BQ 最小,其最小值为2 后 _b.例4 (1”;=25 +亍,仔= 49”,故要选择路线/较短•⑵Z+EM +b ,(例5题图)X —呂=才(沪一4)厂一4八・当r=-^—时,片=1?,当r>-^—时,/,2>^,当r<-^— 1 2 LV ) 」 兀$ _4 1 - 兀—4 1 2亍-4时,/.2< /; • 例 5 设 DN=x, PN=y,则 S=xy,由厶APQs'ABF,得4f 3,.=-即-2 — (4 — x) 2不在自变量y 的取值范围内,所以y=—不是极值点,当y=3时,S {3)=12,当y=4时,S (4)=8,故S m ”=12.此时,钢板的最大利用率 ---------- : ---- =80%. 例6设PD=x(x>l),42 -Zx2xl2 则 PC=厶—,由 RtMCDsZAB,得&B=S"'= "I ,令 y=&3・Sz^B ,则 Y= ~ PC J7~[2(P)x=10 — 2y,代入 S=xy 得 S=xy=y(10—2小 即 S=~225 +因 3WyW4,而 y=2AB X PA X AB = (x + 厅2(x-l)求y 的最小值,有下列不同思路:①配方:y =2,即当x=3时,y 有最小值4.②例2如图,B f M+x-\ 2 ------ 1 ----- 2 x-1+ 4 , A 当2运用基本不等式:y=X_1 232x-l 2 二当——=——,即当尸3吋,尹有最小值4.③借用判别式,去2 x — 1分母,得 “+2 (l-y)x+l+2y=0,由厶=4(1一尹)2—4(1+2尹)=4尹(p-4)N0,得比 4,・\y 的最小值为4.1.17提示:当两张纸条的对角重合时,菱形周长最人.2.83. ^744.D5.D6.B7. C 提示:当点P 与点D 重合时,四边形ACBP 的周长最大.8. (1)连结 ME,过 N 作 NFA.AB 于 F,可证明 RUEB 4竺Rt^MNF,得 MF=AE=x. VME 2=AE 2+AM 2f故 MB 1=X 1+AM 1,即(2—力M) 2=x 2+.4M 2, AM=\~-x.:・S=4AM十 DN xq= "M + " x2=/M+/M+MF=2/M+Ag=2 (l--x 2) +x=~-x 22 24 2+x+2.(2) S=~- (X 2-2 X +1)(x —l)讣丄.故当亦=x= 1 时,四边形ADNM2 2 2 2的面积最大,此吋最大值为仝.29. (1) 3C 长为竺二(2)提示:连结3D (3)过点3作丄力D 于由(2)知四3AB?边形/BCD 为等腰梯形,从而BC=AD-2 AM=2r-2 /M.由厶BAM^/\DAB,得 -------------------ADX YY EF=2 r- —./=4x+2 (2 厂一一)=-- rr r(0<x< V2 r)..当兀=厂时,/取得最大值6— 2+2=4,2 x-lY・・・BC=2厂一一.(x —r) 2+6 r (第8題图)10. (1) V ZAPE= ZADQ.Z4EP= ZAQD,:. ^APE^/\ADQ. (2)由厶4PEs △力DQ,1J 1333'PDFs£\ADQ,S、PEF = — S DPEQF ,得 S、PEF = — — 7+x= — — (x ——)2+ — •故当 x=—2 3 3 2 42时,即P 是/D 的中点时,取得最大值,(3)作A 关于直线BC 的对称点连结DA 交BC 于0,则这个0点就是使LADO 周长最小的点,此时0是BC 的中点. 11. (1)点P 恰好在3C 上时,由对称性知MN 是LABC 的中位线,.••当BC=3时,2点P 在BC 上.(2)由己知得ZUBC 底边上的高〃=“扌=4.①当0<疋3时,如图1,连结并延长交BC 于点、D, 4D 与MN 交于点O.(第11题图)图22J 2 1 o 1 市△/A/Ns △/3C,得 AO= — X J y=S、PMN =S、AMN =—x — x=—x?即尹=—x?•当=3 时,v3 ■‘233 3'的值最大,最大值是3.②当3<x<6时,如图2,设△PMN 与BC 相交于点E, F, 4P 与 244相交于D.由①屮知AO=-x, :.AP=-x, :.PD=AP~AD=-x-A, T \PEFs 厶ABC.,3 33尹的最大值为4.