2020年九年级数学中考三轮复习:《三角形综合训练》(含解析)

合集下载

决战2020年中考数学九年级三轮冲刺:《三角形综合》(二)

决战2020年中考数学九年级三轮冲刺:《三角形综合》(二)

三轮冲刺:《三角形综合》(二)1.如图,在正方形ABCD中,点F是直线BC上一动点,连结AF,将线段AF绕点F顺时针旋转90°,得到线段FH,连结AH交直线DC于点E,连结EF和CH,设正方形ABCD的边长为x.(1)如图1,当点F在线段BC上移动时,求△CEF的周长(用含x的代数式表示);(2)如图1,当点F在线段BC上移动时,猜想∠EFC和∠EHC的关系,并证明你的结论;(3)如图2,当点F在边BC的延长线上移动时,请直接写出∠EFC和∠EHC的关系(不需要证明).2.如图①,在△ABC中,AC=BC,CD为AB边上的中线,CE∥AB,线段DE交BC于点G.(1)若CE=CG=1,AB=4,求DE的长;(2)如图②,取△ABC外一点F,连接AF,BF,CF,DF,CF与DE交于点H,若∠ACB=90°,AC=AF,BF⊥CF,DE⊥DF.①求的值;②求证:CH=FH.3.已知△ABC和△ADE均为等腰三角形,且∠BAC=∠DAE,AB=AC,AD=AE.(1)如图1,点E在BC上,求证:BC=BD+BE;(2)如图2,点E在CB的延长线上,(1)的结论是否成立?若成立,给出证明;若不成立,写出成立的式子并证明.4.锐角△ABC中BC=2,以AB为边向外作等边△ABD,以AC为边向外作△ACE,其中AE=CE,∠AEC=120°,F为BC的中点,分别连接DF,EF.(1)如图1,△ABC为等边三角形,①DF与EF的数量关系是;DF与EF的位置关系是;②求DF的长度;(2)如图2,AB=AC时,DF与EF的关系是否改变?如果不变请证明;如果改变请写出新的关系并证明;(3)如图3,△ABC为任意的锐角三角形,当EC=1时直接写出DF长度的取值范围.5.已知:在△ABC中,AB=AC,点D在直线AB上,DE∥BC交直线AC于点E,点F在直线BC上,且BF=DE,请解答下列问题:(1)如图①,求证:EF+EA=AB;(2)如图②,如图③,线段EF,EA,AB又有怎样的数量关系?请写出你的猜想,不需要证明;=48,DE=3,tan∠ABC>1,则EF (3)在(1)(2)的条件下,若AB=AC=10,S△ABC=.6.在平面直角坐标系中,点O为原点,点C在y轴正半轴上,B(﹣2,0),∠OCB=30°,AC⊥BC交x轴于点A.(1)求A点的坐标;(2)一动点E从点A出发沿着AC向终点C运动,速度为每秒1个单位长度,过点E作y 轴的平行线,交直线BC于点M,设点E运动时间为t,线段EM的长为d,求出d与t之间的函数关系式;(3)在(2)的条件下,另一动点F从点B出发沿着BC向终点C运动,速度为每秒1个单位长度,点E、点F同时出发,并且一个到达终点另一个也停止运动,连接EF,以EF 为斜边作等腰直角△EFN,连接BN,CN,当t为何值时,△CNB为直角三角形.7.已知△ABC中,BE平分∠ABC,BE交AC于点E,CD平分∠ACB,交AB于点D,BE与CD 交于点O.(1)如图1,求证:∠BOC=90°+∠BAC;(2)如图2,连接OA,求证:OA平分∠BAC;(3)如图3,若∠BAC=60°,BD=4,CE=2,求的值.8.在平面直角坐标系中,点A(2,0),点B(2,2).将△OAB绕点B顺时针旋转,得△O'A'B,点A,O旋转后的对应点为A',O'.记旋转角为α.(Ⅰ)如图①,当α=45°时,求点A'的坐标;(Ⅱ)如图②,当α=60°时,求点A的坐标;(Ⅲ)连接OA′,设线段OA′的中点为M,连接O'M,求线段O'M的长的最小值(直接写出结果即可).9.定义:在平面直角坐标系中,对于任意两点A (x 1,y 1 ),B ( x 2,y 2 ),若点T (x ,y )满足x =,y =,那么称点T 是点A ,B 的k 联点.例如:A (0,8),B (3,1),当点 T (x ,y )满足x ==1,y ==3时,则点T (1,3)是点A ,B 的3联点.(1)已知点C (x ,y )是点A (﹣1,5),B (10,4)的2联点,求点C 坐标;(2)已知点P (,) 是点M (1,5)和点N (3,n )的k 联点,求k 和n 的值;(3)如图,点D (3,0),若点E (t ,2t +3)是直线l 上任意一点,点T (x ,y )是点D ,E 的3联点,直线ET 交x 轴于点H .①直接写出点H 的坐标 ;②当△DTH 为直角三角形时,求点E 的坐标.10.如图1,在△ABC 中,∠B =60°,点M 从点B 出发沿射线BC 方向,在射线BC 上运动.在点M 运动的过程中,连结AM ,并以AM 为边在射线BC 上方,作等边△AMN ,连结CN .(1)当∠BAM = °时,AB =2BM ;(2)请添加一个条件: ,使得△ABC 为等边三角形;①如图1,当△ABC 为等边三角形时,求证:CN +CM =AC ;②如图2,当点M 运动到线段BC 之外(即点M 在线段BC 的延长线上时),其它条件不变(△ABC 仍为等边三角形),请写出此时线段CN 、CM 、AC 满足的数量关系,并证明.参考答案1.解:(1)如图1中,延长CB到G,使得BG=DE,连接AG.∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=∠ABG=90°,∵DE=BG,∴△ADE≌△ABG(SAS),∴∠BAG=∠DAE,AG=AE,∵将线段AF绕点F顺时针旋转90°,得到线段FH,∴FA=FH,∠AFH=90°,∴∠FAH=∠AHF=45°,∴∠BAF+∠DAE=∠BAF+∠BAG=45°,∴∠FAG=∠FAE,∵AF=AF,∴△AFG≌△AFE(SAS),∴EF=FG,∵FG=BG+BF=DE+BF,∴EF=BF+DE,∴△ECF的周长=EF+CF+CE=BF+CF+DE+CE=BC+CD=2x.(2)如图1中,过点H作HM∥BC交BC的延长线于H.∵∠ABF=∠AEH=∠M=90°,∴∠AFB+∠HFM=90°,∠FHM+∠FHM=90°,∴∠AFB=∠FHM,∵AF=FH,∴△ABF≌△FMH(AAS),∴HM=BF,AB=FM=BC,∴BF=CM=HM,∴∠HCM=∠HCE=45°,∴∠HCF=135°,由(1)可知,∠AFB=∠AFE,∵∠AFB+∠MFH=90°,∠AFE+∠EFH=90°,∴∠MFH=∠EFH,设∠MFH=∠EFH=α,则∠CHF=45°﹣α,∵∠AHF=45°,∴∠EHC=45°+45°﹣α=90°﹣α,∵∠EFC=2α,∴∠EHC=90°﹣∠EFC.(3)结论:∠EHC=∠EFC.理由:如图2中,延长BC到M,设∠HFM=α.∵∠HFM=∠HCM+∠CHF,∠HCM=∠AHF=45°,∴∠CHF=α﹣45°,∴∠EHC=45°﹣(α﹣45°)=90°﹣α,∵∠EFC=2∠AFB=2(90°﹣α)=180°﹣2α,∴∠EHC=∠EFC.2.解:(1)∵CE∥AB,∴△CEG∽△BDG,∴=,∵在等腰三角形ABC中,AC=BC,CD为AB边上的中线,∴BD=AB=2,CD⊥AB,∴=,∴BG=2,∴BC=BG+CG=2+1=3,∴CD2=BC2﹣BD2=32﹣22=5,∵CE∥AB,CD⊥AB,∴CD⊥CE,∴∠DCE=90°,∴在Rt△CED中,DE===;(2)①∵DE⊥DF,CD⊥AB,∴∠FDE=∠CDB=90°,∴∠FDB=∠HDC,∵BF⊥CF,∴∠CFB=∠EDF=90°,∴∠CFB+∠DFH=∠EDF+∠DFH,∴∠DFB=∠DHC,∵∠ACB=90°,AC=BC,∴△ABC是等腰直角三角形,CD为AB边上的中线,∴BD=CD,在△DFB和△DHC中,,∴△DFB≌△DHC(AAS),∴DF=DH,∵∠EDF=90°,∴△HDF是等腰直角三角形,∴HF=DH,即的值为;②设AC=BC=a,∵△ABC是等腰直角三角形,CD为AB边上的中线,∴AB=AC=a,AD=AB=a,∴==,∵AC=AF,∴==,∵∠DAF=∠FAB,∴△DAF∽△FAB,∴==,即BF=DF,∵△DFB≌△DHC,∴CH=BF,DF=DH,∴CH=DF=DH,∵HF=DH,∴CH=FH.3.(1)证明:∵∠BAC=DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠DAB=∠EAC,又∵AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴BD=CE,∴BC=BE+CE=BD+BE;(2)解:(1)的结论不成立,成立的结论是BC=BD﹣BE.