实变函数证明题大全

合集下载

实变函数试题库及参考答案

实变函数试题库及参考答案

实变函数试题库及参考答案(1) 本科一、填空题1.设,A B 为集合,则()\A B B A B (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是 5.设1E 、2E 是可测集,则()12m E E 12mE mE +(用描述集合间关系的符号填写)6.设nE ⊂是可数集,则*m E 07.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x f x a ⎡⎤≥⎣⎦是 ,则称()f x 在E 上可测8.可测函数列的上极限也是 函数9.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x +⇒ 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题1.下列集合关系成立的是( ) 2.若n R E ⊂是开集,则( )3.设(){}n f x 是E 上一列非负可测函数,则( ) 三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( )A E 是不可数集B E 是闭集C E 中没有内点D 1mE = 2.设nE ⊂是无限集,则( )A E 可以和自身的某个真子集对等B E a ≥(a 为自然数集的基数) 3.设()f x 是E 上的可测函数,则( )A 函数()f x 在E 上可测B ()f x 在E 的可测子集上可测C ()f x 是有界的D ()f x 是简单函数的极限4.设()f x 是[],a b 上的有界函数,且黎曼可积,则( )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上几乎处处等于某个连续函数四、判断题1. 可数个闭集的并是闭集. ( )2. 可数个可测集的并是可测集. ( )3. 相等的集合是对等的. ( )4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( ) 五、定义题1. 简述无限集中有基数最小的集合,但没有最大的集合.2. 简述点集的边界点,聚点和内点的关系.3. 简单函数、可测函数与连续函数有什么关系?4. [],a b 上单调函数与有界变差函数有什么关系? 六、计算题1. 设()[]230,1\xx E f x xx E⎧∈⎪=⎨∈⎪⎩,其中E 为[]0,1中有理数集,求()[]0,1f x dx ⎰.2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121,,00,1\,,n n n x r r r f x x r r r ∈⎧⎪=⎨∈⎪⎩,求()[]0,1lim n n f x dx →∞⎰.七、证明题1.证明集合等式:(\)A B B A B =2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE = 3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集 4.设()f x 是E 上的可测函数,则对任何常数0a >,有1[|()|]|()|EmE x f x a f x dx a ≥≤⎰ 5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞=,则实变函数试题库及参考答案(1) 本科一、填空题1.=2.≤3.闭集4.开集5.≤6.=7.可测集8.可测9.()()f x g x + 10.可积 二、单选题 ABB三、多选题ACD AB ABD ABC 四、判断题 × √√√ 五、定义题1.答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集合A ,A 的幂集2A 的基数大于A 的基数.2.答: 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点.3.答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限4.答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差. 六、解答题1.解:因为0mE =,所以()3,.f x x a e =于[]0,1,于是()[][]30,10,1f x dx x dx =⎰⎰,而3x 在[]0,1上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系, 因此()[]0,114f x dx =⎰. 2.解:显然()n f x 在[]0,1上可测,另外由()n f x 定义知,()0,.n f x a e =于[]0,1()1n ≥ 所以()[][]0,10,100nf x dx dx ==⎰⎰因此()[]0,1lim0nn f x dx →∞=⎰七、证明题 1.证明2.证明 设F 是[0,1]中的有理数集,则F 是可数集,从而*0m F =,因此F 是可测集,从而c F 可测,又[0,1]\[0,1]c E F F ==,故E 是可测集.由于EF =∅,所以1[0,1]()0m m EF mE mF mF ===+=+,故1mF =3.证明 设{}n r 为全体有理数所成之集,则因为(),()f x g x 是E 上的可测函数,所以[|()]n E x f x r ≥,[|()]n E x g x r <是可测集,1,2,n =,于是由可测集性质知[|()()]E x f x g x >是可测集4.证明 因为()f x 在E 上可测,所以|()|f x 在E 上非负可测,由非负可测函数积分性质, 而[|()|][|()|]E x f x a adx a mE x f x a ≥=⋅≥⎰,所以5.证明 因为lim 0n n mE →∞=,所以0,1N δ∀>∃≥,当n N ≥时,n mE δ<,又()f x 在E上L -可积,所以由积分的绝对连续性,0,0,εδ∀>∃>当,e E me δ⊂<时|()|ef x dx ε<⎰于是当n N ≥时,n mE δ<,因此|()|nE f x dx ε<⎰,即lim ()0nE n f x dx →∞=⎰。

实变函数[精华]

实变函数[精华]