综上,当兀=4时,夕的值最大,最大值为4.1.8 8^232提示:当ZCAB=ZACD=90°时,四边形ABCD 的面积达到最大值.S MB C(x-3)・••吵=S“wv _c — 1 2b“EF—~ 入3(x —3) 2=-X 2 + 8X -12 = - (X —4) 2 + 4.故当 x=4 时,Q'PE F・• SbPEF=~即2. 0</<1 提示:设BC=a, CA=b, AB=c, b+c=2观(r+1),又—/)csin60°=5A/i5c:=—2 2Ca+b+c) F,即、bc^~ = L [2\/3 +2A/3 G+l)]『,.bc=4r (r+2) . b, c 为方程2 2 2X2-2A/3 (r+1) x+4r (r+2) =0 的两个根,由—0,得(r+1) <22.H r>0, r+l>0,故 r+l<2,即 0</<l.3如7提示:过P 作垂直于"的弦倔此时弓形面积最小•4.丄提示:设 —=x,则 —= 1-^= —,也型=/,3 AB BA CA S’%° ° 2 1S 梯形DEFG = 1 —工厶—2 ( 1 —X ) 2 = — 3 (.X — — ) ' + —・33n:]5. 7 + °提示:当= 时,OC 的长最大.6. C27. (1)由 RtzUBPsRtAPC 。
几何中的最值问题的解决策略

几何中的最值问题的解决策略
在几何中,最值问题通常是要找到一个几何对象的最大值或最小值。
以下是几何中解决最值问题的一些常用策略:
1. 利用性质或定理:利用已知的几何性质或定理来推导出最值问题的解。
例如,利用三角形的角度和性质来证明某个角度或边长的最大值或最小值。
2. 利用几何画图法:通过绘制几何图形,并观察图形的性质来解决最值问题。
例如,通过绘制直角三角形来找到两条边长之和固定时,两条边长的乘积的最大值。
3. 利用代数方法:将几何问题转化为代数问题,并通过求导、求解方程等代数方法来求解最值问题。
例如,通过代数方法来证明一个函数的极值点是函数的最大值或最小值。
4. 利用不等式:通过建立合适的不等式关系来限制几何对象的取值范围,并通过求解不等式来解决最值问题。
例如,通过利用三角不等式来推导出三角函数的最值问题。
5. 利用等式的极值性质:利用等式的极值性质来解决最值问题。
例如,通过证明函数的取值范围,并找到函数在取值范围边界处的最大值或最小值。
综上所述,解决几何中的最值问题需要运用几何性质和定理,绘制几何图形观察性质,以及运用代数方法、不等式关系和极
值性质等。
同时,解决最值问题还需要对几何对象的性质有深刻的理解和运用。
专题25 平面几何的最值问题答案
专题25 平面几何的最值问题322=4,∴当12x -=21x -,即当x =3时,y 有最小值4. ③借用判别式,去分母,得x 2+2(1-y )x +1+2y =0,由△=4(1-y )2-4(1+2y )=4y (y -4)≥0,得y ≥4,∴y 的最小值为4.A 级1. 17 提示:当两张纸条的对角重合时,菱形周长最大.2. 83.4.D5. D6. B7. C 提示:当点P 与点D 重合时,四边形ACBP 的周长最大.8. (1)连结ME ,过N 作NF ⊥AB 于F ,可证明Rt △EB A ≌Rt △MNF ,得MF =AE =x.∵ME 2=AE 2+AM 2,故MB 2=x 2+AM 2,即(2-AM )2=x 2+AM 2,AM =1-14x 2,∴S =2AM DN +×AD =2AM AF +×2=AM +AM +MF =2 AM +AE =2(1-14x 2)+x =-12x 2+x +2.(2)S =-12(x 2-2 x +1)+52=-12(x -1)2+52.故当AE =x =1时,四边形ADNM 的面积最大,此时最大值为52. 9. (1)BC 长为23r π.(2)提示:连结BD . (3)过点B 作BM ⊥AD 于M ,由(2)知四边形ABCD 为等腰梯形,从而BC =AD -2 AM =2r -2 AM .由△BAM ∽△DAB ,得AM =2AB AD =22x r ,∴BC =2r -2x r .同理,EF =2 r -2x r .l =4 x +2(2 r -2x r )=-x r(x -r )2+6 r (0<x r )..当x =r 时,l 取得最大值6 r .10. (1)∵∠APE =∠ADQ ,∠AEP =∠AQD ,∴△APE ∽△ADQ .