证明:∵∠BAC=∠DAE,∴∠BAC+∠EAB=∠DAE+∠DAE,即∠DAB=∠EAC,又∵AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴BD=CE,∴BC=CE﹣BE=BD﹣BE.4.解:(1)①结论:DF⊥EF,DF=EF.理由:如图1中,取AB,AC的中点M,N,连接DN,FN,FM,ME.∵BF=CF,BN=AN,AM=CM,∴FN∥AC,FM∥AB,FN=AM=FM=AN,∵△ABD是等边三角形,BN=AN,∴DN⊥AB,DN=AN=FN,∵EA=EC,EM⊥AC,∠AEC=120°,∴EM⊥AC,∠AEM=∠CEM=60°,∴AM=EM=FM,∴=,∴=,∵∠DNF=∠EMF=120°,∴△DNF∽△FME,∴==,∠DFN=∠MEF,∴DF=EF,∵∠MFE+∠MEF=30°,∴∠DFN+∠MFE=30°,∵∠MFN=∠BAC=60°,∴∠DFE=90°,即DF⊥EF.故答案为DF=EF,DF⊥EF.②如图2中,作DM⊥CB延长线于点M.∴∠DMB=90°,∵△ABC为等边三角形,等边△ABD,∴∠ABC=∠ABD=60°,BD=AB=BC=2,∴BF=1,∴Rt△BDM中,MB=1,DM=,∴Rt△BDF中,DF=.(2)分别取AB、AC中点G、H,分别连接DG,FG,EH,FH.∴FH∥AB,FH=AG=,FG∥AC,FG=AH=,∴∠FHC=∠BAC=∠FGB,∵AB=AC,∴四边形AGFH为菱形,∵等边△ABD,△ACE中AE=CE,∴DG⊥AB,HE⊥AC,∴∠FGD=∠FGB+∠DGB=∠FHC+∠CHE=∠FHE,∵等边△ABD中,AB中点G,∴DG=GF,∵△ACE中AE=CE,∠AEC=120°,∴HF=HE,∴△DFG∽△FEH(SAS),∴DF=FE,∠EFH=∠GFD,∵∠GFD+∠GDF+∠BGF+∠BGD=180°,其中∠BGD=90°,∠BGF=∠GFH,∴∠DFE=90°,即DF⊥EF.(3)由(1)(2)可以得出结论:DF=EF,∵△ABC是锐角三角形,∴当∠ACB=90°时,EF=2•CF•cos60°=,此时DF=3,当△ECF是等边三角形时,可以证明∠BAC=90°,此时EF=CF=1,DF=,观察图象可知:<DF<3.5.证明:(1)如图1,∵AB=AC,∴∠B=∠C,∵DE∥BC,BF=DE,∴四边形DEFB是平行四边形,∴BD∥EF,∴∠EFC=∠B,∴∠C=∠EFC,∴EF=EC,∴EF+EA=EC+AE=AC=AB;(2)如图2,EF=AB+AE,理由如下:∵AB=AC,∴∠ABC=∠C,∵DE∥BC,BF=DE,∴四边形DEFB是平行四边形,∴EF=DB,∵DE∥BC,∴∠C=∠DEA,∠EDB=∠ABC,∴∠DEC=∠EDB,∴AE=AD,∴EF=BD=AB+AE;如图3,AE=AB+EF,理由如下:∵AB=AC,∴∠ABC=∠ACB,∵DE∥BC,BF=DE,∴四边形DEFB是平行四边形,∴BD∥EF,∴∠EFC=∠ABC,∴∠ACB=∠ECF=∠EFC=∠ABC,∴CE=EF,∴AE=AC+CE=AB+EF;(3)如图1,过点C作CH⊥AB于H,=48=AB×CH,∵S△ABC∴CH==,∴AH===,∴BH=AB﹣AH=,∴BC===12,∵DE∥BC,∴△ADE∽△ABC,∴,∴AE==,∵EF+EA=AB,∴EF=,如图2,∵DE∥BC,∴△ADE∽△ABC,∴,∴AE==,∵EF=AB+AE,∴EF=,如图3,∵BC>DE,与图不符合,∴不存在,综上所述:EF为或,故答案为:或.6.解:(1)在Rt△OCB中,∠OCB=30°,∴BC=2OB=4,由勾股定理得,OC==2,∵AC⊥BC,∴∠ACB=90°,∴∠ACO=60°,∴∠OAC=30°,∴AC=2OC=4,由勾股定理得,OA==6,∴A点的坐标为(6,0);(2)设直线BC的解析式为:y=kx+b,则,解得,,∴直线BC的解析式为:y=x+2,如图1,由题意得,AE=t,∵∠OAC=30°,∴EG=t,由勾股定理得,AG==t,∴OG=6﹣t,∴点M的坐标为(6﹣t,8﹣t)∴d=EM=8﹣t﹣t=﹣2t+8(0<t≤4);(3)如图2,∠CBN=90°,作EH⊥BN交BN的延长线于点H,∵∠CBN=90°,EH⊥BN,∠BOE=90°,∴四边形CBHE为矩形,∴BH=CE=4﹣t,∵∠ENF=90°,∠FBN=90°,∴∠NFB=∠ENH,在△NFB和△ENH中,,∴△NFB≌△ENH(AAS)∴BN=EH=4,BF=EN=t,∴4+t=4﹣t,解得,t=2﹣2,如图3,∠CNB=90°,同理可知,△BNF≌△CNE(AAS)∴BF=CE,∴t=4﹣t,解得,t=2,综上所述,t=2﹣2或2时,△CNB为直角三角形.7.(1)证明:∵BE平分∠ABC,CD平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∵∠ABC+∠ACB+∠BAC=180°,∴∠ABC+∠ACB=180°﹣∠BAC,∵∠BOC+∠OBC+∠OCB=180°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(∠ABC+∠ACB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠BAC)=90°+∠BAC;(2)证明:过点O作ON⊥BC于N,OM⊥AB于M,OK⊥AC于K,如图2所示:又∵BE平分∠ABC,CD平分∠ACB,∴OM=ON,ON=OK,∴OM=OK,∴点O在∠BAC的平分线上,∴OA平分∠BAC;(3)过点B作BH⊥CD交CD的延长线于点H,过点O作OF平分∠BOC交BC于点F,过点O作OM⊥AB于M,ON⊥BC于N,如图3所示:∵∠BAC=60°,∴∠BOC=90°+∠BAC=90°+×60°=120°,∴∠BOD=∠COE=180°﹣∠BOC=180°﹣120°=60°,∵OF平分∠BOC,∴∠BOF=∠COF=∠BOC=×120°=60°,∴∠BOF=∠BOD,∠COF=∠COE,∵BE平分∠ABC,CD平分∠ACB,∴OM=ON,∠OBF=∠OBD,∠OCF=∠OCE,在△BOF和△BOD中,,∴△BOF≌△BOD(ASA),∴BF=BD=4,在△COF和△COE中,,∴△COF≌△COE(ASA),∴CF=CE=2,∴BC=BF+CF=4+2=6,∵==,==,∴===.8.解:(Ⅰ)如图①中,过点A′作A′C⊥OA于C.∵A(2,0),B(2,2),∴OA=OB=2,∠OAB=90°,∴∠AOB=∠ABO=45°,OB=AB=2,∵△A′A′B是由△OAB绕B旋转得到,α=45°,∴A′B=AB=2,点A′落在线段OB上,∴OA′=OB﹣A′B=2﹣2,∴OC=CA′=(2﹣2)=2﹣,∴A′(2﹣,2﹣).(Ⅱ)如图②中,连接AA′,过点A′作A′D⊥OA于D.∵A′B=AB=2,∠ABA′=α=60°,∴∠A′AB=∠AA′B=60°,AA′=AB=A′B=2,∴∠A′AO=90°﹣60°=30°,在Rt△A′AD中,A′D=AA′=1,AD=AA′=,∴OD=OA﹣AD=2﹣,∴A′(2﹣,1).(Ⅲ)如图③中,延长O′A′到D,使得A′D=A′O′,在OA的延长线上取一点C,使得AC=OA,取AB的中点H,ZD的中点P,连接PH,CH,PC,BC,BD,CD,OO′.∵∠OBC=∠O′BD,∴∠O′BO=∠DBC,∵BO′=BO=BD=BC,∴△O′BO≌△DBC(SAS),∴OO′=CD,∠BO′O=∠BCD,∵∠BCA=∠BO′A′=45°,∴∠OO′A′=∠ACD,∵A′O′=CA,∴△A′A′O≌△CAD(SAS),∵OM=MA′,DP=PA,∴O′M=PC,∵AP=PD,AH=HB,∴PH=BD=,∵CH===,∴PC≥CH﹣PH,∴PC≥﹣,∴PC的最小值为﹣,∴O′M的最小值为﹣.9.解:(1)∵点C(x,y)是点A(﹣1,5),B(10,4)的2联点,∴x==,y==,∵点C坐标(,);(2)∵点P(,)是点M(1,5)和点N(3,n)的k联点,∴=,=,∴k=3,n=0;(3)①由题意得:x=(t+3)=t+1,y=(2t+3)=t+1,∴点T(t+1,t+1),设直线ET解析式为:y=kx+b,∴,解得:k=﹣b,∴直线ET解析式为:y=﹣bx+b,当y=0时,x=,∴点H(,0),故答案为:(,0),②当∠DHT=90°时,如图1所示,点E(t,2t+3),则T(t,2t﹣1),则点D(3,0),由点T是点D,E的3联点得:t=,2t﹣1=,解得:t=,即点E(,6);当∠TDH=90°时,如图2所示,则点T(3,5),由点T是点D,E的3联点得:点E(6,15);当∠HTD=90°时,如图3所示,过点T作x轴的平行线交过点D与y轴平行的直线于点M,交过点E与y轴的平行线于点N,则∠MDT=∠NTE,则tan∠MDT=tan∠NTE,D(3,0),点E(t,2t+3),则点T(,)则MT=3﹣=,MD=,NE=﹣2t﹣3=,NT=﹣t=,由tan∠MDT=tan∠NTE得:=,解得:方程无解,故∠HTD不可能为90°.