1、单调渐张集列必收敛,其极限集为;若A n=[0,1-],则。

2、闭集减开集的差集是集。

3、若则。

4、设f(x)在E上可测,则f(x)总可以表示成一列的极限函数。

5、康托尔集是一个集,其测度为。

6、在[a,b]上的有界变差函数一定是函数。

7、设f(x)是可测集E()上的有界函数,则f(x)在E上(L)可积的充要条件是f(x) 。

8、可数集合在无限集中具有最小的。

二、判断题(20分,每小题2分):1、复数集的基数最大。

()2、连续函数一定是可测函数。

()3、任意多个开集的交集一定是开集。

()4、康托尔集与有理数集的测度相等。

()5、若|f(x)|在可测集E上可测,则f(x)必在E上可测。

()6、几乎处处收敛的函数列必是依测度收敛的。

()7、L积分是一种绝对收敛的积分。

()8、E的界点一定是E的聚点。

()9、单调增加函数的间断点只有有限个。

()10、设f(x)在E上(L)可积,则f(x)在E上必有限。

()三、构造题(12分):1(6分)、在[0,1]上构造一个具有有限正测度的闭集。

2(6分)、构造一可列集E,使其导集,其开核。

四、简答题(16分,每小题4分)1、有界变差函数与连续函数的关系是怎样的?2、几乎处处收敛、基本上一致收敛以及依测度收敛的关系如何?3、说明可测函数类比连续函数类广。

4、说明无聚点的集合与只有孤立点的集合的关系。

五、计算题(18分,每题9分):1、求极限。

2、设在Cantor集上定义函数f(x)= 1,而在Cantor集的邻接区间上函数的图形是以这些邻接区间长度为直径所作圆周之上半圆,计算f(x)在[0,1]上的L积分。

六、证明题(16分每题8分)1、设在E上,且几乎处处成立于,n=1,2,…,则几乎处处有f n(x)收敛于f(x)。

2、若E为直线上一有界可测集,且mE=p>0,则对于任意小于p的正数q,恒存在E的可测子集E0,使mE0=q。

一、填空题(每空2分,共20分):1、单调递降集列必收敛,其极限集为;若A n=[0,1+],则。

实变函数复习题

实变函数复习题

复习题1 一、判断1、若N 是自然数集,e N 为正偶数集,则N 与e N 对等。

(对)2、由直线上互不相交的开间隔所成之集是至多可列集。

(对)3、若12,,,n A A A 是1R 上的有限个集,则下式()1212n n A A A A A A ''''+++=+++成立。

(对)4、任意多个开集的交集一定是开集。

(错)5、有限点集和可列点集都可测。

(对)6、可列个零测集之并不是零测集。

(对)7、若开集1G 是开集2G 的真子集,则一定有12mG mG <。

(错) 8、对于有界集1ER ⊆,必有*m E <+∞。

(对)9、任何点集E 上的常数函数()f x =C ,x E ∈是可测函数。

(错)10、由()f x 在()1,2,k E k = 上可测可以推出()f x 在1kk E E ∞==∑上可测。

(对)二、填空1、区间(0,1)和全体实数R 对等,只需对每个()0,1x ∈,令 ()tan()2x x πϕπ=-2、任何无限集合都至少包含一个 可数子集3、设12,S S 都可测,则12S S ⋃也可测,并且当12S S ⋂为空集时,对于任意集合T 总有***1212[()]()()m T S S m T S m T S ⋂⋃=⋂+⋂4、设E 是任一可测集,则一定存在F ∂型集F ,使F E ⊂,且 ()0m E F -=5、可测集n ER ⊂上的 连续函数 是可测函数。

6、设E 是一个有界的无限集合,则E 至少有一 个聚点。

7、设π是一个与集合E 的点x 有关的命题,如果存在E 的子集M ,适合mM=0,使得π在E\M 上恒成立,也就是说,E\E[π成立]= 零测度集 ,则我们称π在E 上几乎处处成立。

8、E 为闭集的充要条件是'(E E)E E ⊂∂⊂或 。

9、设A 、B 是两个非空集合,若,A B B A ≤≤,则有 A =B。

三、证明 1、证明:若A B ⊂,且~A A C ⋃,则有~B B C ⋃。

实变函数几道试题及笔者的解法

实变函数几道试题及笔者的解法
1 1
2
3 2 3
∴ 2


[ 0 ,1]
[ 0 ,1]
f ( x)dx 4
3
k2x f ( x)dx 0 。 四、已知 f ( x) 是 [0,1] 上的有限可积函数,证明: lim 2 2 k 1 k x [ 0 ,1]
证明:令 f k ( x)
[ 0 ,1]
1
3
| f k ( x) |dx
lim
3
k [ 0 ,1]
| f k ( x) |dx 0 ,∴ mE{x | 3 | f k ( x) | } 0(k )
∴ 3 | f k ( x) | 0 又∵ mE{x | 3 | f k ( x) | } mE{x || f k ( x) | }