(2)由△APE ∽△ADQ ,△PDF ∽△ADQ ,S △PEF =12S □PEQF ,得S △PEF =-13x 2+x =-13(x -32)2+34.故当x =32时,即P 是AD 的中点时,S △PEF 取得最大值,(3)作A 关于直线BC 的对称点A′,连结DA′交BC 于Q ,则这个Q 点就是使△ADQ 周长最小的点,此时Q 是BC 的中点.11. (1)点P 恰好在BC 上时,由对称性知MN 是△ABC 的中位线,∴当MN =12BC =3时,点P 在BC 上.(2)由已知得△ABC 底边上的高h4. ①当0<x ≤3时,如图1,连结AP 并延长交BC 于点D ,AD 与MN 交于点O .B 级1.832 提示:当∠CAB =∠ACD =90°时,四边形ABCD 的面积达到最大值. 3. 249π提示:过P 作垂直于OP 的弦AB ,此时弓形面积最小. 4.13 提示:设AD AB =x ,则BD BA =1-x =CG CA ,ADG ABC S S ∆∆=x 2,BDE ABC S S ∆∆=(1-x )2=CFG ABC S S ∆∆,S 梯形DEFG =1―x 2―2(1-x )2=-3(x -23)2+13.5. a 提示:当OA =OB 时,OC 的长最大.6. C7. (1)由Rt △ABP ∽Rt △PCQ ,得BP CQ =AB CP ,即x y =44x -,y =-14(x -2)2+1(0<x <4).当x =2时, y 最大值=1cm.(2)由14=-14(x -2)2+1,得x =(2)cm 或(2cm.8. 当过A ,B 两点的圆与x 轴正半轴相切时,切点C 为所求.作O′D ⊥A B 于D .,O′D 2=O′B 2-B D 2=2()2a b +-2()2a b -=ab ,O′D 故点C ,0).10. (1)提示:证明△ADF ∽△BAC .(2)①AB =15,BC =9,∠ACB =90°,∴AC12=,∴CF =AF =6,∴()()19632702y x x x =+⨯=+>. ②∵BC =9(定值),∴△PBC 的周长最小,就是PB +PC 最小,由(1)知,点C 关于直线DE 的对称点是点A ,所以PB +PC =PB +PA ,故只要求PB +PA 最小.显然当P 、A 、B 三点共线时PB +PA 最小,此时DP =DE ,PB +PA =AB .由(1),角∠ADF =∠FAE ,∠DFA =∠ACB =90°,得△DAF ∽△ABC .EF ∥BC ,得AE =BE =12AB =152,EF =92.∴ AF ∶BC =AD ∶AB ,即6∶9=AD ∶15,∴AD =10.Rt △ADF 中,AD =10,AF =6,∴DF =8.∴DE =DF +FE =8+92=252. ∴当x =252时,△PBC 的周长最小,此时y =1292. 11.(1)令k =1,得y =x +2;令k =2,得y =2x +6,联立解得x =4,y =2,故定点(4,2). (2)取x =0,得OB =2-4k (k <0),取y =0,得OA =()420k k k -<.于是△ABO 的面积()()114224022k S OA OB k k k -==-<,化简得()28820k S k +-+=.由()28640S ∆=--≥得2160S S -≥,故S ≥16.将S =16代入上述方程,得k =12-.故当k =12-,S 值最小. 12.(1)如图,延长EF 交AC 于点D ,DF ∥BC ,Rt △ADF ∽Rt △ACB ,AE =AC =x ,()2222DE x x y xy y =--=-,22xy y y x y x -+-=,2x -2y -xy =22x xy y -,两边平方整理得(x 2+2x +2)y 2-(x 3+2x 2+4x )y +2x 2=0.解得2222x y x x =++(y =x 舍去) . (2)由(1)22122222y x x ==-+++≤ .当且仅当2x x =,即2x =时,上式等号成立.故当2x =时,y 去最大值21-.。
初中数学:平面几何的最值问题-例题与求解(培优25)