故点E(,6)或(6,15).10.解:(1)当∠BAM=30°时,∴∠AMB=180°﹣60°﹣30°=90°,∴AB=2BM;故答案为:30;(2)添加一个条件AB=AC,可得△ABC为等边三角形;故答案为:AB=AC;①如图1中,∵△ABC与△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC,即∠BAM=∠CAN,在△BAM与△CAN中,,∴△BAM≌△CAN(SAS),∴BM=CN;②成立,理由:如图2中,∵△ABC与△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAC+∠MAC=∠MAN+∠MAC,即∠BAM=∠CAN,在△BAM与△CAN中,,∴△BAM≌△CAN(SAS),∴BM=CN。

2020年九年级中考数学复习专题训练:《三角形综合 》(含答案)

2020年九年级中考数学复习专题训练:《三角形综合 》(含答案)

中考数学复习专题训练:《三角形综合》1.在△ABC与△ABD中,∠DBA=∠CAB,AC与BD交于点F(1)如图1,若∠DAF=∠CBF,求证:AD=BC;(2)如图2,∠D=135°,∠C=45°,AD=2,AC=4,求BD的长.(3)如图3,若∠DBA=18°,∠D=108°,∠C=72°,AD=1,直接写出DB的长.2.如图,已知CD是△ABC的高,AD=1,BD=4,CD=2.直角∠AEF的顶点E是射线CB上一动点,AE交直线CD于点G,EF所在直线交直线AB于点F.(1)判断△ABC的形状,并说明理由;(2)若G为AE的中点,求tan∠EAF的值;(3)在点E的运动过程中,若,求的值.3.如图,在平面直角坐标中,点O为坐标原点,△ABC的三个顶点坐标分别为A(0,m),B(﹣m,0),C(n,0),AC=5且∠OBA=∠OAB,其中m,n满足.(1)求点A,C的坐标;(2)点P从点A出发,以每秒1个单位长度的速度沿y轴负方向运动,设点P的运动时间为t秒.连接BP、CP,用含有t的式子表示△BPC的面积为S(直接写出t的取值范围);(3)在(2)的条件下,是否存在t的值,使得S△PAB =S△POC,若存在,请求出t的值,并直接写出BP中点Q的坐标;若不存在,请说明理由.4.一副三角板直角顶点重合于点B ,∠A =∠C =45°,∠D =60°,∠E =30°. (1)如图(1),若∠AFE =75°,求证:AB ∥DE ;(2)如图(2),若∠AFE =α,∠BGD =β,则α+β= 度.(3)如图(3),在(1)的条件下,DE 与AC 相交于点H ,连接CE ,BH ,若DG =2CG =2GH ,BC =10,S △CEH =S △BEH ,求△BDH 的面积.5.在△ABC中,∠BAC=120°,AB=AC,PC=PA,设∠APB=α,∠BPC=β.(1)如图1,当点P在△ABC内,①若β=153°,求α的度数;小明同学通过分析已知条件发现:△ABC是顶角为120°的等腰三角形,且PC=PA,从而容易联想到构造一个顶角为120°的等腰三角形.于是,他过点A作∠DAP=120°,且AD=AP,连接DP,DB,发现两个不同的三角形全等:≌再利用全等三角形及等腰三角形的相关知识可求出α的度数.请利用小王同学分析的思路,通过计算求得α的度数为;②小王在①的基础上进一步进行探索,发现α、β之间存在一种特殊的等量关系,请写出这个等量关系,并加以证明.(2)如图2,点P在△ABC外,那么a、β之间的数量关系是否改变?若改变,请直接写出它们的数量关系;若不变,请说明理由.6.在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB 于点E,DF∥AB交边AC于点F.(1)如图1,试判断四边形AEDF的形状,并说明理由;(2)如图2,若AD=4,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG交AD于点M,连接FH交EG于点N.(i)求EN•EG的值;(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上7.如图1,△ABC和△CDE均为等腰三角形,AC=BC,CD=CE,AC>CD,∠ACB=∠DCE=α,且点A、D、E在同一直线上,连结BE(1)求证:AD=BE.(2)如图2,若α=90°,CM⊥AE于E.若CM=7,BE=10,试求AB的长.(3)如图3,若α=120°,CM⊥AE于E,BN⊥AE于N,BN=a,CM=b,直接写出AE的值(用a,b的代数式表示).8.已知,点A(t,1)是平面直角坐标系中第一象限的点,点B,C分别是y轴负半轴和x 轴正半轴上的点,连接AB,AC,BC.(1)如图1,若OB=1,OC=,且A,B,C在同一条直线上,求t的值;(2)如图2,当t=1,∠ACO+∠ACB=180°时,求BC+OC﹣OB的值;(3)如图3,点H(m,n)是AB上一点,∠A=∠OHA=90°,若OB=OC,求m+n的值.9.在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足a2﹣2ab+b2+(b﹣4)2=0,点C为线段AB上一点,连接OC.(1)直接写出a=,b=;(2)如图1,P为OC上一点,连接PA,PB,若PA=BO,∠BPC=30°,求点P的纵坐标;(3)如图2,在(2)的条件下,点M是AB上一动点,以OM为边在OM的右侧作等边△OMN,连接CN.若OC=t,求ON+CN的最小值(结果用含t的式子表示)10.如图,在Rt△ABC中,∠ACB=90°,AC=16,BC=12,点D、E分别为边AB、BC中点,点P从点A出发,沿射线AB方向以每秒5个单位长度的速度向点B运动,到点B停止.当点P不与点A重合时,过点P作PQ∥AC,且点Q在直线AB左侧,AP=PQ,过点Q作QM ⊥AB交射线AB于点M.设点P运动的时间为t(秒)(1)用含t的代数式表示线段DM的长度;(2)求当点Q落在BC边上时t的值;(3)设△PQM与△DEB重叠部分图形的面积为S(平方单位),当△PQM与△DEB有重叠且重叠部分图形是三角形时,求S与t的函数关系式;(4)当经过点C和△PQM中一个顶点的直线平分△PQM的内角时,直接写出此时t的值.11.如图,平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,点B在x轴的正半轴上,以AB为斜边向上作等腰直角△ABC,BC交y轴于点D,C(﹣2,4).(1)如图1,求点B的坐标;(2)如图2,动点E从点O出发以每秒1个单位长度的速度沿y轴的正半轴运动,设运动时间为t秒,连接CE,设△ECD的面积为S,请用含t的式子来表示S;(3)如图3,在(2)的条件下,当点E在OD的延长线上时,点F在直线CE的下方,且CF⊥CE,CF=CE.连接AD,取AD的中点M,连接FM并延长交AO于点N,连接FO,当S△NFO =10S△AMN时,求S的值.12.如图,在平面直角坐标系中,O为坐标原点,△ABC的顶点A(﹣2,0),点B,C分别在x轴和y轴的正半轴上,∠ACB=90°,∠BAC=60°(1)求点B的坐标;(2)点P为AC延长线上一点,过P作PQ∥x轴交BC的延长线于点Q,若点P的横坐标为t,线段PQ的长为d,请用含t的式子表示d;(3)在(2)的条件下,点E是线段CQ上一点,连接OE、BP,若OE=PB,∠APB﹣∠OEB =30°,求PQ的长.13.在平面直角坐标系中,点A(0,m),C(n,0).(1)若m,n满足.①直接写出m=,n=;②如图1,D为点A上方一点,连接CD,在y轴右侧作等腰Rt△BDC,∠BDC=90°,连接BA并延长交x轴于点E,当点A上方运动时,求△ACE的面积;(2)如图2,若m=n,点D在边OA上,且AD=11,G为OC上一点,且OG=8,连接CD,过点G作CD的垂线交CD于点F,交AC于点FH.连接DH,当∠ADH=∠ODC,求点D的坐标.14.如图,平面直角坐标系中,A(a,0),B(0,b)分别为x、y轴正半轴上一点,其中a、b满足:b﹣8=+,C为AB的中点.