2k 2
,显然 Gk 是开集,令 G

UG
k 1
k
,则 G 也是开集。
mG m(U Gk ) mGk
k 1 k 1 k 1

2
k 1


2
1,
又 G R ,∴ mG mR 。 综上,集合 G 即为满足题意的集合。 三、已知 P0 是 [0,1] 上的 cantor 集, x [0,1] ,当 x P0 时, f ( x) e ,当 x P0 且 x 在 第 k 个分割区间时, f ( x) k
ex
1 。问 f ( x) 在 [0,1] 上是否可积,如果可积请求出其积分。 3k
解:∵ Po 是 [0,1] 上的 cantor 集,所以 mP0 0
记 Po 的余集为 P 1 ,定义 g ( x )

实变函数课后习题答案

实变函数课后习题答案

第一章习题1.证明:(1) (A -B )-C =A -(B ∪C ); (2)(A ∪B )-C =(A -C )∪(B -C ). 证明:(1) 左=(A ∩B c )∩C c =A ∩(B c ∩C c )= A ∩(B ∪C )c =右; (2)左=(A ∪B )∩C c =(A ∩C c )∪(B ∩C c )=右. 2.证明: (1)();(2)().IIIIA B A B A B A B αααααααα∈∈∈∈-=--=-(1)ccI IA B A B αααα∈∈⎛⎫=== ⎪⎝⎭证明:左()右;(2)()c cI I A B A B αααα∈∈⎛⎫=== ⎪⎝⎭左右.111111.{},,1.{}1.n n n n n nnA B A B A A n B B A n νννννν-===⎛⎫==- ⎪⎝⎭>=≤≤∞ 3 设是一列集合,作证明:是一列互不相交的集合,而且,证明:用数学归纳法。

当n=2时,B 1=A 1,B 2=A 2-A 1, 显然121212B B B B B B n k =∅== 且,假设当时命题成立,1211,,,kkk B B B B A νννν===两两互不相交,而且,111111111kk k kkkk k n k B A A B A BA B νννννννν++=++====+=-==-⇒下证,当时命题成立,因为而,所以11211+1111111111111,,,;k k k k k k k k k kk k k k k B B B B B B B B B B A A A A A A A νννννννννννννννν++=++===+++====⎛⎫=∅ ⎪⎝⎭⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,于是,两两互不相交;由数学归纳法命题得证。

{}21214.0,,(0,),1,2,,n n n A A n n A n-⎛⎫=== ⎪⎝⎭设求出集列的上限集和下限集。

实变函数参考答案

实变函数参考答案

习题1解答(A 组题)一、选择题1、C ;2、A ;3、D ;4、C ;5、C ;6、A ;7、A ;8、B ;9、D ;10、C 二、判断题1、×;2、×;3、×;4、×;5、√;6、×;7、×;8、×;9、×; 10、× 三、填空题1、=;2、∅;3、()0,1;4、[]1,1-;5、,EF EF ;6、()2,3-;7、≥;8、c9、设有两个集合A 和B ,若≤A B ,≥A B ,则=A B 。

四、证明题1、(1)()()()()()\\====C C CC A A B A A B AAB A A AB A B ;(2)()()()()()()\\==C C CC A B CD A B CD A C B D()()()()\==CA C BD A C BD 。

2、111\lim \∞∞∞∞∞∞→∞======⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭C Cn n n n n N n N N n N N n N A B A B A B AB ()111lim(\)∞∞∞∞∞∞→∞======⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭C C C n n n n n N n N N n N N n N A B A B A B A B 。

同理可证第2个集合等式。

3、当A =∅时,{}∅张成的环和σ-环均为它自身;张成的代数和σ-代数均为{},X ∅。

当A X =时,{}X张成的环、σ-环、代数和σ-代数均为{},X ∅。

当A 为X 的非空真子集时,{}A 张成的环和σ-环均为{},A ∅;张成的代数和σ-代数均为{},,,cA A X∅。

4、首先,令()()tan 12π⎡⎤=-⎢⎥⎣⎦f x x ,由于()f x 是()0,1上的严格单调递减的连续函数,且()()()0,10,=+∞f,所以()f x 是()0,1到()0,+∞的一一映射。

