阿基米德的数学成就数学史

阿基米德的数学成就数学史
阿基米德的数学成就数学史

阿基米德

阿基米德(Archimedes) 公元前287年生于西西里岛(Sicilia,今属意大利)的叙拉古(Sracusa,—译锡拉库萨);公元前212年卒于叙拉古.数学、力学、天文学.

和其他的古希腊数学家相比,阿基米德的生卒年是比较确实的.J.策策斯(Tzetzes,约1110—约1180)在《史书》(Book of histories)中记载:“智者阿基米德是叙拉古人,著名的机械制造师,终生研究几何,活到75岁”.阿基米德之死,T.李维(Livius,公元前59—公元17年)策斯等历史学家作了不同的描述,但一致同意他是在叙拉古陷落(公元前212年)时被罗马兵所杀的.倒推回去,应生于公元前287年.

阿基米德是叙拉古统治者海厄罗王(Hiero Ⅱ,约公元前308—前216年,约公元前270—前216年在位)的亲戚,和王子吉伦(Gelon,后继承王位)友善.父亲菲迪亚斯(Phidias)是天文学家.

阿基米德早年曾在当时希腊的学术中心亚历山大跟随欧几里得的门徒学习,对欧几里得数学进一步的发展作出了一定的贡献.在那里结识许多同行好友,如科农(Conon of Samos,公元前245年前后)、多西修斯(Dositheus,公元前225年前后)以及埃拉托塞尼(Eratosthenes)等等.回到叙拉古以后仍然和他们保持密切的联系,因此阿基米德也算是亚历山大学派的成员,他的许多学术成果就是通过和亚历山大的学者通信往来保存下来的.后人对阿基米德给以极高的评价.数学史家E.T.贝尔(Bell,1883—1960)说:任何一张列出有史以来三个最伟大的数学家的名单中,必定会包括阿基米德,另外两个通常是牛顿和高斯.不过以他们的丰功伟绩和所处的时代背景来对比,拿他们的影响当代和后世的深邃久远来比较,还应首推阿基米德.普林尼(Pliny,公元 23—79年)甚至称阿基米德为“数学之神”这些过分的赞扬,反映了后世对阿基米德的崇敬.

赫拉克利德(Heraclides)曾写过阿基米德的传记,欧托基奥斯(Eutocius of Ascalon,约生于公元480年)止一次提到这件事,可惜传记已失传.阿基米德的生平事迹,散见于各种古代的文献中.

金冠

维特鲁维厄斯(Marcus Vitruvius Pollio,公元前1世纪上半叶—约公元前25年)罗马有名的建筑学家,以传世的10卷《建筑学》(De Architectura Libri X)称.这书第Ⅸ卷记述了一段传诵千古的逸事.叙

拉古的海厄罗王的政治威望及权势日益提高,为了报答诸神的德泽,他决定建造一个华贵的神龛,内装一个纯金的王冠,作为谢恩的奉献物

金匠如期完成了任务,理应得到奖赏.这时有人告密说金匠偷去一部分金子,以等重的银子掺入.国王甚为愤怒,但又无法判断是否确有其事.便请素称多能的阿基米德来鉴定一下,他也一时想不出好办法来.正在苦闷之际,他到公共浴室去洗澡,当浸入装满水的浴盆去的时候,水漫溢到盆外,而身体顿觉减轻.于是豁然开朗,悟到不同质料的物体,虽然重量相同,但因体积不同,排去的水必不相等.根据这一道理,不仅可以判断王冠是否掺有杂质,而且知道偷去黄金的份量.这一发现非同小可,阿基米德高兴得跳了起来,赤身奔回家中准备实验,口中不断大呼“尤里卡!尤里卡!”(Eureka,意思是“我找到了”.)

这问题可解释如下:设王冠重W,其中金与银分别重W1,W2,而W=W1+W2分别取重为W与W1的纯金放入水中,设排去水的重各

的银放入水中,设排去水的重量各为F2与y,于是W∶W2=F2∶y,

由此推得F(W1+W2)=F1W1+F2W2,即

用实验可求出F,F1,F2,即可算出银与金之比值.如F=F1,说明没有掺银.实际情况是两者不等,从而揭穿了金匠的劣行.

经过仔细实验和反复思考,将经验上升为理论,他终于发现了流体静力学的基本原理——阿基米德原理:物体在流体中减轻的重量,等于排去流体的重量.后来总结在他的名著《论浮体》(Flo-ating bodies)中成为第7命题.

豪言壮语

帕波斯(Pappus)的《数学汇编》(Mathematical collections)

记载,阿基米德建立了杠杆定律(若两物体与支点的距离反比于其重量,则杠杆平衡)之后,解决了“用给定的力去移动任何给定的重物”的问题,曾发出豪言壮语:“给我一个立足点,我就可以移动地球!”

普卢塔克(Plutarch,约公元46—119年以后)的《马塞勒斯传》(Marcellus)中有更详细的描写.阿基米德对海厄罗王说:任何重物都可以用一个给定的力来移动.“如果另外有一个地球,就可以站在那上面移动这一个”.海厄罗王大为诧异,想考验一下这惊人的论断是否可靠,要求他用事实来证明.阿基米德从国王的船队中选定一艘有三根桅杆的货船,这种船通常要用很多人花很大力气才拖得动它.阿基米德安装了一组滑轮,自己站在远处,手握绳子的一端,轻而易举将船平稳地拉过来,好象它在海上行驶一样.

按普罗克洛斯(Proclus)的说法,这艘船是海厄罗王特地为托勒密王(Ptolemy)建造的,下水时几乎动员了所有的叙拉古人.而阿基米德凭着他发明的机械,使国王自己一个人就把它拖动.国王佩服得五体投地,当即宣布:“从现在起,阿基米德说的话我们都要相信”.

辛普利休斯(Simplicius,6世纪上半叶)在注释亚里士多德的《物理学》(Physica)时,说阿基米德发明了一种“神力器”(cha-ristion)

德宣称要用“神力器”去移动地球.

上述几种记载内容大致相同.阿基米德真的能移动地球吗?不妨作一个简单的计算.那时他并不知道地球有多重,现在知道地球质量是6

×1027克.假想用杠杆来举起地球,加60公斤(6×104克)的力,那么力臂应该是重臂的 6×1027÷6×102=1023倍.要举起地球1/10000毫米,力臂的一端应走过1013公里以上.每天24小时以短跑的速度走过这个距离,

至少要3000万年!换句话说,即使略去杠杆本身的重量不计,阿基米德用尽毕生的力量,也休想移动地球分毫.不过这位伟大的古代力学家,只因为不知道地球的大小,以致作出错误的判断,这是可以谅解的.

叙拉古保卫战

在阿基米德的一生中,最悲壮、最惊心动魄的一幕是他以古稀之龄,投身于反侵略战争,最后为国捐躯.

迦太基(Carthage)是古代腓尼基(Phoenicia)人建立的国家.以现今非洲北部的突尼斯为中心,领土东到西西里岛,西达西班牙和摩洛哥.由于商业和殖民利害的冲突,从公元前264年起到前146年为止,前后三次和罗马人进行了猛烈的大搏斗,延续120年之久.罗马人称迦太基人为腓尼(Poeni),转为布匿(Punic),故史称布匿战争.第二次布匿战争发生于公元前218—前201年,叙拉古和迦太基缔结同盟,因此成为罗马的仇敌.公元前214年,罗马名将马塞勒斯(Marcus Claudius Marcellus,约公元前268—前208年)率领大军围攻叙拉古.在这危急存亡之秋,阿基米德便献出自己一切杰出的科学技术为祖国效劳.

详细记述这次保卫战的主要有三种书:波利比奥斯(Polybius,约公元前200—前118年)的《通史》(Historiae,共 40卷),李维的《罗马史》及普卢塔克的《马塞勒斯传》(Vita Marcelli).此外策策斯、卢西恩(Lucian,约公元120—180年以后)等也有所论述.

马塞勒斯从陆上及海上袭击叙拉古.阿基米德用他发明的起重机之类的器械将靠近墙根的船只抓起来,再狠狠地摔下去,有的被撞得粉碎,有的沉入海底.马塞勒斯也不甘示弱,他用8艘5层橹船(quinquereme),每两艘联锁在一起,架起一种叫“萨姆布卡”(sambuca)武器,准备攻城.可是叙拉古人未等敌船靠近,就用强大的机械将巨大石块抛出,形同暴雨,打得“萨姆布卡”七零八落.同时万弩齐发,罗马兵死伤无数.吓得目瞪口呆的马塞勒斯下令退兵.在陆上,罗马兵也没有占到便宜.多次进攻,均未得逞.

有一种传说是阿基米德用巨大的火镜(burning-mirror)反射阳光

来焚烧敌船,这大概是夸张的说法,最早见于卢西恩(Luci-an)的记载.不过当时阿基米德已经发现抛物面反射镜能够聚焦的性质.有的书说成将燃烧的火球弹射出去使敌船着火,这也许比较可信.

无论如何,罗马兵已成惊弓之鸟,简直是“风声鹤唳,草木皆兵”,只要看到一根绳子或一块木头从城里扔出来,立刻抱头鼠窜,大呼:“阿基米德的机器又瞄准我们了”.

罗马人在一次军事会议上,决定夜间偷袭,他们以为飞弹只能在远距离起作用,黑夜可以避开城上的视线,一旦接近城墙,飞弹就无能为力了.谁知阿基米德早有防备,制造了一种叫“蝎子”的弩炮,专门对付近处的敌人.罗马兵又一次吃了大亏.

马塞勒斯嘲笑他自己的工程师和工兵说:“我们还能同这个懂几何的‘百手巨人’(Briareus)下去吗?他轻松地稳坐在海边,把我们的船只像掷钱游戏(pitch and toss)似的抛来抛去,船队被搞得一塌糊涂,还射出那么多的飞弹,比神话里的百手妖怪还厉害”.(《马塞勒斯传》,见[7],p.29.)