(1)求A、B两点坐标;(2)E为OB上一点,连CE交x轴于D,若BE=AD,如图1,求D点坐标;(3)F为x轴上的点,连FC,在(2)的条件下,若∠ACF=45°,求F点坐标.15.如图所示,M为等腰三角形ABD的底边AB的中点,过D作DC∥AB,连接BC,AB=6cm,DM=3cm,DC=3﹣cm.动点P自A点出发,在AB上匀速运动,动点Q自点B出发,在折线BC﹣CD上匀速运动,速度均为1cm/s,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(s)时,△MPQ的面积为S.(1)当点P在线段AM上运动时,PM=.(用t的代数式表示)(2)求BC的长度;(3)当点P在MB上运动时,求S与t之间的函数关系式.16.如图,射线AN上有一点B,AB=5,tan∠MAN=,点C从点A出发以每秒3个单位长度的速度沿射线AN运动,过点C作CD⊥AN交射线AM于点D,在射线CD上取点F,使得CF=CB,连结AF.设点C的运动时间是t(秒)(t>0).(1)当点C在点B右侧时,求AD、DF的长.(用含t的代数式表示)(2)连结BD,设△BCD的面积为S平方单位,求S与t之间的函数关系式.(3)当△AFD是轴对称图形时,直接写出t的值.17.阅读下面材料,完成(1)﹣(3)题.数学课上,老师出示了这样一道题:如图1,点E是正△ABC边AC上一点以BE为边做正△BDE,连接CD.探究线段AE与CD 的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠ABE与∠DBC相等.”小伟:“通过全等三角形证明,再经过进一步推理,可以得到线段BC平分∠ACD.”…老师:“保留原题条件,连接AD,F是AB的延长线上一点,AD=DF(如图2),如果BD =BF,可以求出CE、CB、EB三条线段之间的数量关系.”(1)求证:∠ABE=∠DBC;(2)求证:线段BC平分∠ACD;(3)探究CE、CB、EB三条线段之间的数量关系,并加以证明.18.在△ABC中,AC=BC,点G是直线BC上一点,CF⊥AG,垂足为点E,BF⊥CF于点F,点D为AB的中点,连接DF.(1)如图1,如果∠ACB=90°,且G在CB边上,设CF交AB于点R,且E为CR的中点,若CG=1,求线段BG的长;(2)如图2,如果∠ACB=90°,且G在CB边上,求证:EF=DF;(3)如图3,如果∠ACB=60°,且G在CB的延长线上,∠BAG=15°,请探究线段EF、BD之间的数量关系,并直接写出你的结论.19.如图,△ABC和△ADE都是等腰三角形,其中AB=AC,AD=AE,且∠BAC=∠DAE.(1)如图①,连接BE、CD,求证:BE=CD;(2)如图②,连接BE、CD,若∠BAC=∠DAE=60°,CD⊥AE,AD=3,CD=4,求BD的长;(3)如图③,若∠BAC=∠DAE=90°,且C点恰好落在DE上,试探究CD2、CE2和BC2之间的数量关系,并加以说明.20.已知△ABC中,AB=AC.(1)如图1,在△ADE中,AD=AE,连接BD、CE,若∠DAE=∠BAC,求证:BD=CE;(2)如图2,在△ADE中,AD=AE,连接BE、CE,若∠DAE=∠BAC=60°,CE⊥AD于点F,AE=4,,求BE的长;(3)如图3,在△BCD中,∠CBD=∠CDB=45°,连接AD,若∠CAB=45°,求的值.参考答案1.(1)证明:∵∠DFA=∠CFB,∠DAF=∠CBF,∴∠D=∠C,在△DAB和△CBA中,,∴△DAB≌△CBA(AAS),∴AD=BC;(2)解:在FC上取一点E,使得∠FBE=∠DAF,如图2所示:由(1)知,△DAB≌△EBA(AAS),∴BE=AD=2,DB=EA,∠BDA=∠AEB=135°,∴∠BEC=45°,∵∠C=45°,∴∠BEC=∠C,∴BC=BE=2,∠EBC=90°,∴EC=BE=2,∵AC=4,∴AE=AC﹣EC=4﹣2,∴BD=AE=4﹣2.(3)解:在FC上取一点E,使得∠FBE=∠DAF,如图3所示:由(1)知△DAB≌△EBA(AAS),∴BE=AD=1,DB=AE,∠BEA=∠BDA=108°,∠DBA=∠EAB=18°,∴∠BEC=72°=∠C,∠EFB=∠DBA+∠EAB=36°,∴BC=BE=1,∠EBC=36°,∴∠C=∠BEA﹣∠EBC=72°,∴∠FBC=72°,∴∠C=∠FBC,∠EFB=∠EBF=36°,∴EF=EB=1,FB=FC,∵∠DBA=∠CAB,∴AF=FB=FC=1+EC,∵∠EBC=∠EFB,∠∠C=∠C,∴△CBE~△CFB,∴,∴BC2=CE•CF,∴CE•CF=1,∴CE(CE+1)=1,即CE2+CE﹣1=0,解得:(负值已舍去),∴,∴,∴.2.解:(1)结论:△ABC是直角三角形.理由:∵CD⊥AB,∴∠CDA=∠CDB=90°,∵AD=1,CD=2,BD=4,∴CD2=AD•BD,∴=,∴△ADC∽△CDB,∴∠ACD=∠B,∵∠B+∠DCB=90°,∴∠ACD+∠BCD=90°,∴∠ACB=90°,∴△ABC是直角三角形.(2)如图1中,作EH⊥AB于H.∵AD⊥AB,EH⊥AB,∴DG∥HE,∵AG=GE,∵AD=DH=1,∵DB=4,∴BH=DB﹣DH=3,∵EH∥CD,∴=,∴=,∴EH=,∴tan∠EAF===.(3)如图2中,作EH⊥AB于H.∵CD⊥AB,EH⊥AB,∴EH∥CD,∴===,∵CD=2,BD=4,∴EH=,BH=,∴AH=AB﹣BH=5﹣=,DH=AH﹣AD=,在Rt△AEH中,AE===,∵DG∥EH,∴=,∴=,∴EG=,∵AE⊥EF,EH⊥AF,∴△AEH∽△EFH,∴=,∴=,∴EF=∴==.3.解:(1)由,解得,∴A(0,4),C(3,0).(2)如图1中,当0<t<4时,S=•BC•OP=×5×(4﹣t)=﹣t+10.如图2中,当t>4时,S=•BC•OP=×5×(t﹣4)=t﹣10.综上所述,S=.(3)当0<t<4时,由题意,×t×4=××(4﹣t)×3,解得t=.此时,OP=4﹣=,∴P(0,),∵B(﹣4,0),∴BQ的中点Q的坐标为(﹣2,)当t>4时,由题意,×t×4=××(t﹣4)×3,解得t=36,此时OP=36﹣4=32,∴P(0,﹣32),∵B(﹣4,0),∴BP的中点Q的坐标为(﹣2,﹣16).综上所述,满足条件的t的值为或36.点Q的坐标为(﹣2,)或(﹣2,﹣16).4.(1)证明:如图(1),∵∠AFE=75°,∠A=45°,∴∠ABE=75°﹣45°=30°,∵∠E=30°,∴∠E=∠ABE,∴AB∥DE;(2)解:如图(2),△ABF中,∠AFE=∠A+∠ABE=α①,△BGE中,∠BGD=∠E+∠CBF=β②,①+②得:α+β=∠A+∠E+∠CBF+∠ABE=45°+30°+90°=165°;故答案为:165;(3)解:∵DE∥AB,∴∠CGH=∠ABC=90°,∵S△CEH =S△BEH,∴,∴CG=BG,∵BC=10,∴CG=2,BG=8,∵DG=2CG=2GH,∴DG=4,GH=2,∴△BDH的面积===24.5.解:(1)①如图1,过点A作AH⊥DP于H,∵∠DAP=∠BAC=120°,∴∠DAB=∠PAC,且AD=AP,AB=AC,∴△ADB≌△APC(SAS)∴BD=PC=PA,∠ADB=∠APC,∵∠DAP=120°,AD=AP,AH⊥DP,∴∠ADP=∠APD=30°,DH=PH,∴AP=2AH,HP=AH,∴DP=AP,∴DB=DP,∴∠DBP=∠DPB=∠APB﹣∠APD=α﹣30°,∴∠BDP=180°﹣2(α﹣30°)=240°﹣2α,∴∠ADB=∠BDP+∠ADP=270°﹣2α=∠APC,∵∠APB+∠APC+∠BPC=360°,∴270°﹣2α+α+β=360°,∴β﹣α=90°,当β=153°时,α=63°,故答案为:△ADB,△APC,63°;②β﹣α=90°,理由如上;(2)α+β=90°,理由如下:如图2,作∠PAN=120°,且PA=NA,连接PN,BN,∵∠PAN=∠BAC=120°,∴∠BAN=∠PAC,且AB=AC,AP=AN,∴△ABN≌△ACP(SAS)∴∠BNA=∠APC,PC=BN=AP,∵∠PAN=120°,PA=NA,∴∠APN=∠ANP=30°,∴PN=AP=BN,∴∠BPN=∠PBN=α+30°,∵∠BPN+∠PBN+∠BNP=180°,∴2(α+30°)+β﹣α+30°=180°,∴α+β=90°.6.