实变函数课后答案

实变函数课后答案

实变函数课后答案以下是十道实变函数的课后试题及答案:1.计算函数f(x)=2x+3在x=4处的取值。

答案:f(4)=2(4)+3=112.证明函数f(x)=x^2在定义域内是增函数。

答案:对于任意x1<x2,在区间(x1,x2)内有f(x1)<f(x2)。

证明:f(x2)-f(x1)=x2^2-x1^2=(x2+x1)(x2-x1)>0,其中x2+x1>0且x2-x1>0。

因此,f(x)=x^2在定义域内是增函数。

3. 求函数f(x) = ln(x)的定义域。

答案:由于ln(x)的定义域是(0, +∞),所以函数f(x) = ln(x)的定义域是(0, +∞)。

4.求函数f(x)=,x-3,的值域。

答案:由于,x-3,的值域是[0,+∞),所以函数f(x)=,x-3,的值域是[0,+∞)。

5.计算函数f(x)=e^x在x=2处的导数。

答案:f'(x)=e^x,所以f'(2)=e^26. 计算函数f(x) = sin(x)在x = π/4处的导数。

答案:f'(x) = cos(x),所以f'(π/4) = cos(π/4) = 1/√27.证明函数f(x)=x^3是奇函数。

答案:对于任意x,f(-x)=(-x)^3=-x^3=-f(x),所以函数f(x)=x^3是奇函数。

8. 证明函数f(x) = sin(x)在定义域内是周期函数。

答案:sin(x)的周期是2π,对于任意实数x,有sin(x + 2π) = sin(x),所以函数f(x) = sin(x)在定义域内是周期函数。

9.求函数f(x)=e^x的反函数。

答案:令y = e^x,解得x = ln(y),所以函数f(x) = e^x的反函数是f^(-1)(x) = ln(x)。

10.计算函数f(x)=1/x在x=2处的极限。

答案:lim(x→2)(1/x) = 1/2。

【实变函数】证明(一)

【实变函数】证明(一)

【实变函数】证明(⼀)证明11-1若E是开集,则E c是闭集。

设{x k}∈E c使得x k→y。

若y∈E,则因E是开集,存在某B r(y)⊂E,从⽽有x k∈B r(y),这与x k∈E c⽭盾。

1-2Cantor集是完全不连通的完备集。

由Cantor集的构造,我们知道对于C k,其每⼀个⼩区间的长度⼩于13k。

不连通性:对任何x<y∈E,它们之间的距离为d(x,y)>0,故必定存在某k,使得d(x,y)>13k,也就是说[x,y]⊈,⾃然存在某z\in [x,y]使得z\notin C_k,于是z\notin C。

没有孤⽴点:对任何x\in E,我们知道它必然存在于某个闭区间列中,⽽由Cantor集的构造过程,我们知道在第k步保留的闭区间某侧的\dfrac{1}{3^{k-1}}距离以内,必存在另⼀个与之相对称的闭区间。

现对任何\delta>0,必定存在某个k使\delta>\dfrac{1}{3^{k-1}},因此在第k步中分划出两个闭区间套,其中⼀个最终包含x,另⼀个将最终包含另⼀个y\in E,⽽d(x,y)<\dfrac{1}{3^{k-1}}<\delta。

1-3\mathbb{R}^2上的开圆盘不能表⽰为开矩形的不交并。

设开圆盘为O,有开矩形列G_k使得\displaystyle{O=\bigcup_{k=1}^{\infty}G_k}。

显然G_1\ne O,因此必定存在⼀个点x\in O,使得\forall \delta>0,有B_{\delta}(x)\cap G_1\ne \varnothing。

这样由于G_k两两不交,x将不能够包含在其他的开集G_k中。

1-4若f(x)是定义在开集G\subset \mathbb{R}^n上的实值函数,则f的连续点集是G_{\delta}集。

引⼊f在x的振幅为\omega_f(x),即\omega_f(x)=\lim_{h\to 0}\left(\sup_{B_h(x)}f-\inf_{B_h(x)}f \right),则f在x处连续等价于\omega_f(x)=0,故连续点集为\bigcap_{k=1}^{\infty}\left\{x\in G:\omega_f(x)<\frac{1}{k}\right\}.事实上每⼀个这样的集合都是开集,所以连续点集是G_{\delta}集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、设',()..E R f x E a e ⊂是上有限的可测函数,证明:存在定义在'R 上的一列连续函数{}n g ,使得lim ()()..n n g x f x a e →∞=于E 。