后来罗马军放弃正面进攻,改用长期围困的策略.叙拉古终于因粮食耗尽,被叛徒出卖,公元前212年,在一个庆祝阿泰密斯(Artemis)神,75岁的阿基米德也光荣牺牲了.

为国捐躯

叙拉古陷落时,马塞勒斯虽然发布了许多禁令,仍然阻挡不住士兵的劫掠.出于对阿基米德的敬佩,他下令不准伤害这位贤者,

但阿基米德还是被愚蠢的罗马兵杀害了.关于他的死,几种记载颇有出入.

(一)最早的说法出自李维.在兵荒马乱之中,侵略军大肆杀戮,阿基米德正在沙上画图,一个罗马兵将他刺死,根本不知道他是谁.

这里所说的“沙”,是指沙盘(sand board),在平板上铺上细沙,用来计算、画图和写字.也就是“算盘”(abacus).李维的原文是pulvis(拉丁文,沙盘或沙上铺的细沙),后来罗马历史学家瓦勒里乌斯(Valerius Maximus,活跃于公元20年前后)提到这件事,误以为是在沙地上画图,把pulvis写成terra(土地),于是许多书就以讹传讹.

许多数学史书都转载一幅镶嵌的图案画(例如见[11],p.135),表现了阿基米德之死.它是在意大利赫库兰尼姆(Herculaneum)发现的,原为波拿巴(Jér me Bonaparte, 1784—1860)的传家宝,后为威斯巴登(Wiesbaden)的F.E.沙贝尔(Schabell)所有,1924年由F.温特尔(Winter)

将它发表出来.一般认为这件工艺品是艺术家根据古代一幅画来制作的.画面是一位老人,坐在小桌子后面,两手似在护着放在桌上的长方形沙盘,横眉冷对站在旁边的握剑士兵,他显然是命令老人跟他走.较多的学者认为它较真实地重现了当时的情景.

(二)策策斯的记载是,他俯身去画一些机械图,一个罗马人走过来拖他去当俘虏.阿基米德全神贯注在作图,没有注意是谁,口中说:“喂!站远一点,离开我的图.”那人继续拽他,他转过头来,看清是一个罗马兵时,立即喊道:“给我一样器械(指他发明的武器)!”士兵吓了一跳,马上杀了他,虚弱的老人就这样倒下了.

(三)普卢塔克还给出下面几种说法.阿基米德独自聚精会神去思考要解决的问题,目不转睛地看他的图,丝毫没有注意到城池已破.一个罗马兵突然出现在他的面前,命令他到马塞勒斯那里去,遭到阿基米德的严词拒绝,他表示除非解答了问题并给出了证明,否则是不会去的.这激怒了罗马兵,于是丧生在刀剑之下.

(四)另一种说法是罗马兵不由分说,要立刻刺死他,阿基米德看了他一眼,请求他等一会儿,不要让一道只研究了一半而尚未解决的问题遗留给后人.但是士兵不懂这些,终于动了手.

(五)还有一种说法是阿基米德带了许多数学仪器去见马塞勒斯,如日晷、球以及测量太阳的工具等,那些士兵不知这些闪闪发光的东西是什么宝物,于是便谋财害命.

不管具体的情节如何,这位旷世的大科学家,为了拯救自己的祖国,曾竭尽心智,力挽狂澜,给侵略者以沉重的打击,最后献出生命,这是无可怀疑的事实.

阿基米德之死,马塞勒斯甚为悲痛,除严肃处理这个士兵外,还寻找阿基米德的亲属,给予抚恤并表示敬意,又给阿基米德立墓,聊表景仰之忱.在碑上刻着球内切于圆柱的图形,以资纪念.因阿基米德发现球的体积及表面积,都是外切圆柱体体积及表面积的 2/3.他生前曾流露过要刻此图形在墓上的愿望.

后来事过境迁,叙拉古人竟不知珍惜这非凡的纪念物.100多年之后(公元前75年),罗马著名的政治家和作家西塞罗(Mar-cus Tullius Cicero,公元前106—前43年)在西西里担任财务官,有心去凭吊这座伟人的墓.然而当地居民竟否认它的存在.众人借助镰刀辟开小径,发现一座高出杂树不多的小圆柱,上面刻着的球和圆柱图案赫然在目,这久

已被遗忘的寂寂孤坟终于被找到了.墓志铭仍依稀可见,大约有一半已被风雨腐蚀.又两千年过去了,随着时光的流逝,这座墓也消失得无影无踪.现在有一个人工凿砌的石窟,宽约十余米,内壁长满青苔,被说成是阿基米德之墓,但却无任何能证明其真实性的标志,而且“发现真正墓地”的消息时有所闻,令人难辨真伪.

主要著作

阿基米德留下的数学著作不下10种,多数为希腊文手稿,也有的是13世纪以后从希腊文译成拉丁文的手稿.有J. L.海伯格(Heiberg)校订的:Archimedis opera omnia cum commen-tariis Eutocii(《阿基米德全集,包括欧托基奥斯(Eutocius of Ascalan,约生于公元 480年)

的注释》,1910—1915,莱比锡出版),这是标准的本子:译成现代语的常见的有三种:T.L.希思(Heath)英译注释本:The works of Archimedes with the method of Archimedes(《阿基米德全集,包括阿基米德方法》,1912,纽约出版); P.V.埃克(Eecke)法译本: Les oeuvres complètes d'Archimède(《阿基米德全集》,1921,巴黎出版);E.J.迪克斯特惠斯(Dijksterhuis):Archimedes[《阿基米德全集》,原文为荷兰语,1938—1944,C.迪克舒恩.(Dikshoorn)英译本,1956,哥本哈根出版].

著作的体例,深受欧几里得《几何原本》的影响,先设立若干定义和假设,再依次证明各个命题.各篇独立成章,虽然不象《原本》那样浑然一体,但所言均有根据,论证也是严格的.现按海伯格本的顺序(为希思本所沿用)列举如下:

1.《论球与圆柱》(On the sphere and cylinder);

2.《圆的度量》(Measurement of a circle);

3.《劈锥曲面与回转椭圆体》(On conoids and spheroids);

4.《论螺线》(On spirals);

5.《平面图形的平衡或其重心》(On the equilibrium of planes or the centres of gravity of planes);

6.《数沙器》(The sand-reckoner);

7.《抛物线图形求积法》(Quadrature of the parabola);

8.《论浮体》(On floating bodies);

9.《引理集》(Book of lemmas);

10.《群牛问题》(The cattle-problem).

以上并不是写作先后的顺序,如按时间来排,大致是:5(卷1),7,5(卷2),1,4,3,8,2,6.另外,在本世纪初还发现阿基米德的一封信,这信非常重要,它记录了阿基米德研究问题的独特思考方法,后来以《阿基米德方法》(The method of Archimedes,简称《方法》)的标题发表出来.

《方法》的发现及其内容

1906年,哥本哈根大学古典哲学教授J.L.海伯格(Heiberg,1854—1928)在土耳其君士坦丁堡(现称伊斯坦布尔)仔细观看一部擦去旧字

写上新字的羊皮纸书①,旧的字迹幸好没有擦干净可以判定是10世纪时写上去的.擦掉之后,大约在13世纪时写上一大堆东正教的祈祷文和礼拜仪式,作为中世纪的宗教文献保存了下来.旧的字迹隐约可辨,海伯格惊喜地发现这是阿基米德的著作,因为在别处见过.于是用摄影等技术使旧字迹重现,1908年再一次去进行工作,经过不懈的努力,终于使185页的文字(除少数完全看不清者外)重见天日.其中包活《论球与圆柱》及《圆的度量》、《平面图形的平衡或其重心》的一部分.还有《论浮体》的相当一部分,过去一直认为希腊文本已失传,只有莫贝克(William of Moerbeke,约1230—1286)的拉丁文译本存下来,现在居然得到希腊文原本,虽然也还不是全部.更令人兴奋的是有一封阿基米德写给埃拉托塞尼(Eratosthenes)的信,还是初次看到.这是本世纪数学史料的重大发现.

《方法》包括15个命题.一开头是写给埃拉托塞尼的信用来说明本篇的主要内容,相当于序言.下面,以命题1为例,阐明阿基米德的思想方法.为了便于了解,暂用现代的术语和符号来推导.

设D是抛物线弧ABC的弦AC的中点,过D作直线平行于抛物线的轴OY,交抛物线于B.要证明的是抛物弓形ABCD的面积等于△ABC面积的4/3.

当时已经知道过B的切线平行于AC,即B是弓形的顶点(在ABC弧上与AC距离最远的点).命题结论的另一种说法是:

抛物弓形的面积,是等底等高的三角形的4/3.

用解析几何来分析,设抛物线方程是

y=ax2 (1)

A,C的横坐标分别是x1,x2,则AC的方程是

y=ax1x+ax2x-ax1x2 (2)

过C点的切线CF的方程是

延长DB交CF于E,不难证明,B是ED的中点.事实上,将D,B,

坐标,依次是

由此知B是D、E中点.

作AF‖OY,交CF于F.延长CB交AF于K,则K是FA的中点.再取KH=KC,过AC上任意点M作MQ‖OY,交CK于P,交CF于Q,交抛物线于N.将M的横坐标x2分别代入(2)、(1)、(3)得到M,N,Q的纵坐标

y m=ax1x0+ax2x0-ax1x2,

于是有

上面推出的几个性质,有的前人已证明,有的阿基米德在别处已证明,在这里是作为已知条件来使用的.例如:1)过D且平行于轴的直线必过弓形的顶点B,且B是ED中点,在欧几里得以及阿里斯泰奥斯(Aristaeus,约公元前340年)的圆锥曲线论中已证明,在阿基米德的《抛物线图形求积法》命题 1,2中也讨论过;2)MQ∶MN=AC∶AM是同一篇论文的命题5.