初中数学:平面几何的最值问题-例题与求解(培优25)平面几何的最值问题【阅读与思考】几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值.求几何最值问题的基本方法有:1.特殊位置与极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情形下的推证.2.几何定理(公理)法:应用几何中的不等量性质、定理.3.数形结合法等:揭示问题中变动元素的代数关系,构造一元二次方程、二次函数等.【例题与求解】【解析】作点B关于直线AC的对称点B',交AC与E,连接B'M,过B'作B'G⊥AB于G,交AC于F,再由对称性可知B'M+MN=BM+MN≥B'G,再由等号成立条件得出AC=10√5,再根据△ABC的面积分别求出BE、BB'的值,由相似三角形的判定定理得出△B'GB~△ABC,再根据相似三角形的性质即可求解.【点评】本题考查的是最短路线问题及相似三角形的判定与性质,根据题意作出辅助线是解答此题的关键.【点评】本题考查了三角形相似的判定与性质.也考查了平行四边形的性质以及一元二次方程根的判别式运用.【解析】(1)根据勾股定理易得路线1:l₁²=AC²=高²+(底面周长一半)²;路线2:l₂²=(高+底面直径)²;让两个平方比较,平方大的,底数就大.(2)根据(1)得到的结论让两个代数式分三种情况进行比较即可.【点评】此题考查了平面展开一最短路径问题,比较两个数的大小,有时比较两个数的平方比较简便,比较两个数的平方,通常让这两个数的平方相减,注意运用类比的方法做类型题.【解析】根据题意画图分析.用含表示某一边的字母的代数式表示面积,关键是表示另一边的长.借助三角形相似建立关系.【点评】根据函数求出的最值与实际问题中的最值不一定相同,需注意自变量的取值范围.【点评】本题主要考查对三角形的面积,相似三角形的性质和判定,勾股定理,面积和等积变形等知识点的理解和掌握,能求出方程x²+2(1-y)x+1+2y=0中y的最小值是解此题的关键.。
12.平面几何的最值问题(教师版)
,
∴当 x 1 2 ,即当 x=3 时,y 有最小值 4.
2
x 1
②运用基本不等式:y= x 1 2 2 2 2 x 1
x 1 2 +2=4, 2 x 1
∴当 x 1 = 2 ,即当 x=3 时,y 有最小值 4. 2 x 1
③借用判别式,去分母,得 x2+2(1-y)x+1+2y=0,
由△=4(1-y)2-4(1+2y)=4y(y-4)≥0,得 y≥4,
①求 y 关于 x 的函数关系式;
②当 x 为何值时,△PBC 的周长最小?求出此时 y 的值.
(南通市中考试题)
第 9 题图
第 10 题图
第 11 题图
第 12 题图
11.如图,已知直线 l : y kx 2 4k ( k 为实数).
(1) 求证:不论 k 为任何实数,直线 l 都过定点 M,并求点 M 的坐标; (2) 若直线 l 与 x 轴、y 轴的正半轴交于 A,B 两点,求△AOB 面积的最小值.(太原市竞赛试题)
例 1 在 Rt△ABC 中,CB=3,CA=4,M 为斜边 AB 上一动点.
过点 M 作 MD⊥AC 于点 D,过 M 作 ME⊥CB 于点 E,
则线段 DE 的最小值为
.(四川省竞赛试题)
解题思路:四边形 CDME 为矩形,
连结 CM,则 DE= CM,将问题转化为求 CM 的最小值.
解: 12 5
解: 如图,B′M+MN 的最小值为点 B′到 AB 的距离 B′F,
BE= AB BC 4 5 cm,BB′= 8 5 cm, AC
AE=
AB2 BE 2
202
4
5
2
8
5 cm.
在△ABB′中,由 1 BB′•AE= 1 AB•B′F,得 B′F=16cm.
中考数学专题复习 平面几何的最值问题_答案
7. C 提示:当点 P 与点 D 重合时,四边形 ACBP 的周长最大.
8. (1)连结 ME,过 N 作 NF⊥AB 于 F,可证明 Rt△EB A≌Rt△MNF,得 MF=AE=x.∵
ME2=AE2+AM2,故 MB2=x2+AM2,即(2-AM)2=x2+AM2,AM=1- 1 x2,∴S= 4
y
的取值范围内,所以
y=
5 2
不是极值点,当
y=3
时,S(3)
=12,当
y=4
时,S(4)=8,故
Smax=12.此时,钢板的最大利用率
42
12 1
2
1
=80%.