证明:因为()f x 在E 上可测,由鲁津定理就是,对任何正整数n ,存在E 的可测子集n E ,使得1()n m E E n-<, 同时存在定义在1R 上的连续函数()n g x ,使得当n x E ∈时,有()()n g x f x =所以对任意的0η>,成立[||]n n E f g E E η-≥⊂-由此可得1[||]()n n mE f g n m E E n-≥≤-<,因此lim [||]0n n mE f g n →∞-≥=即()()n g x f x ⇒,由黎斯定理存在{}n g 的子列{}k n g ,使得lim ()()k n k g x f x →∞=,..a e 于E2、设()(,)f x -∞∞是上的连续函数,()g x 为[,]a b 上的可测函数,则(())f g x 就是可测函数。

证明:记12(,),[,]E E a b =-∞+∞=,由于()f x 在1E 上连续,故对任意实数1,[]c E f c >就是直线上的开集,设11[](,)nn n E f c αβ∞=>=U ,其中(,)n n αβ就是其构成区间(可能就是有限个,nα可能为-∞nβ可有为+∞)因此222211[()][]([][])n n n n n n E f g c E g E g E g αβαβ∞∞==>=<<=><I U U 因为g 在2E 上可测,因此22[],[]n n E g E g αβ><都可测。

故[()]E f g c >可测。

3、设()f x 就是(,)-∞+∞上的实值连续函数,则对于任意常数a ,{|()}E x f x a =>就是一开集,而{|()}E x f x a =≥总就是一闭集。

证明:若00,()x E f x a ∈>则,因为()f x 就是连续的,所以存在0δ>,使任意(,)x ∈-∞∞,0||()x x f x a δ-<>就有, 即任意00U(,),,U(,),x x x E x E E δδ∈∈⊂就有所以就是开集若,n x E ∈且0(),()n n x x n f x a →→∞≥则,由于()f x 连续,0()lim ()n n f x f x a →∞=≥,即0x E ∈,因此E 就是闭集。

4、(1)设2121(0,),(0,),1,2,,n n A A n n n-==L 求出集列{}n A 的上限集与下限集证明:lim (0,)n n A →∞=∞设(0,)x ∈∞,则存在N,使x N <,因此n N >时,0x n <<,即2n x A ∈,所以x 属于下标比N 大的一切偶指标集,从而x 属于无限多n A ,得lim n n x A →∞∈,又显然lim (0,),lim (0,)n n n n A A →∞→∞⊂∞=∞所以lim n n A φ→∞=若有lim n n x A →∞∈,则存在N,使任意n N >,有n x A ∈,因此若21n N ->时,211,0,00n x A x n x n -∈<<→∞<≤即令得,此不可能,所以lim n n A φ→∞=(2)可数点集的外测度为零。

证明:证明:设{|1,2,}i E x i ==L 对任意0ε>,存在开区间i I ,使i i x I ∈,且||2i iI ε=所以1ii IE ∞=⊃U ,且1||i i I ε∞==∑,由ε的任意性得*0m E =5、设}{n f 就是E 上的可测函数列,则其收敛点集与发散点集都就是可测的。

证: 显然,{}n f 的收敛点集可表示为0[lim ()lim ()]n n x x E E x f x f x →∞→∞===11[lim lim ]n nx x k E f f k ∞→∞→∞=-<∏、 由n f 可测lim n x f →∞及lim n x f →∞都可测,所以lim lim n n x x f f →∞→∞-在E 上可测。

从而,对任一自然数k ,1[lim lim ]n n x x E f f k→∞→∞-<可测。

故 011[lim lim ]n nx x k E E f f k ∞→∞→∞==-<∏ 可测。

既然收敛点集0E 可测,那么发散点集0E E -也可测。

6、设qR E ⊂,存在两侧两列可测集{n A },{n B },使得n A ⊂ E ⊂n B 且m (n A -n B )→0,(n→∝)则E 可测、证明:对于任意i ,i n n B B ⊂∞=1I ,所以 E B E B i n n -⊂∞=-1I又因为 E A i ⊂ ,i i i A B E B -⊂-所以对于任意i ,)(**1E B m E B m i n n -≤-∞=)(I )(*i i A B m -≤)(i i A B m -=令i →∝ ,由)(i i A B m -→0 得0*1=-∞=)(E B m n n I 所以E B n n -∞=1I 就是可测的又由于n B 可测,有n n B ∞=1I 也就是可测的所以)(11E B B E n n n n --=∞=∞=I I 就是可测的。