下面才是阿基米德巧妙的根据力学原理去探索真理的方法.

假想各线段都是有重量的,而且重量和长度成正比.又HP是一根以K为支点的杠杆.因为MQ∶MN=HK∶KP,如果将MN放在H点,就可以和位于杠杆另一端的MQ平衡,P是MQ的重心.这关系对于任意的M都成立.弓形可以看作由许多这样的MN线段所组成,而△AFC由许多的MQ线段所组成.如果将所有的MN(也就是整个弓形)都放在H上(以H为重心),就可以和△AFC平衡.弓形的重量可以看作完全集中在H点,而△AFC的重量也可以看作集中在它的重心上,这重心位于中线KC上,与K的距离是KC(=KH)的1/3,故弓形重量(即面积)是△AFC重量(即面积)的1/3.又△AFC=4△ABC,故知弓形ABCD的面积是△ABC的4/3.

阿基米德特别声明以上的推导不能算是证明,只是一种直观的试探或猜测问题结论的方法.以后还要在别的地方用几何方法(通常是用归谬法)去严格证明它.

《方法》的中心思想,是要计算一个未知量(图形的面积、体积等),先将它分成许许多多的微小量(如将面分成线段,将体积分成薄片等),再用另一组微小量来和它比较.通常是建立一个杠杆,找一个合适的支点,使前后两组微小量取得平衡.再将后一组微小量集合起来,它的总体应该是较易计算的.于是通过比较,即可求出未知量来.这实质上就是积分法的基本思想.阿基米德的睿智,业已伸展到17世纪中叶的无穷小分析领域里去了!因此,称他为近代积分学的先驱,毫不为过.当然,和积分法还有相当大的差距.表现在:1)没有说明微小量(或元素)是有限的还是无穷多,这在古希腊时代是不可能解决的问题;2)没有极限的思想,现代的积分,是一个极限值而不是一个简单的和;3)就事论事,没有形成抽象的概念及一般的法则.

尽管如此,阿基米德运用这种富有启发性的方法,获得大量的辉煌成果,为后人开辟了一个广阔的领域.本篇后面的命题都是用类似的方法取得的.

命题2.球体积是以此球的大圆为底、以球的半径为高的锥体体积的4倍.以球的大圆为底、球的直径为高的圆柱的体积是球体积的3/2倍.

这在《论球与圆柱》中是命题34及其推论.也就是刻在墓碑上的那个著名的论断.

此外还有旋转椭圆体体积,旋转抛物线体体积及重心,半球的重心,以及相当复杂的圆锥体与球的交截体(两种立体相交的公共部分)等问题.在今天,只有用积分法才能解决,而阿基米德独辟蹊径,创立新法,取得正确的结果,使后人惊叹不已.

各篇著作的主要内容

(一)《论球与圆柱》

这是他的得意杰作,包括许多重大成就.序言是阿基米德给多西修斯(Dositheus)的信,后者是科农的学生和朋友.阿基米德的著作,过去一向是通过科农转给亚历山大的学者的.科农去世后,改由多西修斯代办.在《抛物线图形求积法》的序言中,阿基米德已经说明了这一点:“惊悉科农去世,我十分悲痛,这不仅仅因为失去一位好友,而且失去

一位令人钦佩的数学家.你是他的朋友,而且精通几何,转交论文的任务,现在请你代劳”.以后好几篇著作都是先寄给多西修斯的.

在《论球与圆柱》的序言中,首先指出本篇的主要内容和成就,接着给出6个定义.阿基米德在这里将“定义”说成“公理”.按其性质来说应该是定义,后来欧托基奥斯在注中说明这一点.

下面给5个假定,相当于公理.例如

1.在端点相同的所有线(包括曲线、直线)中,以直线为最短.

2.在以相同的平面曲线为边界的曲面中,以平面的面积为最小.

特别重要的第5个公理,这就是后来以阿基米德的名字命名的公理:如果两条线段或两个面、两个立体不相等,就可以在两者之差的上面,加上它的本身,一次一次加上去,使得每一个预先给定的同类量都被超过.在现代分析学中常用的说法是:对于任意二正实数 a,b,必存在自然数n,使得na>b.

从这些定义和公理出发,推导出上卷44个,下卷9个命题.多次使用阿基米德公理及反证法(归谬法),如要证A=B,则证明A>B及A<B均导致矛盾.以下面的命题为例来说明.

阿基米德引用了欧几里得《几何原本》Ⅻ,2的证法(穷竭法)建立了命题6:只要边数足够多,圆外切正多边形的面积C与内接正多边形的面积1之差可以任意小.不同之处是欧几里得默认了阿基米德公理,而阿基米德在本篇中是明确地作为公理提出来的.在这基础上,证明了:

命题14.正圆锥体的侧面积等于以底面半径与母线的比例中项为半径的圆的面积.

设正圆锥的底面为A,半径为r,母线为l,r与l的比例中项为 R(即R2=rl),则此正圆锥的侧面积S=πR2.

以R为半径作圆B,其面积为πR2,现要证明S=B=πR2.用反证法,设S>B.根据命题6,可作B的外切正多边形C n(同时表示其面积,下同)与内接正边形I n,使得

又作底面A的相同边数的外切正多边形D n,其周长记作P n.以D n为底,

D n,C n是相似的,其比等于对应线段平方之比,

由此知C n=L n,代入上面的不等式有

这是不合理的,因为圆锥侧面积S小于其外切棱锥侧面积L n,而圆B 大于其内接多边形面积I n.同理可证S<B也是不合理的,故S=B=πR2.现在常用的形式是S=πrl.

下面较著名的命题还有命题33.球面积等于它的大圆面积的4倍.

命题34.球体积等于以它的大圆为底、它的半径为高的圆锥体积的4倍.推论:以球的大圆为底、球直径为高的圆柱的体积与表面积分别是球的体积与表面积的3/2.这命题在《方法》中已提出,此处用反证法加以证明.

命题35—44研究了球缺、球冠及球心角体(球扇形)的表面积及体积.

下卷9个命题主要讨论球缺,好几个是作图题.命题2给出球缺的体积.命题4在历史上占有特殊的地位.它要求用平面将一个球截成两部分,使这两部分体积之比等于给定的比.

设球半径为r,所分成的两个球缺的高各为h及2r-h,公共底的半

可改写为

记x=2r-h,a=3r,又将右端的常数写成bc2,上式简写成x2(a-x)=bc2.

此问题的解相当于用几何方法去解这个3次方程.阿基米德说他将在后面给出分析与综合的解法,但现存本未见,大概已失传.后来欧托基奥斯(5世纪时)找到一些残页,是用多利安方言(阿基米德惯用的方言)写的手稿,上有这问题的解法,他认为是属于阿基米德的.解法的要点是求两条圆锥曲线的交点.一条是抛物线

另一条是双曲线(a-x)y=ab.残页还讨论了方程可解的条件,这

时,还比较了狄俄尼索多罗(Dionysodo-rus,公元前3世纪—公元前2世纪,居住在小亚细亚地区)以及狄俄克利斯(Diocles,约公元前190年)对此问题的解法.

(二)《圆的度量》,其中只有3个命题.

命题1.圆的面积等于一个以其周长及半径作两个直角边的直角三角形的面积.

更简单的说法是:圆面积等于半径乘半周长.这正是中国《九章算术》的说法:“半周长半径相乘得积步”.或刘徽(公元263年)注的说法:“半周乘半径为圆幂”.

但在古希腊,自从毕达哥拉斯学派发现不可公度量以后,每一条线段是否都有长度就成了问题.因此在几何学家的著作中,极力避免两条线段长相乘的说法,宁愿说成由两线段构成的矩形或三角形的面积.

证明仍用穷竭法.圆半径为r,周长为C,面积为S.以C,r为两直角边作直角三角形,设面积为K.现证明S=K.用反证法,假定S>K,作边数足够多的内接正多边形I n,使其面积I n与圆面积S之差

S-I n<S-K,

于是有

I n>K.

这是不合理的,因为I n的边心距d<r,而I n的周长小于C,故I n应<K.同理作外切正多边形,可证S<K也导致矛盾,从而有S=K.

命题2.圆面积与外切正方形面积之比为11∶14.

命题应该放在命题3的后面,也许是后人抄错了或阿基米德别有用意.

这就是有名的阿基米德圆周率的出处.欧几里得在《原本》中讨论了很多圆的性质,但却完全没有提到圆周率的值及圆面积、圆周长的计算法.阿基米德弥补了这一不足,并在科学上首次创用上、下界来确定一个量的近似值,还提供了误差的估计。

他在推导中使用了一个不等式

分数的渐近分数.它具有这样的特性,以265/153为例,在一切分母

的性质.阿基米德是怎样得到这些分数的?这引起后人的极大兴趣.仅从17世纪以来,就至少有十几种不同的推测.较多的意见认为是利用了不等式

左右各平方,便可证其成立.试推演如下:

取右端

于是有

本命题主要的推导思想如下:设O是圆心,OA是半径,作

∠AOB=30°,

过A作切线AB交OB于B.则

两式左右相加得

作∠AOB的平分线OC,则

左端分母与右端分子交换,再由前面的不等式,有

由上面的不等式立刻推出圆外切正6边形、正12边形的周长与直径比值的上界.同样,计算内接正多边形的边长,可以确定比值的下界.再利用比例关系及勾股定理,重复上述手续,一直算到96边形,最后得到

一切分母不大于71的分数中它是最接近π的.比它更接近π的分数有

①①见梁宗巨,祖冲之密率的优越性,《辽

宁师范大学学报》增刊(数学史专辑),1986,p.6.分母都大于71,除了最后一个外,都不是连分数的渐近分数.