例
2
6 设 PD=x(x>1),则 PC= x2 1 ,由 Rt△PCD∽△PAB,得 AB= CD PA x 1 ,令 y
PC
x2 1
l22 ,当
r>
4h 2
4
时, l12
l22
,当
r<
4h 2
4
时, l12
l22
.
例5
设 DN=x,PN=y,则 S=xy,由△APQ∽△
ABF,得
2
4
4
y
x
1 2
即
x=10-2y,代入
S=xy 得 S=xy=y(10-2y),即 S=-2
y
5 2
2
25 2
,
因
3≤y≤4,而
y=
5 2
不在自变量
11. (1)点 P 恰好在 BC 上时,由对称性知 MN 是△ABC 的中位线,∴当 MN= 1 BC=3 时, 2
点 P 在 BC 上.(
2)由已知得△ABC 底边上的高 h= 52 -32 =4. ①当 0<x≤3 时,如图 1,连结 AP 并延长交
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题25 平面几何的最值问题阅读与思考几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值. 求几何最值问题的基本方法有:1.特殊位置与极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情形下的推证.2.几何定理(公理)法:应用几何中的不等量性质、定理.3.数形结合法等:揭示问题中变动元素的代数关系,构造一元二次方程、二次函数等.例题与求解【例1】在Rt △ABC 中,CB =3,CA =4,M 为斜边AB 上一动点.过点M 作MD ⊥AC 于点D ,过M 作ME ⊥CB 于点E ,则线段DE 的最小值为 .(四川省竞赛试题)解题思路:四边形CDME 为矩形,连结CM ,则DE = CM ,将问题转化为求CM 的最小值.【例2】如图,在矩形ABCD 中,AB =20cm ,BC =10cm .若在AC ,AB 上各取一点M ,N ,使BM +MN 的值最小,求这个最小值.(北京市竞赛试题)ABDCMN解题思路:作点B 关于AC 的对称点B ′,连结B ′M ,B ′A ,则BM = B ′M ,从而BM +MN = B ′M +MN .要使BM +MN 的值最小,只需使B ′M 十MN 的值最小,当B ′,M ,N 三点共线且B ′N ⊥AB 时,B ′M +MN 的值最小.【例3】如图,已知□ABCD ,AB =a ,BC =b (b a ),P 为AB 边上的一动点,直线DP 交CB 的延长线于Q .求AP +BQ 的最小值. (永州市竞赛试题)PDCA BQ解题思路:设AP =x ,把AP ,BQ 分别用x 的代数式表示,运用不等式以ab b a 222≥+或a +b ≥2ab(当且仅当a =b 时取等号)来求最小值. 【例4】阅读下列材料:问题 如图1,一圆柱的底面半径为5dm ,高AB 为5dm ,BC 是底面直径,求一只蚂蚁从A 点出发沿圆柱表面爬行到C 点的最短路线. 小明设计了两条路线:图2图1摊平沿AB 剪开ACBBAC路线1:侧面展开图中的线段AC .如图2所示.设路线l 的长度为l 1,则l 12 =AC 2=AB 2 +BC 2 =25+(5π) 2=25+25π2. 路线2:高线AB 十底面直径BC .如图1所示.设路线l 的长度为l 2,则l 22 = (BC +AB )2=(5+10)2 =225.∵l 12 – l 22 = 25+25π2-225=25π2-200=25(π2-8),∴l 12 >l 22 ,∴ l 1>l 2 . 所以,应选择路线2.(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1分米,高AB 为5分米”继续按前面的路线进行计算.请你帮小明完成下面的计算: 路线1:l 12=AC 2= ;路线2:l 22=(AB +BC )2= .∵ l 12 l 22,∴l 1 l 2 ( 填“>”或“<”),所以应选择路线 (填“1”或“2”)较短.(2)请你帮小明继续研究:在一般情况下,当圆柱的底面半径为r ,高为h 时,应如何选择上面的两条路线才能使蚂蚁从点A 出发沿圆柱表面爬行到C 点的路线最短. (衢州市中考试题)解题思路:本题考查平面展开一最短路径问题.