7、设在E 上()()n f x f x ⇒,而()()n n f x g x =..a e 成立,1,2n =K ,则有()()n g x f x ⇒设[]n n n E E f g =≠,则110n n n n m E mE ∞∞==⎛⎫≤= ⎪⎝⎭∑U 。

σ∀>1n n n n E f g E E f f σσ∞=⎛⎫⎡-≥⎤⊂⎡-≥⎤ ⎪⎣⎦⎣⎦⎝⎭U U 所以1n n n n n mE f g m E mE f f mE f f σσσ∞=⎛⎫⎡-≥⎤≤+⎡-≥⎤=⎡-≥⎤ ⎪⎣⎦⎣⎦⎣⎦⎝⎭U因为()()n f x f x ⇒,所以0lim lim 0n n nnmE f g mE f f σσ≤⎡-≥⎤≤⎡-≥⎤=⎣⎦⎣⎦即 ()()n g x f x ⇒8、证明:()A B A B '''⋃=⋃。

证明:因为A A B ⊂⋃,B A B ⊂⋃,所以,()A A B ''⊂⋃,()B A B ''⊂⋃,从而()A B A B '''⋃⊂⋃反之,对任意()x A B '∈⋃,即对任意(,)B x δ,有(,)()((,))((,))B x A B B x A B x B δδδ⋂⋃=⋂⋃⋂为无限集,从而(,)B x A δ⋂为无限集或(,)B x B δ⋂为无限集至少有一个成立,即x A '∈或x B '∈,所以,x A B ''∈⋃,()A B A B '''⋃⊂⋃。

综上所述,()A B A B '''⋃=⋃。

9、证明:若()()n f x f x ⇒,()()n f x g x ⇒(x E ∈),则()()f x g x =..a e 于E 。

证明:由于11[()()][]n E x f x g x E x f g n∞=≠=-≥U ,而 111[][][]22n n E x f g E x f f E x f g k k k-≥⊂-≥⋃-≥,所以,111[][][]22n n mE x f g mE x f f mE x f g k k k-≥≤-≥+-≥,由()()n f x f x ⇒,()()n f x g x ⇒(x E ∈)得1lim []02n n mE x f f k →∞-≥=,1lim []02n n mE x f g k→∞-≥=。

所以,1[]0mE x f g k-≥=,从而[()()]0mE x f x g x ≠=,即()()f x g x =..a e 于E 。

10、、证明:若()()n f x f x ⇒,()()n g x g x ⇒(x E∈),则()()()()n n f x g x f x g x ±⇒±(x E ∈)。

证明:对任意0σ>,由于()()[()()]()()()()n n n n f x g x f x g x f x f x g x g x ±-±≤-+-,所以,由()()[()()]n n f x g x f x g x σ±-±≥可得,1()()2n f x f x σ-≥与1()()2n g x g x σ-≥至少有一个成立。

从而11[[]][][]22n n n n E x f g f g E x f f E x g g σσσ±-±≥⊂-≥⋃-≥,所以,11[[]][][]22n n n n mE x f g f g mE x f f mE x g g σσσ±-±≥≤-≥+-≥。

又由()()n f x f x ⇒,()()n g x g x ⇒(x E ∈)得,1lim []02n n mE x f f σ→∞-≥=,1lim []02n n mE x g g σ→∞-≥=。

所以,lim [[]]0n n n mE x f g f g σ→∞±-±≥=,即()()()()n n f x g x f x g x ±⇒±(x E ∈)。

11、若()()n f x f x ⇒(x E ∈),则()()n f x f x ⇒(x E ∈)。

证明:因为()()()()n n f x f x f x f x -≥-,所以,对任意0σ>,有[][]n n E x f f E x f f σσ-≥⊂-≥,[][]n n mE x f f mE x f f σσ-≥≤-≥。

又由()()n f x f x ⇒(x E ∈)得,lim []0n n mE x f f σ→∞-≥=。

所以,lim []0n n mE x f f σ→∞-≥=,即()()n f x f x ⇒(x E ∈)。

12、证明:1R 上的连续函数必为可测函数。

证明:设()f x 就是1R 上的连续函数,由连续函数的局部保号性,对任意实数a ,11[]{(),}R x f a x f x a x R >=>∈就是开集,从而就是可测集。

相关文档
最新文档