(三)《劈锥曲面与回转椭圆体》

共32个命题,研究椭圆的面积以及回转圆锥曲线体被平面截取部分的体积等.证明的方法是穷竭法,十分接近今天的积分法思想.当时还没有“抛物线”(parabola)等名称,早期的希腊数学家如门奈赫莫斯(Menaechmus,公元前4世纪),用平面去截三种不同的直圆锥面,产生三种圆锥曲线.令平面与直圆锥的母线垂直,当圆锥的顶角(母线所张的最大角度)是直角时,截口叫做“直角圆锥截线”(section of a

right-angled cone),现在叫抛物线;当顶角是锐角时,叫“锐角圆锥截线”(section of an acute-angledcone),现叫椭圆;当顶角是钝角时,叫“钝角圆锥截线”(section ofan obtuse-angled cone),现叫双曲线.欧几里得和阿基米德一直沿用这些旧名称,为简单起见,改用今名.

本篇一开头先给出两个引理,以备后面证明之用.第1个是等差数列求和公式,写成不等式

2(a+2a+3a+…+na)>n2a

>2[a+2a+3a+…+(n-1)a].

如用求和公式,左端是n(n+1)a,右端是(n-1)na,不等式成立是明显的.

第2个是自然数平方和公式,先证明

(n+1)(na)2+a(a+2a+3a+…+na)

=3[a2+(2a)2+(3a)2+…+(na)2],

由此可知

a2+(2a)2+(3a)2+…+(na)2

写成不等式

a2<n3a2<3S n a2.

3S n

-1

下面以一个较简单的命题来阐明阿基米德的证题思想.为了便于理解,改用现代的术语和符号.

命题21.回转抛物体被垂直于轴的平面所截取的部分的体积等于同底等高的圆锥体的3/2.

抛物线AOB(不妨设方程为y=x2)绕其轴OC回转,产生回转抛物体.求被垂直于OC的平面ACB所截取的部分的体积V.将OC用分点O,C1,C2,…,,C n(=C)分成n等分,过这些分点作垂直于OC的平面将所求的体积分C n

-1

成n个小薄片.每一个小薄片介于一个内接圆柱与一个外接圆柱之间.例如E1H2及A1F2回转后就产生C1,C2间的小薄片的内接与外接圆柱.又每一个外接圆柱与紧接着上面的一个内接圆柱(如A0F1与E1H2回转产生的圆柱)相等.

=I n.这是根据前面引理得出的不等式.现证明V=V*,否则,如V>V*,

S n-I n<V-V*,

浅谈数学史与小学数学教学的融合

浅谈数学史与小学数学教学的融合 发表时间:2019-01-08T10:10:35.950Z 来源:《素质教育》2019年2月总第298期作者:艾园 [导读] 数学史能够体现数学知识的发展历程,更是众多数学家留给现人的宝贵文化。 陕西省延安职业技术学院附属小学716000 摘要:数学史能够体现数学知识的发展历程,更是众多数学家留给现人的宝贵文化。在小学数学教学中,讲解一定的数学史有利于学生提升自身综合素质。将数学史融入小学数学教育中,既符合新课改的教学要求,更顺应时代的发展趋势。 关键词:小学数学数学史融合 在社会高速发展的今天,教育对于国家发展的影响至关重要,社会各界对教育的关注度逐步提高。伴随着新课程改革的推进,小学数学教育也在积极地进行变革,广大数学教师不断提出新的教学方法和教学思路。在小学数学教学中融入数学史能够提升小学生的数学能力,促进学生全面发展。数学教师应重视数学史对于学科教育的重要意义。 本文将主要阐述基于小学数学融入数学史的教育价值,进而提出基于小学数学教育融入数学史的具体途径和实践对策。 一、小学数学教学中渗透数学史的价值 1.德育价值。学者骆祖英指出数学史具有德育教育价值。(1)学习数学史,可培养热爱祖国的情感。我国在14世纪以前曾是数学大国,取得了举世公认的成就,近现代也涌现出了华罗庚、陈景润、陈省身等多位世界著名的数学大师。因此,了解数学史,能够激发学生的民族自豪感,同时也能通过了解本民族的数学文化史延伸到国际数学。 (2)学习数学史,可熏陶小学生的人格精神。这些对学生来说可产生长远的影响。现代社会中,缺少学生学习模仿的榜样,但是人心又不能缺少精神崇拜。如果数学史能将崇拜对象提供给学生,会大大丰富他们的精神世界。 2.智育价值。数学史有助于学生更加透彻、深入地理解知识。小学生通常是直观表面地看待问题,而新课标要求培养学生深入性、抽象性地看待问题。而数学史,以知识根源为基点,帮助学生经历了知识发展的全过程,比起传统教学,不只是知识本身,而是从产生知识的背景——时代、人物、生活、原因、过程,帮助学生从不同的角度,立体地、深入地看待数学知识。 3.美育价值。数学,探索的是自然之美。随着社会的进步,人们越来越多地挖掘出数学史的美学价值。在当今数字化时代,数学是必备的素质。但是传统的数学教学只注重书本知识,忽视了学生的真实体验,冰冷的数字、繁琐的运算、怪异的符号是大多数人对数学的印象。这让我们忽视了数学之美。从生物学的角度看,审美是人的需要。儿童的好奇心强烈,通过数学史教学引入审美,能将儿童的好奇心调动起来,激发他们的审美需求,让他们去经历一个发现创造的过程,构建他们的审美体验。 二、数学史与小学数学教学融合的途径 1.渗透数学史,展示新奇方法。新课标理念强调教师在教学过程中不仅要重视过程与方法,而且要重视学生的情感与态度。只有这样,学生才会对学习产生浓厚的兴趣。如果机械地按照“概念——定义——定理——解题”的认知程序进行数学教学,则必然无法调动学生的学习兴趣。如果适当地融入一些与教学内容紧密相关的历史上的数学方法,无疑会激发起学生的数学学习兴趣。 2.穿插数学史,拓展数学内容。教师是课程资源的开发者,在新课程理念下,不能再“教教材”,而应该树立“用教材教”的理念。教师在准备上课内容时,可以通过多种方式去收集数学史资料,不仅要收集关于书本上的资料,也可以根据书上的内容收集一些数学史的资料。在这个过程中,教师对书本上的知识了解得更加透彻。提前准备好一些教学过程中涉及到的数学史,只有这样,教师在上课时才能熟练、流畅、全面地向学生进行数学史内容的穿插讲解,从而达到事半功倍的教学效果。 3.渗透数学史,呈现原生态知识。数学伴随着人类实践活动的发展而发展,历经数千年,从无到有、从简到繁,逐步成为分类完善、知识齐全的完整学科。数学发展的历史长河为人类积累了宝贵的科学文化,教师有责任帮助学生了解数学历史的发展,通过呈现原生态的知识让学生汲取数学文化的养分,感知数学的源与流,认同数学的价值。 4.开展有关数学史的专题活动。“纸上得来终觉浅,绝知此事要躬行。”要让学生真正在数学学习中渗透数学史,除了教师的介绍和引入外,还应让他们亲自去搜集、讨论,在实践中加深对数学史知识的认识,并强化积累。所以,数学教师还可以将数学的古典问题融入到课后作业和扩展活动当中,使数学史真正渗透到小学数学教学的方方面面,巩固教学成果。 5.调整数学史在教学中所占比例。数学教师在借助数学史辅助教学时,应当合理调节数学史所占的教学内容比重,避免出现本末倒置的现象。教师在挑选数学史内容时,应当对其进行筛选分类。与教学内容关联性较少的史料内容可作为开拓学生视野,比如讲述知识点的演变过程;阐述规律推理的内容则作为突破知识点的讲解内容;关于知识点背景相关的史料故事则作为课前引导使用。总而言之,数学史作为辅助教学内容,不能代替教材内容,教师应合理运用数学史内容开展教学。 参考文献 [1]花沐露浅谈数学史融入小学数学教学的方略[J].教育研究与评论(课堂观察),2017,(3)。 [2]陈佳丽浅析数学史对小学数学课堂教学效率的影响[J].考试周刊,2017,(56)。 [3]侯菁利用数学史提升小学数学教学效率的有效策略研究[J].读与写:上、下旬,2015,(24)。