(1)解:四边形AEDF的形状是菱形;理由如下:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠EAD=∠FAD,∵DE∥AC,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴四边形AEDF是菱形;(2)(i)解:连接EF交AD于点Q,如图2所示:∵∠BAC=60°,四边形AEDF是菱形,∴∠EAD=30°,AD、EF相互垂直平分,△AEF是等边三角形,∴∠EAF=∠AEF=∠AFE=60°,∵AD=4,∴AQ=2,在Rt△AQE中,cos∠EAQ=,即cos30°=,∴AE===4,∴AE=AF=EF=4,在△AEG和△EFH中,,∴△AEG≌△EFH(SAS),∴∠AEG=∠EFH,∴∠ENH=∠EFH+∠GEF=∠AEG+∠GEF=60°,∴∠ENH=∠EAG,∵∠AEG=∠NEH,∴△AEG∽△NEH,∴=,∴EN•EG=EH•AE=3×4=12;(ii)证明:如图3,连接FM',∵DE∥AC,∴∠AED=180°﹣∠BAC=120°,由(1)得:△EDF是等边三角形,∴DE=DF,∠EDF=∠FED=∠EFD=60°,由旋转的性质得:∠MDM'=60°,DM=DM',∴∠EDM=∠FDM',在△EDM和△FDM'中,,∴△EDM≌△FDM'(SAS),∴∠MED=∠DFM',由(i)知,∠AEG=∠EFH,∴∠DFM'+∠EFH=∠MED+∠AEG=∠AED=120°,∴∠HFM'=∠DFM'+∠HFE+∠EFD=120°+60°=180°,∴H,F,M′三点在同一条直线上.7.(1)证明:∵∠ACB=∠DCE,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;(2)解:设AE交BC于点H,如图2所示:由(1)得:△ACD≌△BCE,∴∠CAD=∠CBE,AD=BE=10,∵∠AHC=∠BHE,∴∠AEB=∠ACH=90°,∵∠ACB=∠DCE=α=90°,CD=CE,∴△CDE是等腰直角三角形,∵CM⊥DE,∴CM=DM=ME=7,∴DE=2CM=14,∵AE=AD+DE=10+14=24,∠AEB=90°,∴AB===26;(3)解:∵△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=120°,∴∠CDM=∠CEM=×(180°﹣120°)=30°.∵CM⊥DE,∴∠CMD=90°,DM=EM.在Rt△CMD中,∠CMD=90°,∠CDM=30°,∴DE=2DM=2×=2×=2b.∵∠BEC=∠ADC=180°﹣30°=150°,∠BEC=∠CEM+∠AEB,∴∠AEB=∠BEC﹣∠CEM=150°﹣30°=120°,∴∠BEN=180°﹣120°=60°.在Rt△BNE中,∠BNE=90°,∠BEN=60°,∴BE===a.∵AD=BE,AE=AD+DE,∴AE=BE+DE=a+2b.8.解:(1)过点A作AD⊥x轴于D,如图1所示:∵点A(t,1),∴AD=1,OD=t,∵A,B,C在同一条直线上,∴∠OCB=∠DCA,∵tan∠OCB===,∴tan∠OCB=tan∠DCA==,即=,解得:CD=,∴t=OD=OC+CD=+=3;(2)作AD⊥y轴于D,AM⊥x轴于M,AN⊥BC于N,如图2所示:则∠ADB=∠ANB=90°,∵t=1,∴点A(1,1),∴AD=AM=OM=1,∵∠ACO+∠ACB=180°,∠ACN+∠ACB=180°,∴∠ACO=∠ACN,∵AM⊥x轴于M,AN⊥BC于N,∴AN=AM=AD=1,在Rt△ABD和Rt△ABN中,,∴Rt△ABD≌Rt△ABN(HL),∴BN=BD=OB+1,同理:Rt△ACM≌Rt△ACN(HL),∴CM=CN,∵BC=BN﹣CN,OC=OM+CM=1+CM,∴BC+OC﹣OB=BN﹣CN+1+CM﹣OB=OB+1﹣CN+1+CM﹣OB=2;(3)作HG⊥OC于G,如图3所示:∵OB=OC,∠BOC=90°,∴△BOC是等腰直角三角形,∠OCB=45°,∵∠OHA=90°,∴OH⊥AB,∴△OCH是等腰直角三角形,∵HG⊥OC,∴△OGH是等腰直角三角形,∴OG=GH,即m=﹣n,∴m+n=0.9.解:(1)∵a2﹣2ab+b2+(b﹣4)2=0,∴(a﹣b)2+(b﹣4)2=0,∵(a﹣b)2≥0,(b﹣4)2≥0,∴a=b.b﹣4=0,∴a=4,b=4,故答案为4,4.(2)如图1中,分别过A,B作OC的垂线,垂足分别为D,E.∵∠BEO=∠ADO=∠AOB=90°,∴∠BOE+∠OBE=90°,∠BOE+∠AOD=90°,∴∠AOD=∠OBE,∵BO=AO,∴△ADO≌△OEB(AAS),∴OD=BE,∵∠BPC=30°,∴PB=2BE=2OD,∵AP=BO=AO,AD⊥OP,∴OD=DP,∴PB=PO,过P作PF⊥OB,∴OF=OB=2,即点P的纵坐标的为2.(3)如图2中,以OA为边在x轴下方作等边△OAG,连接GN.∵∠MON=∠AOG=60°,∴∠MOA=∠NOG,∵OM=ON,OA=OG,∴△OMA≌△ONG(SAS),∴∠OGN=∠OAM=45°,即点N在y轴与OG夹角为45°的直线GN上运动,作OH⊥OC交CA的延长线于H,连接NH.GH.由(2)可知∠ACO=60°,在四边形ACOG中,∠COG=360°﹣60°﹣60°﹣45°﹣60°=135°,∴OC∥NG,∵OC⊥OH,∴OH⊥NG,∵∠OHC=30°=∠AGO,∴点G在以G为圆心GO为半径的⊙G上,∴GO=GA,∴NH垂直平分线段OH,∴O,H关于GN对称,∴ON+NC=NH+NC≥CH,∵CH=2OC=2t,∴ON+NC≥2t,∴ON+CN的最小值为2t.10.解:(1)如图1中,在RtABC中,∵AC=16,BC=12,∠C=90°,∴AB===20,∵PQ∥AC,∴∠A=∠QPM,∵∠C=∠PMQ=90°,∴△ACB∽△PMQ,∴==,∴==,∴PM=4t,MQ=3t,当0<t≤时,DM=AD﹣AM=10﹣5t﹣4t=﹣9t+10.当<t≤4时,DM=AM﹣AD=9t﹣10.(2)如图2中,当点Q落在BC上时,∵PQ∥AC,∴=,∴=,解得t=,∴当点Q落在BC边上时t的值为s.(3)如图3﹣1中,当<t≤时,重叠部分是△DMK,S=×DM×MK=×(9t﹣10)×(9t﹣10)=t2﹣t+.如图3﹣2中,当≤t≤4时,重叠部分是△PBK,S=•PK•BK=×(20﹣5t)•(20﹣5t)=6t2﹣48t+96.(4)如图4﹣1中,当直线CQ平分∠PQM时,设直线CQ交AB于G,作GK⊥PQ于K.∵∠QKG=∠QMG=90°,∠GQK=∠GQM,QG=QG,∴△QGK≌△QGM(AAS),∴QK=QM=3t,PK=PQ﹣QK=5t﹣3t=2t,∴PG=PK=t,∵PQ∥AC,∴=,∴=,∴t=.如图4﹣2中,当CM平分∠QMP时,作CG⊥AB于G.∵•AC•BC=•AB•CG,∴CG===,AG===,∵∠CMG=∠GCM=45°,∴CG=GM=,∴AM=9t=+,解得t=,综上所述,满足条件的t的值为s或s.11.解:(1)如图1中,作CH⊥AB于H.∵C(﹣2,4),∴CH=4,OH=2,∵AC﹣BC,∠ACB=90°,∴AH=CH=BH=4,∴OB=OH=2,∵OD∥CH,∴CD=DB,∴OD=CH=2,∴D(0,2),B(2,0).(2)由(1)可知D(0,2),所以当0≤t<2时,当t>2时,,综上所述,S=.(3)如图3中,延长AC交y轴于H,连接FD,AF.FO.∵C(﹣2,4),△ABC是等腰直角三角形,∴AB=8,由(1)知B(2,0),∴OB=2,OA=6,∵△ABC是等腰直角三角形,∴∠ACB=90°,∴∠CAB=45°,∵∠AOH=90°,∴∠CHE=∠CAB=45°,∴OH=OA=6,∵∠ACB=90°,∴∠DCH=90°,∵∠CHE=45°,∴∠CDH=∠CHE=45°,∴CH=CD,∵CF⊥CE,∴∠DCF+∠ECD=90°,∵∠ACB=90°,∴∠HCE+∠ECD=90°,∴∠HCE=∠DCF,又∵CF=CE,∴△HCE≌△DCF(SAS),∴HE=FD=6﹣t,∠CDF=∠CHE=45°,∵∠CBA=45°,∴∠CDF=∠CBA,∴FD∥AB,∴∠FDM=∠NAM,∵M是AD中点,∴DM=AM,又∵∠FMD=∠NMA,∴△DMF≌AMN(ASA),∴AN=FD=6﹣t,∵DM=AM,∴S△DMF =S△AMF∵△DMF≌△AMN,∴S△DMF =S△AMN,∴S△NFA =2S△AMN∵S△NFO =10S△AMN∴S△NFO =5S△NFA,∴5AN=ON,∵OA=6,∴AN=1,∴AN=6﹣t=1,∴t=5,∴S=t﹣2=5﹣2=3.12.