比较两个数的大小,有时比较两个数的平方比较简便.比较两个数的平方,通常让这两个数的平方相减.【例5】如图,已知边长为4的正方形钢板,有一个角锈蚀,其中AF =2,BF =1.为了合理利用这块钢板,将在五边形EABCD 内截取一个矩形块MDNP ,使点P 在AB 上,且要求面积最大,求钢板的最大利用率. (中学生数学智能通讯赛试题)NME F DCABP解题思路:设DN =x ,PN =y ,则S =xy .建立矩形MDNP 的面积S 与x 的函数关系式,利用二次函数性质求S 的最大值,进而求钢板的最大利用率.【例6】如图,在四边形ABCD 中,AD =DC =1,∠DAB =∠DCB =90°,BC ,AD 的延长线交于P ,求AB ·S △P AB 的最小值. (中学生数学智能通讯赛试题)11CPABD解题思路:设PD =x (x >1),根据勾股定理求出PC ,证Rt △PCD ∽Rt △P AB ,得到PCPACD AB ,求出AB ,根据三角形的面积公式求出y =AB ·S △P AB ,整理后得到y ≥4,即可求出答案.能力训练A 级1.如图,将两张长为8、宽为2的矩形纸条交叉,使重叠部分是一个菱形.容易知道当两张纸条垂直时,菱形的周长有最小值,那么菱形周长的最大值是 . (烟台市中考试题)2.D 是半径为5cm 的⊙O 内一点,且OD =3cm ,则过点O 的所有弦中,最短的弦AB = cm . (广州市中考试题)3.如图,有一个长方体,它的长BC =4,宽AB =3,高BB 1=5.一只小虫由A 处出发,沿长方体表面爬行到C 1,这时小虫爬行的最短路径的长度是 . (“希望杯”邀请赛试题)AF EAA 1DB D 1B 1C 1CAB CO第1题图 第3题图 第4题图 第5题图4.如图,在△ABC 中,AB =10,AC =8,BC =6,经过点C 且与边AB 相切的动圆与CB ,CA 分别相交于点E ,F ,则线段EF 长度的最小值是( ) (兰州市中考试题)A .42B .4.75C .5D .4.85.如图,圆锥的母线长OA =6,底面圆的半径为2.一小虫在圆锥底面的点A 处绕圆锥侧面一周又回到点A ,则小虫所走的最短距离为( ) (河北省竞赛试题) A .12B .4πC .62D .636.如图,已知∠MON = 40°,P 是∠MON 内的一定点,点A ,B 分别在射线OM ,ON 上移动,当△P AB 周长最小时,∠APB 的值为( ) (武汉市竞赛试题) A .80° B .100° C .120° D .140° 7.如图, ⌒AD 是以等边三角形ABC 一边AB 为半径的四分之一圆周,P 为AD 上任意一点.若AC =5,则四边形ACBP 周长的最大值是( ) (福州市中考试题) A .15B .20C .15+52D .15+55NM NMAOPBDCBCA DBA PE第6题图 第7题图 第8题图 8.如图,在正方形ABCD 中,AB =2,E 是AD 边上一点(点E 与点A ,D 不重合),BE 的垂直平分线交AB 于M ,交DC 与N .(1) 设AE =x ,四边形ADNM 的面积为S ,写出S 关于x 的函数关系式.(2) 当AE 为何值时,四边形ADNM 的面积最大?最大值是多少? (山东省中考试题)9.如图,六边形ABCDEF 内接于半径为r 的⊙O ,其中AD 为直径,且AB =CD =DE =F A . (1) 当∠BAD =75°时,求⌒BC 的长; (2) 求证:BC ∥AD ∥FE ;(3) 设AB =x ,求六边形ABCDEF 的周长l 关于x 的函数关系式,并指出x 为何值时,l 取得最大值.10.如图,已知矩形ABCD 的边长AB =2,BC =3,点P 是AD 边上的一动点(P 异于A 、D ).Q 是BC 边上任意一点.连结AQ ,DQ ,过P 作PE ∥DQ 交于AQ 于E ,作PF //AQ 交DQ 于F . (1) 求证:△APE ∽△ADQ ;(2) 设AP 的长为x ,试求△PEF 的面积S △PEF 关于x 的函数关系式,并求当P 在何处时,S △PEF 取得最大值?最大值为多少?