数学文化与数学教育读后感汇编

《数学文化与数学教育》读后感 读了这本书对我的感触很深,使我懂得了好多数学的道理,对我的学习有了更大的帮助,而数学史对于大学数学教学来说就是一种十分有效、不可或缺的工具。认识到数学史在大学数学教学中的作用,并将数学史与大学数学教学紧密的结合起来,不但能有效的激发学生学习数学的兴趣,而且对于提高其数学方面的素质修养以及逻辑思维能力、启发文科学生的人格成长、发展其认知能力等都有十分重要的作用。 1.数学史是大学数学教学的重要的组成部分 俗言说的好“冰冻三尺非一日之寒”。数学知识的发生和发展过程其实就是数学家与困难、问题的斗争史。数学本身不仅是一门科学,而且还是一种精神,一种探索精神。比如,微积分是由牛顿、莱布尼兹、欧拉、维尔斯特拉斯等多位大数学家前赴后继,历尽艰辛,历时千年才建立和发展完善的。了解数学理论知识建立的历史,不但可以使学生对所学知识有一个全局的完整的认识,而且可以使学生学会由易到难、由已知到未知,逐步的克服障碍,在探索中学习。 2.数学史可以构建数学与人文之间的桥梁,激发学生学好大学数学的兴趣 数学学科的抽象性、严密的逻辑性, 使得很多学生有畏难心理, 大学数学的学习也相应的恶化成枯燥无味的公式记忆和解题演练。荷兰数学家和教育家赖登塔尔就批评那种注重逻辑严密性、而没有丝毫历史感的教育乃是“把火热的发明变成了冷冰冰的美丽”[2]。因此, 如何构建数学与人文之间的桥梁, 激发学生学习的兴趣就成了教师的首要任务。数学是各个时代人类文明的标志之一。数学对整个人类文明产生了不容质疑的影响,无论是物质文明还是精神文明两方面都是这样。数学对人类物质文明的影响,最突出的是反映在它直接或间接参与了从根本上改变人类物质生活方式的三次重大的产业革命。比如,第一次产业革命的主体技术是蒸汽机、纺织机等,它们的设计涉及对运动与变化的计算,而这只有在微积分发明后才有可能。又如,原子能的释放,首先是由于爱因士坦利用数学工具导出的著名公式揭示出质能转化的可能性。而现在的航天事业的发展更离不开数学的参与。“神舟飞船”的历次成功飞行都离不开数学家的参与。数学对于人类精神文明的影响同样也很深刻。比如,日心说的决定性胜利是在牛顿用当时最新的数学工具——微积分和严密的数学推理从动力学定律、万有引力定律出发推演出太阳系的运动之后。哥白尼的学说得到证实恰是通过这样的事实:天文学家加勒根据几位数学家在数学上的推算和预报找到了一颗新的行星——海王星。在大学数学的教学中,在学到相关数学知识的时候,适时的将数学知识与其在促进当时社会的发展联系起来,使学生认识到数学与人们的生活息息相关,其来源于生活、服务于生活。这将有助于树立学生对数学课正确的认识,增强学习兴趣。 3.数学史在大学数学教学中具有重要的德育功能 数学中蕴涵着丰富的辩证唯物主义的思想。在数学史上,数学概念的形成与演变,重要思想方法的确立与发展,重大理论的创立与变革等,无不体现唯物辩证法的核心思想——发展、运动与变化。比如,自从数学中引入了变量,运动就进入了数学。在高等数学中至始至终贯穿着动态的变量的思想,函数就是这一思想的具体体现。通过函数出现历史的介绍,就可以教会学生学会用变化、运动的观点看待事物、看待世界。在大学数学教学中融入数学史,

《数学史与数学文化》课的实践与反思

《数学史与数学文化》课的实践与反思 随着人们对数学史和数学文化研究的深入,以及21世纪社会发展对“既具有数学理性精神又具有人文素养,既掌握科学方法又懂得人文价值”的高素质人才的呼唤,新一轮基础教育数学课程改革将数学史与数学文化作为一个重要的内容和理念纳入教材及《全日制义务教育数学课程标准(实验稿)》(下文简称《新课标(2001)》)、《义务教育数学课程标准(2011年版)》(下文简称《新课标(2011)》)中。 为了适应基础教育改革和时代的需求,目前很多的高师院校都开设了数学史或数学文化课程,而《数学史与数学文化》作为一门数学教育专业的必修课程来开设的院校却比较少。本文将对2010年以来天津师范大学《数学史与数学文化》优秀课建设的基本理念和初步实践作一介绍。 一、《数学史与数学文化》课程的实践 本课题结合国内外关于“数学史”与“数学文化”研究的相关理论,参考了有关教材、文献以及兄弟院校相关课程建设经验,对《数学史与数学文化》课程的教学内容、教学方式及评价方法等进行了实践与探索。 (一)教学内容及教学要求 鉴于本课程是数学教育方向的必修课程,我们确定“教学内容设定”依据的基本原则:以数学历史发展顺序为依托,深入挖掘数学史料中的文化价值,将与基础教育数学教材中涉及的背景知识进行拓展与延伸。教学内容整体分为教师精讲和小组合作研究两部分。小组合作研究内容的具体要求:通过小组合作学习、研讨,共同制作完成约15分钟展示资料,最后由主讲教师随机抽取小组成员完成展示;而且除了上台展示之外,还要以小组为单位撰写“小组学习报告”。 在选择教学内容过程中主要考虑以下因素: 首先,鉴于基础教育阶段涉及的数学知识大部分属于常量数学内容,与此相应的数学发展史内容主要介绍17世纪及之前古代埃及、巴比伦、希腊、中国、印度、阿拉伯等所创造的数学专题。 其次,数学史与数学文化应该包含这样的意思,就是一种数学印象、数学的“感觉”和“知道”。由于学生们的基础数学后续课程(比如,拓扑学,实变函数、泛函分析等)没有学习,所以18世纪及以后近现代数学发展史的内容主要由学生以小组合作研究完成。这样不仅可以使学生们对相应史料有大致的了解,而且促进他们对数学发展过程获得较完整认识,为以后从事教学工作和后续学习做好铺垫。 第三,为了开阔学生们的眼界,本课程将百家讲坛中“相识数学”的视频资料作为小组合作研究内容之一,这样就相当于将数学教育名家请进了课堂,让学生有幸聆听和欣赏“数学大家”的思想、智慧以及理解他们所具有的数学精神。 最后,为了促进职前教师对数学教材中的数学背景知识熟悉、理解及应用,本课程将“初等教育阶段数学教材(人教版或北师大版12册)中背景知识”及“H P M专题”作为小组合作研究的另一内容,以帮助她们将学科知识和教学知识进行有效的融合,即不仅要了解“教什么”,而且要知道“怎么教”。 (二)教学方式与评价方法

《数学史概论》初中读后感

《数学史概论》初中读后感 篇一:《数学史概论》读后感
当我们学习过数学史后,自然会有这样的感觉:数学的发展并不合逻辑,或 者说, 数学 发展的实际情况与我们今日所学的数学教科书很不一致。 我们今日 中学所学的数学内容基本 上属于 17 世纪微积分学以前的初等数学知识,而大 学数学系学习的大部分内容则是 17、18 世纪的高等数学。 这些数学教材业已 经过千锤百炼, 是在科学性与教育要求相结合的原则指 导下经过反复编写的, 是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂 的知识体 系,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历 程 以及导致其演化的各种因素,因此仅凭数学教材的学习,难以获得数学的原 貌和全景,同时 忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料 与方法, 而弥补这方面不足的 最好途径就是通过数学史的学习。 在一般人看 来, 数学是一门枯燥无味的学科, 因而很多人视其为畏途, 从某种程度上说, 这是由于我们的数学教科书教授的往往是一些僵化的、 一成不变的数学内容, 如果在数学教 学中渗透数学史内容而让数学活起来, 这样便可以激发学生的学 习兴趣, 也有助于学生对数 学概念、方法和原理的理解与认识的深化。 科学 史是一门文理交叉学科, 从今天的教育现状来看, 文科与理科的鸿沟导致我们 的教 育所培养的人才已经越来越不能适应当今自然科学与社会科学高度渗透的 现代化社会, 正是 由于科学史的学科交叉性才可显示其在沟通文理科方面的作 用。 通过数学史学习, 可以使数 学系的学生在接受数学专业训练的同 时, 获得人文科学方面的修养, 文科或其它专业的学生 通过数学史的学 习可以了解数学概貌, 获得数理方面的修养。 而历史上数学家的业绩与品德 也 会在青少年的人格培养上发挥十分重要的作用。 中国数学有着悠久的历史,14 世纪以前一直是世界上数学最为发达的国家,出现过许 多杰出数学家,取得了 很多辉煌成就,其源远流长的以计算为中心、具有程序性和机械性的 算法化数 学模式与古希腊的以几何定理的演绎推理为特征的公理化数学模式相辉映, 交 替影 响世界数学的发展。 由于各种复杂的原因, 16 世纪以后中国变为数学入超 国, 经历了漫长 而艰难的发展历程才渐渐汇入现代数学的潮流。 由于教育上的 失误, 致使接受现代数学文明 熏陶的我们,往往数典忘祖,对祖国的传统科学 一无所知。 数学史可以使学生了解中国古代 数学的辉煌成就, 了解中国近代数 学落后的原因, 中国现代数学研究的现状以及与发达国家 数学的差距, 以激发
1/6

数学文化与数学史答案

《数学文化与数学史》复习 Lecture 0 为什么要开设数学史 1.介绍文艺复兴时期意大利艺术大师达·芬奇(L. Da Vinci, 1452~1519)和19 世纪 英国业余数学家伯里加尔(H. Perigal, 1801~1898)证明勾股定理的方法。 达·芬奇 H. Perigal的水车翼轮法 2.谈谈你对数学史教育价值的认识。 一门学科一座桥梁一条进路一种资源一组专题 对学生来讲,通过对数学史的学习,有利于学生对数学知识的掌握和数学能力的提高,它不仅使学生获得了一种历史感,而且,通过从新的角度看数学学科,他们将对数学产生更敏锐的理解力和鉴赏力,有利于学生对数学的思考, 促进学生的数学理解,启发学生的人格成长,有利于激发学生的情感、兴趣和良好的学习态度,有利于辩证唯物主义世界观的形成, 有利于学生了解数学的应用价值和文化价值。 对于教师来讲,要使个体知识的发生遵循人类知识的发生过程,那么数学史就成为了数学教学的有效工具。将数学史作为一种资源运用到教学中,给教学提供一种新的视角,发挥其启发和借鉴的作用,并丰富课堂教学,使教学活动变得自然而有趣。这对数学教育改革也具有极其重要的意义。 Lecture 2 古代数学(I):埃及 3.Rhind 纸草书问题79 是一个等比数列求和问题,介绍其中蕴涵的等比数数列求和方法。