解:(1)在Rt△AOC中,A(﹣2,0),∠A=60°,∴OA=2,∠ACO=∠ABC=30°∴AC=2OA=4,在Rt△ABC中,∠ABC=30°,∴AB=2AC=8,即OB=AB﹣OA=8﹣2=6,则B(6,0);(2)如图1所示,在Rt△MCP中,MP=t,∠MCP=30°,∴CP=2MP=2t,在Rt△CQP中,∠CQP=30°,CP=2t,∴PQ=4t,即d=4t;(3)如图2所示,过P作PM∥y轴,交BC于M,∴∠APM=∠DCP=∠ACO=30°,∵∠APB﹣∠OEB=30°,∴∠APB﹣30°=∠OEB=∠BPM,∵∠BMP=180°﹣60°=120°=∠OCE,∵OE=PB,∴△OCE≌△BMP(AAS),∴OC=BM=2,∵BC=4,∴CM=4﹣2=2,Rt△PCM中,∠CPM=30°,CP=2t,∴PM=4,∴PC2+CM2=PM2,∴,4t2+12=48,t=3或﹣3(舍),∴PQ=4t=12.13.解:(1)①由,解得,故答案为4,4.②如图1中,∵A(0,4),C(4,0),∴OA=OC=4,∴△AOC是等腰直角三角形,∴AC=OC,∠ACO=45°,∵△DCB是等腰直角三角形,∴BC=CD,∠DCB=45°,∴∠OCD=∠ACB,==,∴∠OCD∽△ACB,∴∠BAC=∠DOC=90°,∴∠AEC=∠ACE=45°,∴AE=AC,∵AO⊥EC,∴EO=OC=AO=4,=•EC•AO=×8×4=16.∴S△ACE(2)如图2中,作CP∥OA交DH的延长线于P,作DK⊥CP于K.∵PC∥OA,∴∠P=∠ADH,∠DCP=∠ODC,∵∠ADH=∠ODC,∴∠P=∠PCD,∴DP=DC,∴△DPC是等腰三角形,∵∠DKC=∠KCO=∠DOC=90°,∴四边形ODKC是矩形,∴OD=CK,∵DK⊥PC,∴PK=CK=OD,设OD=x,则PK=CK=x,PC=2x,∵OA=OC,AD=11,OG=8,∴CG=OC﹣OG=x+3,∵GH⊥DC,∴∠CFG=∠COD=90°,∴∠ODC+∠OCD=90°,∠CGF+∠FCG=90°,∴∠ODC=∠CGF,∴∠CGH=∠P,∵CH=CH,∠HCG=∠HCP=45°,∴△HCG≌△HCP(AAS),∴CG=CP,∴x+3=2x,∴x=3,∴D(0,3)14.解:(1)根据题意得:,解得:a=4,∴b=8,∴A(4,0),B(0,8);(2)∵C为AB的中点,∴C(2,4),设OE=b,∵BE=AD,∴AD=8﹣b,∵OA=4,∴OD=4﹣b,设直线CD的解析式为:y=kx+b,把C(2,4)代入得:2k+b=4,∴k=,∴直线CD的解析式为:y=x+b,∵D(b﹣4,0),则﹣+b=0,解得:b=2或8(舍),∴D(﹣2,0);(3)由(2)知:直线CD的解析式为:y=x+2分两种情况:①当F在点A的左侧时,如图2,过F作FG⊥AB于G,∵∠BAO=∠FAG,∴tan∠BAO=tan∠FAG===2,设AG=x,则FG=2x,∵∠ACF=45°,∠CGF=90°,∴CG=FG=2x,∵AC=AB==2,∴AG=2﹣2x=x,x=,∴AF=x=,∴OF=4﹣=,∴F(,0);②当点F在点A的右侧时,如图3,过C作CP⊥CF,交x轴于点P,CH⊥x轴于H,过A 作AG⊥CF于G,∵∠ACF=45°,∴△ACG是等腰直角三角形,∵AC=2,∴CG=AG=,由(2)知:AP=,∵AH=2,∴PH=﹣2=,∵CH=OB=4,∴PC==,∵AG∥PC,∴,即=,∴AF=10,∴F(14,0),综上,点F的坐标为(,0)或(14,0).15.解:(1)如图1中,PM=3﹣t.故答案为3﹣t.(2)过点C作CE⊥AB,垂足为E,如图2,∵DA=DB,AM=BM,∴DM⊥AB.∵CE⊥AB,∴∠CEB=∠DMB=90°.∴CE∥DM.∵DC∥ME,CE∥DM,∠DME=90°,∴四边形DCEM是矩形.∴CE=DM=3,ME=DC=.∵AM=BM,AB=6,∴AM=BM=3.∴BE=BM﹣ME=.∵∠CEB=90°,CE=3,BE=,∴CB===2.(3)①当3<t≤时,点P在线段BM上,点Q在线段BC上,过点Q作QF⊥AB,垂足为F,如图3,∵QF⊥AB,CE⊥AB,∴∠QFB=∠CEB=90°.∴QF∥CE.∵BQ=t,∴QF=∵PM=AP﹣AM=t﹣3,∴S=PM•QF=(t﹣3)•=;②当<t≤时,点P在线段BM上,点Q在线段DC上,过点Q作QF⊥AB,垂足为F,如图4,此时QF=DM=3.∵PM=AP﹣AM=t﹣3,∴S=PM•QF=(t﹣3)×3=.综上所述:当3<t≤时,S=;当<t≤时,S=.16.解:(1)在Rt△ACD中,AC=3t,tan∠MAN=,∴CD=4t.∴AD===5t,当点C在点B右侧时,CB=3t﹣5,∴CF=CB.∴DF=4t﹣(3t﹣5)=t+5.(2)当0<t<时,S=•(5﹣3t)•4t=﹣6t2+10t.当t>时,S=•(3t﹣5)•4t=6t2﹣10t.(3)①如图1中,当DF=AD时,△ADF是轴对称图形.则有5﹣3t﹣4t=5t,解得t=,②如图2中,当AF=DF时,△ADF是轴对称图形.作FH⊥AD.∵FA=DF,∴AH=DH=t,由cos∠FDH=,可得=,解得t=.③如图3中,当AF=DF时,△ADF是轴对称图形.作FH⊥AD.∵FA=DF,∴AH=DH=t,由cos∠FDH=,可得=,解得t=.综上所述,满足条件的t的值为或或.17.(1)证明:∵△ABC,△DEB都是等边三角形,∴∠ABC=∠EBD=60°,∴∠ABE+∠EBC=∠EBC+∠CBD,∴∠ABE=∠CBD.(2)证明:∵△ABC,△DEB都是等边三角形,∴BA=BC,BE=BD,∠BAC=∠ACB=60°,∵∠ABE=∠CBD,∴△ABE≌△CBD(SAS),∴∠BAE=∠BCD=60°,∴∠ACB=∠BCD=60°,∴CB平分∠ACD.(3)解:结论:EC+BE=BC.理由:∵DA=DF,∴可以将△DBF绕点D顺时针旋转,使得DF与DA重合,得到△DMA,连接AM.∵DA=DF,BD=BF,∴∠DAF=∠F=∠BDF,∵∠BCD=∠ABC=60°,∴CD∥AB,∴∠CDF=∠DAF,∵∠MDA=∠BDF=∠F=∠DAB,∴∠MDA=∠CDA,∴D,C,M共线,∵∠AMD=∠DBF=∠CDB,∠ACM=∠BCD=60°,AM=DM=BD=BF,∴△AMC≌△BDC(AAS),∴CM=DC=BD=BE,∵△ABE≌△CBD,∴AE=CD,∴BC=AC=EC+AE=CE+CD=CE+BE,∴EC+BE=BC.18.(1)解:如图1中,在CA上取一点H,使得CH=CG.∵CA=CB,∠ACB=90°,∴∠CAB=45°,∵AE⊥CR,CE=ER,∴AC=AR,∴∠CAG=∠GAB=22.5°∵CG=CH=1,∴GH===,∠CHG=45°,∵∠CHG=∠HAG+∠HGA,∴∠HAG=∠HGA=22.5°,∴HA=HG=,∵CB=CA,CG=CH,∴BG=AH=.(2)解:如图2中,连接CD,DE.∵CF⊥AG,BC⊥CF,∴∠BCF=∠CAE=90°﹣∠ACE在△AEC和△CFB,,∴△AEC≌△CFB(AAS),∴AE=CF,CE=BF,∵等腰Rt△ABC中,∠ACB=90°,AC=BC,∴CD=BD,∠CDB=90°,∵∠CDB=∠CFB=90°,∴∠FBD=∠DCE,在△BFD与△CED中,,∴△BFD≌△CED(SAS),∴DF=DE,∠FDB=∠EDC,∴∠EDC+∠EDB=∠BDF+∠BDE=90°,∴△DEF是等腰直角三角形,∴EF=DF.(3)如图3中,结论:=.理由:连接AF,在EC上取一点H,使得CH=AH,连接AH.∵AC=BC,∠ACB=60°,∴△ABC是等边三角形,∴∠CAB=60°,AB=AC=BC,∵∠BAG=15°,∴∠CAE=75°,∵CE⊥AG,∴∠CEA=90°,∴∠ACE=15°,∴∠BCF=∠ACB﹣∠ACE=45°,∵BF⊥CE,∴∠FCB=∠FBC=45°,∴FB=FC,∵AB=AC,∴AF垂直平分线段BC,∴AF平分∠CAB,∴∠FAB=∠CAB=30°,∴∠EAF=∠EFA=45°,∴EF=AE,设EF=AE=m,∵HC=HA,∴∠HCA=∠HAC=15°,∴∠EHA=∠HCA+∠HAC=30°,∴AH=2AE=2m,EH=m,∴EC=2m+m,∴AC===(+)m,∵BD=AB=AC=m,∴=.19.(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.又∵AB=AC,AD=AE,∴△ACD≌△ABE(SAS),∴CD=BE.(2)如图2,连结BE,∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴DE=AD=3,∠ADE=∠AED=60°,∵CD⊥AE,∴∠CDA=∠ADE=×60°=30°,∵由(1)得△ACD≌△ABE,∴BE=CD=4,∠BEA=∠CDA=30°,∴∠BED=∠BEA+∠AED=30°+60°=90°,即BE⊥DE,∴BD===5.(3)CD2、CE2、BC2之间的数量关系为:CD2+CE2=BC2,理由如下:解法一:如图3,连结BE.∵AD=AE,∠DAE=90°,∴∠D=∠AED=45°,∵由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=45°,∴∠BEC=∠BEA+∠AED=45°+45°=90°,即BE⊥DE,在Rt△BEC中,由勾股定理可知:BC2=BE2+CE2.∴BC2=CD2+CE2.解法二:如图4,过点A作AP⊥DE于点P.∵△ADE为等腰直角三角形,AP⊥DE,∴AP=EP=DP.∵CD2=(CP+PD)2=(CP+AP)2=CP2+2CP•AP+AP2,CE2=(EP﹣CP)2=(AP﹣CP)2=AP2﹣2AP•CP+CP2,。