(3) 当Q 在何处时,△ADQ 的周长最小?(须给出确定Q 在何处的过程或方法,不必证明)(无锡市中考试题)FEABD CQP11.在等腰△ABC 中,AB =AC =5,BC =6.动点M ,N 分别在两腰AB ,AC 上(M 不与A ,B 重合,N 不与A ,C 重合),且MN ∥BC .将△AMN 沿MN 所在的直线折叠,使点A 的对应点为P . (1)当MN 为何值时,点P 恰好落在BC 上?(2)设MN =x ,△MNP 与等腰△ABC 重叠部分的面积为y ,试写出y 与x 的函数关系式,当x 为何值时,y 的值最大,最大值是多少? (宁夏省中考试题)NB CA MB 级1.已知凸四边形ABCD 中,AB +AC +CD = 16,且S 四边彤ABCD =32,那么当AC = ,BD = 时,四边形ABCD 面积最大,最大值是 . (“华杯赛”试题)2.如图,已知△ABC 的内切圆半径为r ,∠A =60°,BC =23,则r 的取值范围是 .(江苏省竞赛试题)yxr COFE EDF O BC A OBCAABP D GAB第2题图 第3题图 第4题图 第5题图3.如图⊙O 的半径为2,⊙O 内的一点P 到圆心的距离为1,过点P 的弦与劣弧⌒AB 组成一个弓形,则此弓形面积的最小值为 .4.如图,△ABC 的面积为1,点D ,G ,E 和F 分别在边AB ,AC ,BC 上,BD <DA ,DG ∥BC ,DE ∥AC ,GF ∥AB ,则梯形DEFG 面积的最大可能值为 .(上海市竞赛试题)5.已知边长为a 的正三角形ABC ,两顶点A ,B 分别在平面直角坐标系的x 轴,y 轴的正半轴上滑动,点C 在第一象限,连结OC ,则OC 的最大值是 .(潍坊市中考试题)6.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当P A + PD 取最小值时,△APD 中边AP 上的高为( ) (鄂州市中考试题)A .17172B .17174C .17178D .3QADBCA BDCPP第6题图 第7题图 第8题图7.如图,正方形ABCD 的边长为4cm ,点P 是BC 边上不与点B ,C 重合的任意一点,连结AP ,过点P 作PQ ⊥AP 交DC 于点Q .设BP 的长为x cm ,CQ 的长为y cm . (1) 求点P 在BC 上运动的过程中y 的最大值;(2) 当y =41cm 时,求x 的值. (河南省中考试题)8.如图,y 轴正半轴上有两点A (0,a ),B (0,b ),其中a >b >0.在x 轴上取一点C ,使∠ACB 最大,求C 点坐标. (河北省竞赛试题)9.如图,正方形ABCD 的边长为1,点M ,N 分别在BC ,CD 上,使得△CM N 的周长为2.求: (1) ∠MAN 的大小;(2) △MAN 的面积的最小值. (“宇振杯”上海市竞赛试题)10,如图,四边形ABCD 中,AD = CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC 于F ,DE 与AB相交于点E .(1) 求证:AB ·AF =CB ·CD ; (2)已知AB =15cm ,BC =9cm ,P 是射线DE 上的动点,设DP =x cm(x >0),四边形BCDP 的面积为y cm 2. ①求y 关于x 的函数关系式;②当x 为何值时,△PBC 的周长最小?求出此时y 的值.(南通市中考试题)MDC ABNFE DABC Pyxl OABxyH EA CBGF 第6题图 第7题图 第8题图 第9题图11.如图,已知直线l :k kx y 42-+=(k 为实数).(1) 求证:不论k 为任何实数,直线l 都过定点M ,并求点M 的坐标;(2) 若直线l 与x 轴、y 轴的正半轴交于A ,B 两点,求△AOB 面积的最小值.(太原市竞赛试题)12.如图,在Rt △ABC 中,∠C =90°,BC =2,AC =x ,点F 在边AB 上,点G ,H 在边BC 上,四边形EFGH 是一个边长为y 的正方形,且AE =AC . (1) 求y 关于x 的函数解析式;(2) 当x 为何值时,y 取得最大值?求出y 的最大值.(上海市竞赛试题)。