124 房屋 猫老鼠麦穗容积总数 7 49 343 24011680719607 2801 56021120419607 ()5749343230116807 717493432301 72801 19607 S =++++=++++=?= () ()() 21 221 1 11n n n n n n n n S a aq aq aq a q a aq aq aq a qS a q S aq a aq S q q ----=++++=++++=+=+--?=≠-L L 4. “埃及几何学中的珍宝”是什么 正四棱台体积公式: Lecture 3 古代数学(II ):美索不达米亚 3. 研究古巴比伦时期的泥版 BM 15285。设想你是一位祭司,你会提出什么数学问题 5 古代巴比伦人是如何求平方根近似值的 1211322, 1212a a a a a a a a a ??=+ ????? =+ ???L L 设第一个近似值为则第二个近似值为;第三个近似值为; 2 3 11 2 11;3021121;301;2521;30121;251;24,51,1021;25245110 1 1.4142155 606060?? += ????? += ????? += ??? + ++=设第一个近似值为, 则第二个近似值为; 第三个近似值为;第四个近似值为。 7. 美国哥伦比亚大学收藏的 Plimpton 322 号巴比伦泥版的内容是什么 泥版上有15行、4列数字,原来人们还以为是一份帐目。但是,奥地利著名数学史家诺伊格鲍尔(O. Neugebauer, 1899~1990)经过研究惊奇地发现:第3列数与第2列数的平方差竟都是平方数(少数行不满足这一规律,但显然是抄写错误所致)!例如(见下表,表中数字均为60进制):

浅谈数学文化

浅谈数学文化 数学文化,是数学作为人类认识世界和改造世界的一种工具、能力、活动、产品,是在社会历史实践中所创造的物质财富和精神财富的积淀,是数学与人文的结合。数学文化主要以数学史、数学问题、数学知识等为载体,介绍数学思想、数学方法、数学精神。 一、数学方法——数学文化的辩证法 数学方法和数学思想将数学的智慧和魅力展现得淋漓尽致,这些凝聚了数学家们智慧的知识不是几句话就能说明白。 数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识。通过数学思想的培养,数学的能力才会有一个大幅度的提高。掌握数学思想,就是掌握数学的精髓。数学的方法是贯穿了整个数学,也是学习数学的基础。数学文化中数学文化的辩证性法有具体与抽象,演绎与归纳,发现与证明,分析与综合。这些方法之间有联系又有区别。 1.(1)、具体与抽象 具体是社会实践,是客观存在的东西,因为数学是源于社会实践的。同时数学是一种利用自身已有的概念、定理、公设,借助已知的相互关系,通过推理、计算而获得新发现的学科。数学的概念是抽象的,数学的方法也是抽象的。爱因斯坦相对论的发现恰恰是借助于数学的方法论路径去实现的,如果没有非欧几何人类可能还要在牛顿的时空观中走过许多年才能寻找到相对论。 数学方法的抽象是借助数学概念、公理、定理、公设等,把所有涉及研究对象的概念以及研究对象的抽象性归并汇集在一起,找出他们更具体抽象、统一的结论。这种抽象方法,人们一般冠以公理化方法。它大大拓宽了人们的视野,从只抽象个别对象扩展到抽象整个数学理论的逻辑结构。现在,数学研究的对象已不是具体、特殊的对象,而是抽象的数学结构。 1.(2)、演绎与归纳 演绎法是由一般到特殊的推理,它有三段论的表现形式,由一般的判断,特殊判断,结论三部分组成。 归纳与演绎不同,归纳是这样一种推理:其中所得到的结论超越了经验材料所提供的东西的一种经验猜想。看起来归纳与演绎很有区别的,事实归纳与演绎是相依而存、互为发展、对立统一的。恩格斯在《自然辩证法》中说:“我们用世界上的一切归纳法都永远不能把归纳过程弄清楚,只有对这个过程的分析才能做到这一点——归纳与演绎,正如分析与综合一样是必然相互联系着的,不应当牺牲一个而把另一个捧上天,应当把每一个用到该用的地方,而要做到这一点,就只有注意它们的相互联系,它们的相互补充。” 1.(3)、发现与证明 发现实际上就是定律的发现和理论地提出问题,最主要是通过假说,猜想。猜想是提出新思想,一个猜想可以带出或生出一个新的学科方向。比如,对欧氏第五公设的证明产生了非欧几何理论,四色猜想对开辟数学研究新途径有重要意义。在数学史上有很多有名猜想,人们熟悉的费马猜想,曾是一个悬赏10万马克的定理,实际上,它是源于几千年前的勾股定理。德国数学家曾宣称:当n大于2时,不存在一个整数n次幂是另外两个整数n次幂之和。数学家韦尔斯花了34年心血来解这道难题,并获得沃尔夫奖。许许多多数学猜想是由简单到复杂无休无止地产生出来。一个猜想解决了,又猜想出来了,数学家们总有解决不完的猜想。许多重要猜想,总能吸引众多数学家为此皓首穷经。在证明各个猜想的过程中,数学们会取得一系列重要理论成果。 1.(4)、分析与综合 分析是由未知去推导已知,在假定的前提下导出结论,而这一结论恰恰是已给出的条件或已知的命题。综合是由已知命题开始,通过演绎、归纳能一连串来导出未有的命题,或解

浅谈数学史与初中数学教学的结合

浅谈数学史与初中数学课堂教学的结合 万州桥亭中学秦毅 内容摘要: 为了适应现代教育的需要,在现今的教育与教学过程中穿插一些数学史的有关轶闻趣事,能够激发学生对相关内容产生好奇心,活跃课堂气氛,调动学生学习数学的积极性。学习数学史,不仅是广大学生学好数学的有力帮助,而且是也是我们中学数学教师提高自身素养、更好的搞好教学工作所必需的。我们广大教师不仅要明白数学史的重要性,最根本的是要研究如何将数学史融合到教学当中,努力探索出一条新型的教学模式,以提高学生的数学能力和综合素质。 关键词: 数学数学史 一、引言 数学是人们对客观世界定性把握和定量刻画,逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。数学史是研究数学科学发生发展及其规律的学科,简单地说就是研究数学的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。 数学史研究已具有很长的历史,如何在数学教育中运用数学史的知识,充分发挥数学史的作用和价值则是当前数学教育改革面临的一个重要课题。1998年4月20日至26日,由国际数学教育委员会(ICMI)发起,在法国马赛附近的Luminy镇举行了题为“数学史在数学教育中的作用”国际研讨会。张奠宙

教授在《重视“科学史”在科学教育中的应用》一文中指出:在数学教育中,特别是中小学的数学教学过程中,运用数学史知识是进行素质教育的重要方面。目前数学史在数学教育中的应用已经进入系统的研究阶段,并在一些国家和地区进行实践性的操作。我国的数学史研究,乃至科学史研究,已经拥有相当规模的队伍。但是,我们的研究似乎还没有注意到如何运用于教学过程,发挥它的应有效益。 现阶段,在一定程度上,我国中小学数学教育在世界上也算是一流的,也正因为如此,我国的数学才会取得举世瞩目的成就,涌现了一大批优秀的数学家。在中学数学教学中,使学生深刻理解数学基础知识、牢固掌握数学基本技能、提高学生运算能力、思维能力和空间想象能力等方面,我们都有非常成功的经验,也取得了相当多的成绩。近年来,我国数学教育界在提高学生运用数学知识分析问题和解决问题的能力方面也极其重视,并且以探索出了许多成功经验。我国学生在国际数学奥林匹克竞赛中连年取得佳绩、在国际水平测试中名列前茅,这些都是我国数学教育水平高的有力证据,我国数学教育水平高的另一个证据是,在第三次国际数学和科学研究的测试中,深受中国传统文化影响的亚洲参加国的测试成绩遥遥领先于其他国家。因此,中国中小学数学教育的高水平成绩绝不是偶然的,是有厚重的历史积淀的,是几代、十几代数学教育工作者辛勤劳动、共同的结晶,是应该充分肯定的。但是对于现行教育体制中存在的问题,我们也是应该予以正视的。就在我们的教育界为上述的成就感到欢欣鼓舞时,社会上也存在着另外一种不同的声音“现行中小学数学课程处于一种十分尴尬的局面。一方面,我们现行的中小学数学内容一些学生学不好,学不了,成为数学学习上的失败者;另一方面,很多有价值的内容我们的学生没有机会接触,特别表现在数学思考方法、 2

数学史考试试卷1(1)

马力整理 版权所有! (这里的题型与我们的可能不一样,以老师的为准) 2006-2007学年第一学期期末考试试卷(B 卷) 科目:数学史概论 学院:数学科学学院 专业: 数学与应用数学 一、 单项选择题:在每小题的备选答案中选出一个正确答案,并将正确答案的代 (每小题 2分,本大题共20 分) ; 1. 阿基米德的数学著作是( ) A. 《圆的度量》 ' B. 《几何原本》 C. 《圆锥曲线论》 D. 《代数学》 2. 《 中国数学史上最先完成勾股定理证明的数学家是( ) A. 赵爽 B. 刘徽 C. 祖冲之 D. 秦九韶 [ 3. 《球面学》是球面三角学的开山之作,它的作者是( )

A. 梅内劳斯 B. 丢番图 C. 托勒玫 D. .欧几里得 ! 4. 在《九章算术》中,处理正反比例分配问题的那一章是( ) A. 方田 B. 粟米 # C. .衰分 D. 均输 5. 筹算记数法:“凡算之法,先识其位。一纵十横,百立千僵。千十相望,万百相当”记载于( ) , A. 《九章算术》 B. 《周髀算经》 C. 《海岛算经》 D. < 6. 亚历山大的托勒密(约100—170),总结了在他之前古代三角学知识,其天文学名著是( ) A. 《数据》 B. 《几何原本》 C. 《天文学大成》 D. 7. 中国数学从公元前后至公元十四世纪,先后经历了三次高潮,即两汉时期、魏晋南北朝时期以及宋元时期,其中达到了中国古典数学最顶峰的是( )时期。 A. 两汉 B. 魏晋 C. 南北朝 # D. 宋元 8. 《九章算术》采用问题集的形式,全书的数学问题数是( ) A. 244 ~