2020年中考数学复习专题练:《三角形综合 》(含答案)

2020年中考数学复习专题练:《三角形综合 》(含答案)

2020年中考数学复习专题练:《三角形综合》1.如图:在四边形ABCD中,AB∥CD,∠BCD=90°,且AB=2,DC=BC=4.(1)求sin∠ADC的值.(2)E是四边形内一点,F是四边形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF 的形状.(等腰直角三角形)(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.2.如图1,在△ABC中,∠B=60°,点M从点B出发沿射线BC方向,在射线BC上运动.在点M运动的过程中,连结AM,并以AM为边在射线BC上方,作等边△AMN,连结CN.(1)当∠BAM=°时,AB=2BM;(2)请添加一个条件:,使得△ABC为等边三角形;①如图1,当△ABC为等边三角形时,求证:CN+CM=AC;②如图2,当点M运动到线段BC之外(即点M在线段BC的延长线上时),其它条件不变(△ABC仍为等边三角形),请写出此时线段CN、CM、AC满足的数量关系,并证明.3.综合与实践:操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.4.如图,在△ABC中,AB=AC=5,BC=6,点D是边AB上的动点(点D不与点AB重合),点G在边AB的延长线上,∠CDE=∠A,∠GBE=∠ABC,DE与边BC交于点F.(1)求cos A的值;(2)当∠A=2∠ACD时,求AD的长;(3)点D在边AB上运动的过程中,AD:BE的值是否会发生变化?如果不变化,请求AD:BE的值;如果变化,请说明理由.5.如图1,OA=2,OB=4,以点A为顶点,AB为腰在第三象限作等腰直角△ABC.(Ⅰ)求C点的坐标;(Ⅱ)如图2,OA=2,P为y轴负半轴上的一个动点,若以P为直角顶点,PA为腰等腰直角△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;(Ⅲ)如图3,点F坐标为(﹣4,﹣4),点G(0,m)在y轴负半轴,点H(n,0)x 轴的正半轴,且FH⊥FG,求m+n的值.6.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,动点P从点A出发沿线段AB以每秒3个单位长的速度运动至点B,过点P作PQ⊥AB射线AC于点Q.设点P的运动时间为t秒(t>0).(1)线段CQ的长为(用含t的代数式表示)(2)当△APQ与△ABC的周长的比为1:4时,求t的值.(3)设△APQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式.(4)当直线PQ把△ABC分成的两部分图形中有一个是轴对称图形时,直接写出t的值.7.如图,在平面内给定△ABC,AB=AC,点O到△ABC的三个顶点的距离均等于c(c为常数),到点O的距离等于c的所有点组成图形G,过点A作AB的垂线交BC于点E,交图形G于点D,延长DA,在DA的延长线上存在一点F,使得∠ABF=∠ABC.(1)依题意补全图形;(2)判断直线BF与图形G交点的个数并证明;(3)若AD=4,cos∠ABF=,求DE的长.8.如图,△ABC是等边三角形,AB=8,AH⊥BC,垂足为H点,点D是射线AH上的动点,连接CD,以CD为边在CD的下方作等边△CDE,连接BE.(1)当点D在线段AH上时,设AD=x,△CDE的面积为y,求y关于x的函数解析式,并求出自变量x的取值范围;(2)当△CDE的面积等于△ABC的面积的时,判断线段CE与△ABC的边是否存在特殊的位置关系?若存在,说出是什么关系并证明;若不存在,请说明理由.9.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为圆心以AM为半径作圆弧,以B为圆心以BN为半径作圆弧,两圆弧相交于点C构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值;(3)当∠CAB是锐角时,求△ABC的最大面积?10.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,D是边AC上一点,且CD=1cm.动点P从点D出发,以1cm/s的速度沿D→A向终点A匀速运动;同时动点Q从点B出发,以1m/s的速度沿B→C向终点C匀速运动,连结PQ,设点P的运动时间为ts,△CPQ的面积为Scm2(1)当PQ=3时,求t的值;(2)求S与t之间的函数关系式,并写出自变量t的取值范围;(3)连结DQ,当直线DQ将△CPQ分成面积比为1:2两部分时,直接写出t的值,并写出此时S的值.11.如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD=AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=(其中S△BCE 表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当=7时,请直接写出线段AE的长.12.如图,平面直角坐标系中有点A(﹣1,0)和y轴上一动点B(0,a),其中a>0,以B点为直角顶点在第二象限内作等腰直角△ABC,设点C的坐标为(c,d)(1)当a=2时,则C点的坐标为(,);(2)动点B在运动的过程中,试判断c+d的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由;(3)当a=2时,在第一象限内是否存在一点P,使△PAB与△ABC全等?若存在,直接写出P点坐标;若不存在,请说明理由13.平面直角坐标系中,若点A(a,b),且+=0,点B(m,m),其中m>1,R点在x轴正半轴上,RA⊥RB(1)求a、b的值;(2)连接AB交y轴于E,连接ER,若∠ARO=15°,求的值;(3)点D(﹣1,0)、C(0,1),射线DC分别交线段AR、AB于点S、T,若SC=n,CT =k,试用含n的式子表示k.14.在平面直角坐标系中,A(﹣3,﹣2),B(2,4).(1)如图1,求△AOB的面积;(2)如图2,求AB与两坐标轴的交点C,D坐标;(3)在坐标轴上求作点P,使△ABP的面积为6,求P点坐标,利用图3解答.15.如图,在平面直角坐标系中,点O为坐标原点,点A的坐标为(0,4),点B在x的负半轴上,△AOB的面积为8,作△AOB关于y轴的对称图形,点B的对应点为C.(1)求线段OC的长;(2)点D从A点出发,沿线段AO向终点O运动,同时点E从点C出发,沿x轴的正方向运动,且CE=AD,连接DE交AC于点G,判断DG和EG的数量关系,并说明理由.(3)在(2)的条件下,当∠CEG=∠ABD时,求点G点坐标.16.在Rt△ABC中,AC=BC,∠ACB=90°,点D是BC上一点.(1)如图1,AD平分∠BAC,求证:AB=AC+CD;(2)如图2,点E在线段AD上,且∠CED=45°,∠BED=30°,求证:BE=2AE;(3)如图3,CD=BD,过B点作BM⊥AD交AD的延长线于点M,连接CM,过C点作CN⊥CM交AD于N,求证:DN=3DM.17.如图,在Rt△ABC中,=nM为BC上的一点,连接BM.(1)如图1,若n=1,①当M为AC的中点,当BM⊥CD于H,连接AH,求∠AHD的度数;②如图2,当H为CD的中点,∠AHD=45°,求的值和∠CAH的度数;(2)如图3,CH⊥AM于H,连接CH并延长交AC于Q,M为AC中点,直接写出tan∠BHQ 的值(用含n的式子表示).18.