《数学史》练习题库

《数学史》练习题库 一、填空 1、数学史的研究对象是(); 2、数学史分期的依据主要有两大类,其一是根据()来分期,其一是根据()来分期; 3、17世纪产生了影响深远的数学分支学科,它们分别是()、()、()、()、(); 4、18世纪数学的发展以()为主线; 5、整数458 用古埃及记数法可以表示为()。 6、研究巴比伦数学的主要历史资料是(),而莱因特纸草书和莫斯科纸草 书是研究古代()的主要历史资料; 7、古希腊数学发展历经1200多年,可以分为()时期和()时期; 8、17世纪创立的几门影响深远的数学分支学科,分别是笛卡儿和()创立了解析 几何,牛顿和()创立了微积分,()和帕斯卡创立了射影几何, ()和费马创立了概率论,费马创立了数论; 9、19世纪数学发展的特征是()精神和()精神都高度发扬; 10、整数458 用巴比伦的记数法可以表示为()。 11、数学史的研究内容,从宏观上可以分为两部分,其一是内史,即(),其一是外史,即(); 12、19世纪数学发展的特征,可以用以下三方面的典型成就加以说明: (1)分析基础严密化和(), (2)()和射影几何的完善, (3)群论和(); 13、20世纪数学发展“日新月异,突飞猛进”,其显著趋势是:数学基础公理化, 数学发展整体化,()的挑战,应用数学异军突起,数学传播与()的社会化协作,()的导向; 14、《九章算术》的内容分九章,全书共()问,魏晋时期的数学家()曾为它作注; 15、整数458 用玛雅记数法可以表示为()。 16、数学史的研究对象是数学这门学科产生、发展的历史,既要研究其(历史进程),还要研究其(); 17、古希腊数学学派有泰勒斯学派、(毕达哥拉斯学派)、(厄利亚学派)、巧辩学派、柏拉图学派、欧多克索学派和(); 18、阿拉伯数学家()在他的著作()中,系统地研究了当时对一元一次和一元二次方程的求解方法; 19、19世纪数学发展的特点,可以用以下三方面的典型成就加以说明:(1)()和复变函数论的创立;(2)非欧几里得几何学问世和();(3)在代数学领域()与非交换代数的诞生。 20、整数458 用古印度记数法可以表示为()。 21.《九章算术》内容丰富,全书共有章,大约有个问题。

数学史知识融入课堂教学的意义

数学史知识融入课堂教学的意义 数学史作为数学文化的重要历史资源,蕴藏着丰富的哲理和理论内涵,展现了人类追求真理,勇于创新,献身科学的拼搏精神,对人类研究数学、掌握数学、创新数学等方面具有深远的意义和积极的影响。数学新课程标准中提出要“体现数学的文化价值”这一基本理念,深刻揭示了数学史在数学教学过程中的重要作用。如何体现数学的文化价值,我认为将数学史与数学教学适度融合是一个重要的、有效的方法。在课堂教学中融入数学史有助于学生深刻理解数学知识,有助于学生掌握数学思想方法树立正确的数学观,提高数学应用意识。因此,作为课堂教学主导者的数学教师应该选择适当的方式将数学史知识融入课堂教学,使数学史在课堂教学中发挥积极的作用。 一、在教学中引入数学史可以激发学生的数学学习兴趣 传统的数学课堂中往往通过严谨的推理,重复性的练习等巩固数学知识,这种教学方式存在缺乏人性化、与生活脱节等问题,影响了学生学习数学的兴趣。学生在课堂上感受不到学习的愉悦,从而厌倦数学,畏惧数学,对学习数学失去信心,最后导致放弃学习数学。由于学生对新鲜事物所具有的好奇心,数学史知识的引入则可以集中学生的注意力、激发学生的求知欲望、调动学生学习的积极性,有效改善数学课堂教学气氛,收到良好的教学效果。

例如在新课教学中,课题的引入是一个重要的环节,引入的方法灵活多样的。如果课题的引入符合学生的认知发展规律,贴近学生的最近发展区,则有利于学生对新知识新内容的接受,反之对学生有消极的影响。在教学中利用数学史引入课题,可以引起学生的注意力,调动学生的求知欲,起到良好的教学效果。如在学习等比数列前 n 项和的公式时,可以将著名的棋盘问题来引入课题;再如在教学过程中适时介绍一些著名数学家的成长轶事、源自日常生活的数学名题、在自然科学中被精彩运用的数学知识等数学史知识,都可以使学生与数学的“亲近感”,减小学生与数学“距离感”,消除学生对数学的“畏惧感”,进而激发学生学习数学的兴趣,积极参与到课堂活动中去。 二、在教学中引入数学史可以帮助学生更好的理解数学 数学与生活的严重脱节,使多数学生都认为数学远离生活,在生活中并无实用价值,只是数学家们抽象思维的产物,数学的学习仅仅为了应付考试。如果在课堂教学中引入数学史的知识,可以让学生认识到数学与人们生产生活是息息相关的学科,是人类在认识自然、改善自然的过程中慢慢发展起来的学科。经过了各个时期的数学家们的不断钻研,使得现在的数学体系得以完善和发展。通过对数学史有关知识的学习与了解,则可以在教学中把数学概念的演变过程和数学方法的应用实例呈现给学生,不仅有助于加深学生理解概念和方法,更有助于学生全面、系统的掌握数学知识内容。 例如,在学习对数时,教师往往只是介绍对数式与指数式的

《在小学数学中渗透数学史的探索》课题开题论证报告

《在小学数学教学中渗透数学史的探索》课题开题论证报告 大丰市第三小学姚霞 一、研究的现实背景 1、时代发展的需要 这学期,我们学校在语文和英语两门学科开展了双语教学,即增加了这两门学科的课外阅读。随着时代的发展,任何一门学科都要从课内走向课外,数学作为小学阶段一门很重要的学科,也非常有必要增加一些有关的课外知识拓宽学生的知识面。 2、实施有效教学、提高教学质量的需要 数学是人类文化的重要组成部分,是一门积累性很强的学科,它的许多重要理论都是在继承和发展原有理论的基础上发展起来的。我们在讲授数学知识时,如果不仅能让学生“知其然”,而且能让学生“知其所以然”,一定会受到事半功倍的效果。 相对于语文学科而言,数学学科比较抽象、枯燥,有些学生对数学课提不起兴趣。如果在数学课堂上渗透一些数学史,讲一些古今中外数学家的故事,一定能提高学生学习数学的兴趣,同时能激发学生对数学精神的追求,提高学生的数学文化修养。 3、促进教师的专业成长。 教师专业成长是新课程改革的重点之一。在研究课题的过程中,教师自身通过对数学史的收集,专业素养一定会得到大幅度提升。 二、课题研究的理论意义 有关数学史的知识到中学才会接触得比较多,在小学教材中编排得很少,但我认为在小学数学教学中根据教学内容多渗透些数学史很有必要。本课题研究的目的是为小学一线教师在教学中渗透哪些数学史知识、以及如何根据教学内容有机渗透提供理论参考。填补这方面研究的空白。 三、课题的实践价值 课题研究的目的是探索在数学教学中渗透数学史的教学策略,为一线老师提供一些现实案例。并通过在研究过程中一些案例的评析,揭示在渗透数学史时需遵循的适时、适度和适合性原则,以及一些需要注意的问题。从而为此类教学提供实践依据。 四、国内外研究现状分析 近几年来已有一些老师在这方面有所研究,但多数研究范围是针对初高中,而在小学涉足此内容研究的老师为数不多,大多以论文出现,如《在小学教学中渗透数学史的意义》、《论数学史在教学中的必要性及作用》、《小学数学教学中数学史的应用误区及时间对策研究》、《在小学教学中渗透数学史的实践探索》等。本课题的创新之处在于,它对一个众多教师习以为常却又甚少研究的课题给予了充分的关注,从有关数学史的收集,在教学中渗透数学史的价值,以及如何在教学中适时、适度的渗透数学史作出详实的探索和分析。对于引导更多数学老师将数学史引进小学数学课堂,更好地发挥数学史的育人价值,提高学生的数学

数学史考试的习题

数学史概论期末试题一 一、单项选择题 1.世界上第一个把π计算到3.1415926<n <3.1415927 的数学家是( B ) A.刘徽B.祖冲之C.阿基米德D.卡瓦列利2.我国元代数学著作《四元玉鉴》的作者是( C )A.秦九韶B.杨辉C.朱世杰D.贾宪 3.就微分学与积分学的起源而言( A ) A.积分学早于微分学B.微分学早于积分学C.积分学与微分学同期D.不确定4.在现存的中国古代数学著作中,最早的一部是( D ) A.《孙子算经》B.《墨经》C.《算数书》D.《周髀算经》5.简单多面体的顶点数V、面数F及棱数E间有关系V+F-E=2这个公式叫( D )。 A.笛卡尔公式 B.牛顿公式 C.莱布尼茨公式 D.欧拉公式 6.中国古典数学发展的顶峰时期是( D )。A.两汉时期B.隋唐时期C.魏晋南北朝时期D.宋元时期 7.最早使用“函数”(function)这一术语的数学家是( A )。A.莱布尼茨B.约翰·伯努利C.雅各布·伯努利D.欧拉8.1834 年有位数学家发现了一个处处连续但处处不可微的函数例子,这位数学家是( B )。 A.高斯 B.波尔查诺 C.魏尔斯特拉斯 D.柯西 9.古埃及的数学知识常常记载在(A )。A.纸草书上B.竹片上C.木板上D.泥板上 10.大数学家欧拉出生于(A )A.瑞士B.奥地利C.德国D.法国 12.《九章算术》的“少广”章主要讨论(D )。A.比例术B.面积术C.体积术D.开方术 13.最早采用位值制记数的国家或民族是( A )。A.美索不达米亚B.埃及C.阿拉伯D.印度 二、填空题 14 15.在现存的中国古代数学著作中,《周髀算经》是最早的一部。卷上叙述的关于荣方与陈子的对话,包含了勾股定理的一般形式。 16.二项式展开式的系数图表,在中学课本中称其为_杨辉_ 17卷,包括有(5)条公理、(5)条公设。 18.两千年来有关 20,被称为“数学之王”的数学家是(高斯)。 欧氏几何对应的情形是曲率恒等于零, 对应的情形是曲率为负常数。 .中国历史上最早叙述勾股定理的著作是《周髀算经》,中国历史上最早完成勾股定理证明的数学家是三国时期的(赵爽)。 三、简答题 26.简述莱布尼茨生活在哪个世纪、所在国家及在数学上的主要成就。答:莱布尼茨于1646 年出生在德国的莱比锡,其主要数学成就有:从数列的阶差入手发明了微积分;论述了积分与微分的互逆关系;引入积分符号;首次引进“函数”一词;发明了二进位制,开始构造符号语言,在历史上最早提出了数理逻辑的思想。 27.写出数学基础探讨过程中所出现的“三大学派”的名称、代表人物、主要观点。答:一,逻辑主义学派,代表人物是罗素和怀特黑德,主要观点是:数学仅仅是逻辑的一部分,全部数学可以由逻辑推导出来。二,形式主义学派,代表人物是希尔伯特,主要观点是:将数学看成是形式系统的科学,它处理的对象不必赋予具体意义的符号。三,直觉主义学派,代表人物是布劳维尔,主要观点是:数学不同于数学语言,数学是一种思维中的非语言的活动,在这种活动中更重要的是内省式构造,而不是公理和命题。 29.《周髀算经》(作者,成书年代,主要成就) 答:该书出版于东汉末年和三国时代,但从史上考证应成书于公元前240 年至公元前156 年之间,可能是北汉平侯张苍修订和补写而成;书中记载的数学知识主要有:分数运算、等差数列公式及一次内插公式和勾股定理在中国早期发展的情况。 31.简述刘徽所生活的朝代、代表著作以及在数学上的主要成就。 答:刘徽生活在三国时代;代表著作有《九章算术注》;主要成就:算术上给出了系统的分数算法、各种比例算法、求最大公约数的方法,代数上有方程术、正负数加减法则的建立和开平方或开立方方法;在几何上有割圆术及徽率。 一、单项选择题 1.世界上讲述方程最早的著作是( A ) A.中国的《九章算术》 B.阿拉伯花拉子米的《代数学》 C.卡尔丹的《大法》 D.牛顿的《普遍算术》 2.《数学汇编》是一部荟萃总结前人成果的典型著作,它被认为是古希腊数学的安魂曲,其作者为( B )。 A.托勒玫 B.帕波斯 C.阿波罗尼奥斯 D.丢番图 3.美索不达米亚是最早采用位值制记数的民族,他们主要用的是( A )。A.六十进制B.十进制C.五进制D.二十进制 4.“一尺之棰,日取其半,万世不竭”出自我国古代名著( B )。A.《考工记》B.《墨经》C.《史记》D.《庄子》5.下列数学著作中不属于“算经十书”的是( A )。A.《数书九章》B.《五经算术》C.《缀术》D.《缉古算经》6.微积分诞生于( C )。A.15 世纪B.16 世纪C.17 世纪D.18 世纪 7.以“万物皆数”为信条的古希腊数学学派是( D )。A.爱奥尼亚学派B.伊利亚学派C.诡辩学派D.毕达哥拉斯学派8.最早记载勾股定理的我国古代名著是( A )。 A.《九章算术》 B.《孙子算经》 C.《周髀算经》 D.《缀术》 9.首先使用符号“0”来表示零的国家或民族是( A )。A.中国B.印度C.阿拉伯D.古希腊 10.在《几何原本》所建立的几何体系中,“整体大于部分”是( D )。A.定义B.定理C.公设D.公理 11.刘徽首先建立了可靠的理论来推算圆周率,他所算得的“徽率”是( B )。A.3.1 B.3.14 C.3.142 D.3.1415926 12.费马对微积分诞生的贡献主要在于其发明的( C )。A.求瞬时速度的方法B.求切线的方法C.求极值的方法D.

数学史试题及答案 最新

**师范大学成教豆学年第2二学期 《数学史》考试卷(A) - 一单项选择题(每小题2分,共26 分) l . 世界上第· 个把π计算到3. 1415926 <π<3. 1415927 的数学家是( B ) A.刘傲 B.祖冲之 C. 阿某米德 D. 卡瓦列利 2 . 我罔元代数学莉作《阿元二J.i鉴》的作者’是( c ) A.秦九韶 B.杨辉 C. 朱世杰 D.贸宪 3 . 就微分学与积分学的起源"r fr i 育( A ) A. 积分学早于微分学 B. 微分学早于积分学 C.积分学与微分学同期 D. 不确定 4. 在现存的I11国古代数学著作I I',故早的←·部是( D ) A. 《孙子算经》 B. 《型经》c. 《算数书》D. 《j司鹊!算,经》 5. 发现著名公式e;9 =cosθ+i s inθ的 是( A笛卡尔B牛顿C莱布尼茨6 . q 1国古典数学发展的顶峰时期是( D )。 D.协; 拉 D )。 A.两汉时期 B.隋唐时期 C.魏普南北朝时期 D.宋元时期 7 . 敲早使用“函数”(fu n ct io n)这·术语的数学家是( A )。 A.莱布尼茨 B.约翰·f(I努利 C.雅各布·响’l努利 D.欧拉 8. 1834 年有位数学家发现了.个处处连续但处处不可微的函数例子,这位数学家是( B )。 A.高斯 B.波尔资诺 C.魏尔斯特拉斯 D.柯西9 . 古埃及的数学知识常常记 载在( A )。 A.纸草书上 B.竹片上 C.木版上 D.泥报上 10. 大数学家欧拉出生于(A)

A.瑞士 B .奥地利 C.德罔 D.法罔 II . 首先获得四次方程”般解法的数学家是( D )。 A.塔塔利亚 B .卡到 C.费罗 D.费拉利 12 . 《九章算术》 的 “少广 ” 章主要讨论 ( D )。 A. 比例术 B .而积术 C.体积术 D.开方术 13. 最早采用位值制记数的国家或 民族是( A )o A 美索不达米 - B 埃及 C.阿拉伯 D 印度 二、填空题 (每空 1 分,共 28 分) 14 . 希尔伯特征历史上第 ·协 明确地提出 了选择和组织公理系统的原则,即:杭| 容性、 完备性 、 独立性 15. 在现存的小国肯代数学著作小 ,《 周僻算经 》 是最早的’ 古币。卷上叙 述的关才二荣方与陈子的对话 ,包含 了勾股定理 的← ·般形式。 16. 二项式展开式的系数罔表,在小学课本"I 称其为 杨辉 三角,而数学 史学者常常称它为 贾宪 三 角。 17. 欧几里得 《几何原本》 全书共分 13 卷,包括有 5 条公理 、 二 条公设。 18. 两千年来有关 欧几里得几何原本第五公设 的争议 ,导致了非欧几何的诞 生。 19.阿拉伯数学家花拉子米的 《代数学》 第·’次给出了 ,·次和二次 方程的 ··般解法 ,并用 几何 方法对这← 20. 在微积分方法正式发明之前,许多数学家的工作已经显示着微积分的萌芽, 如开普勒的旋转体体积计算 、巳罗的 微分三角形方法 以及瓦盟士的 曲线弧长的计算 等。 2 1 . 创造并最先使川J c - o 语言的数学家是 维尔斯特拉斯 22 . 数学家们为 研究古希腊三大尺热!作图难题花费了两千年的时间,1882 年德 国数学家林德曼证明了数 一一π 一的超越性。 23. 罗巴契夫斯掉所建立的 “非欧几何” 假定过直线外··点, 至少有两条 直 线与己知直线平行,T 而且在该几何体系I I ',三角形内角和 尘主 两直

数学史和数学文化

《数学史与数学文化》 班级:网营14-1班 姓名:毕倩榕 学号: 云南财经大学中华职业学院 数学史和数学文化 数学可能是中国所有上学的人爱恨交加的科目了吧,一方面苦于数学的枯燥和难懂,另一方面又应用于各个方面,可以说对它的感情很复杂了。而数学史和数学文化这门课却讲了不少数学史中有意思数学家和他们的故事以及数学文化,数学俨然给人一种活泼感,就好像是一个印象中“严肃刻板”的人,做出了一系列生动幽默的动作,发生了一连串的故事;而数学文化就像是人类其他形式的文化一样,它活跃在人类历史进程中,推进了人类的进步。 数学是美的,数学美把就是把数学溶入语言之中,人们自然会联想到令人心驰神往的优美而和谐的黄金分割;各种有趣的数字比如说:完全数、水仙花数、亲和数、黑洞数等等;雄伟壮丽的科学宫殿的欧几里得平面几何;数学皇冠上的明珠?哥德巴赫猜想。 数学美可以分为形式美和内在美。? 数学中的公式、定理、图形等所呈现出来的简单、整齐以及对称的美是形式美的体现。数学中有字符美和构图美还有对称美,数学中的对称美反映的是自然界的和谐性,在几何形体中,最典型的就是轴对称图形。数学中的简洁美,数学具有形式简洁、有序、规整和高度统一的特点,许多纷繁复杂的现象,可以归纳为简单的数学公式。? 数学的内在美有数学的和谐美,数量的和谐,空间的协调是构成数学美的重要因素。数学中的严谨美,严谨美是数学独特的内在美,我们通常用?滴水不漏?来形容数学。它表现在数学推理的严密,数学定义准确揭示概念的本质属性,数学结构系统的协调完备等等。总之,数学美的魅力是诱人的,数学美的力量是巨大的,数学美的思想是神奇的,数学是一个五彩缤纷的美的世界。 数学是好玩的,在北京举行国际数学家大会期间,91岁高龄的数学大师陈省身先生为少年儿童题词,写下了“数学好玩”4个大字。数是一切事物的参与者,数学当然就无所不在了。在很多有趣的活动中,数学是幕后的策划者,是游戏规则的制定者。玩七巧

相关文档
最新文档