如图1,在等边△ABC中,E、D两点分别在边AB、BC上,BE=CD,AD、CE相交于点F.(1)求∠AFE的度数;(2)过点A作AH⊥CE于H,求证:2FH+FD=CE;(3)如图2,延长CE至点P,连接BP,∠BPC=30°,且CF=CP,求的值.(提示:可以过点A作∠KAF=60°,AK交PC于点K,连接KB)19.在等边△ABC中,点E,F分别在边AB,BC上.(1)如图1,若AE=BF,以AC为边作等边△ACD,AF交CE于点O,连接OD.求证:①AF=CE;②OD平分∠AOC;(2)如图2,若AE=2CF,作∠BCP=∠AEC,CP交AF的延长线于点P,求证:CE=CP.20.已知等边△ABC和等腰△CDE,CD=DE,∠CDE=120°.(1)如图1,点D在BC上,点E在AB上,P是BE的中点,连接AD,PD,则线段AD与PD之间的数量关系为;(2)如图2,点D在△ABC内部,点E在△ABC外部,P是BE的中点,连接AD,PD,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)如图3,若点D在△ABC内部,点E和点B重合,点P在BC下方,且PB+PC为定值,当PD最大时,∠BPC的度数为.参考答案1.解:(1)如图1,过点A作AM⊥DC于M,∵∠BCD=90°,AM⊥CD,∴AM∥BC,AB∥CD,∴四边形ABCM是平行四边形,且∠BCD=90°,∴四边形ABCM是矩形,∴AM=CB=4,AB=CM=2,∴DM=2,∴AD===2,∴sin∠ADC===;(2)△DEF是等腰直角三角形,理由如下:∵∠EDC=∠FBC,DE=BF,BC=CD,∴△CDE≌△CBF(SAS)∴∠DCE=∠BCF,CE=CF,∴∠DCE+∠ECB=∠BCF+∠BCE,∴∠DCB=∠ECF=90°,且CE=CF,∴△DEF是等腰直角三角形;(3)设BE=k,则CE=CF=2k,∴EF=2k,∵∠BEC=135°,又∠CEF=45°,∴∠BEF=90°,∴BF===3k,∴sin∠BFE=.2.解:(1)当∠BAM=30°时,∴∠AMB=180°﹣60°﹣30°=90°,∴AB=2BM;故答案为:30;(2)添加一个条件AB=AC,可得△ABC为等边三角形;故答案为:AB=AC;①如图1中,∵△ABC与△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC,即∠BAM=∠CAN,在△BAM与△CAN中,,∴△BAM≌△CAN(SAS),∴BM=CN;②成立,理由:如图2中,∵△ABC与△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAC+∠MAC=∠MAN+∠MAC,即∠BAM=∠CAN,在△BAM与△CAN中,,∴△BAM≌△CAN(SAS),∴BM=CN.3.(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:如图2中,∵∠CAB=∠EAD=120°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠BAD=∠ACE,BD=EC=4,同法可证∠BEC=∠BAC=120°,∴∠FEC=60°,∵CF⊥EF,∴∠F=90°,∴∠FCE=30°,∴EF=EC=2.4.解:(1)作AH⊥BC于H,BM⊥AC于M.∵AB=AC,AH⊥BC,∴BH=CH=3,∴AH===4,=•BC•AH=•AC•BM,∵S△ABC∴BM==,∴AM===,∴cos A==.(2)设AH交CD于K.∵∠BAC=2∠ACD,∠BAH=∠CAH,∴∠CAK=∠ACK,∴CK=AK,设CK=AK=x,在Rt△CKH中,则有x2=(4﹣x)2+32,解得x=,∴AK=CK=,∵∠ADK=∠ADC,∠DAK=∠ACD,∴△ADK∽△CDA,∴====,设AD=m,DK=n,则有,解得m=,n=.∴AD=.(3)结论:AD:BE=5:6值不变.理由:∵∠GBE=∠ABC,∠BAC+2∠ABC=180°,∠GBE+∠EBC+∠ABC=180°,∴∠EBC=∠BAC,∵∠EDC=∠BAC,∴∠EBC=∠EDC,∴D,B,E,C四点共圆,∴∠EDB=∠ECB,∵∠EDB+∠EDC=∠ACD+∠DAC,∠EDC=∠DAC,∴∠EDB=∠ACD,∴∠ECB=∠ACD,∴△ACD∽△BCE,∴==.5.解:(Ⅰ)如图1,过C作CM⊥x轴于M点,如图1所示:∵CM⊥OA,AC⊥AB,∴∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠MAC=∠OBA,在△MAC和△OBA中,,∴△MAC≌△OBA(AAS),∴CM=OA=2,MA=OB=4,∴OM=6,∴点C的坐标为(﹣6,﹣2),故答案为(﹣6,﹣2);(Ⅱ)如图2,过D作DQ⊥OP于Q点,则四边形OEDQ是矩形,∴DE=OQ,∵∠APO+∠QPD=90°,∠APO+∠OAP=90°,∴∠QPD=∠OAP,在△AOP和△PDQ中,,∴△AOP≌△PDQ(AAS),∴AO=PQ=2,∴OP﹣DE=OP﹣OQ=PQ=OA=2;(Ⅲ)如图3,过点F分别作FS⊥x轴于S点,FT⊥y轴于T点,则∠HSF=∠GTF=90°=∠SOT,∴四边形OSFT是正方形,∴FS=FT=4,∠EFT=90°=∠HFG,∴∠HFS=∠GFT,在△FSH和△FTG中,,∴△FSH≌△FTG(AAS),∴GT=HS,又∵G(0,m),H(n,0),点F坐标为(﹣4,﹣4),∴OT═OS=4,∴GT=﹣4﹣m,HS=n﹣(﹣4)=n+4,∴﹣4﹣m=n+4,∴m+n=﹣8.6.解:(1)在Rt△ABC中,tan A===,由题意得,AP=3t,在Rt△APQ中,tan A==,∴PQ=AP=4t,根据勾股定理得,AQ===5t.当0<t≤时,如图1所示:CQ=AC﹣AQ=6﹣5t;当<t≤时,如图2所示:CQ=AQ﹣AC=5t﹣6;故答案为:6﹣5t或5t﹣6;(2)∵PQ⊥AB,∴∠APQ=90°=∠ACB,∵∠A=∠A,∴△APQ∽△ACB,∴==,即=,解得:t=,即当△APQ与△ABC的周长的比为1:4时,t为秒.(3)分两种情况:①当0<t≤时,如图1所示:△APQ与△ABC重叠部分图形的面积为S=△APQ的面积=×3t×4t=6t2;即S=6t2(0<t≤);②当<t≤时,如图2所示:由(1)得:PQ=3t,PQ=4t,AQ=5t,同(2)得:△CDQ∽△PAQ,∴==,即==,解得:CD=(5t﹣6),∴△APQ与△ABC重叠部分图形的面积为S=△APQ的面积﹣△CDQ的面积=×3t×4t ﹣×(5t﹣6)×(5t﹣6)=﹣t2+t﹣;即S=﹣t2+t﹣(<t≤);(4)由(1)知,AQ=5t,PQ=4t,CQ=6﹣5t或CQ=5t﹣6,当CQ=PQ时,四边形BCQP是轴对称图形,则4t=6﹣5t,∴t=;当<t≤时,设PQ和BC相交于D,当AC=AP时,四边形ACDP是轴对称图形,则6=3t,∴t=2.综上所述,当直线PQ把△ABC分成的两部分图形中有一个是轴对称图形时,t的值为秒或2秒.7.解:(1)如图,作AB,AC的垂直平分线交于点O,以O为圆心,OB长为半径作圆,⊙O 为图形G;(2)直线BF与图形G交点只有一个,理由如下:∵AD⊥AB,∴∠BAD=90°,∴BD是直径,∠ADB+∠ABD=90°,∵AB=AC,∴∠ACB=∠ABC,∵∠ACB=∠ADB,∠ABF=∠ABC,∴∠ABF=∠ADB,∴∠ABF+∠ABD=90°,∴∠DBF=90°,∴BD⊥BF,且OB是半径,∴BF是圆O的切线,∴直线BF与图形G交点的只有一个;(3)∵cos∠ABF=cos∠ADB==,∴BD=5,∴AB===3,∵∠ABE=∠ADB,∠BAE=∠BAD=90°,∴△ABE∽△ADB,∴,∴∴AE=,∴DE=AD﹣AE=.8.解:(1)∵△ABC是等边三角形,AB=8,AH⊥BC,∴BC=AC=AB=8,BH=HC=4,∠HAC=30°,∴AH=HC=4,∴DH=4﹣x,∴DC2=DH2+CH2=(4﹣x)2+16∵△CDE是等边三角形,=CD2=[(4﹣x)2+16]=x2﹣6x+16(0≤x≤4)∴y=S△CDE(2)∵当△CDE的面积等于△ABC的面积的,∴x2﹣6x+16=××64,∴x=或,当x=时,即AD=,如图1,∴DH=AH﹣AD=,∵tan∠DCH===,∴∠DCH=30°,∴∠ACD=∠ACB﹣∠DCH=30°,∴∠ACE=∠DCE+∠ACD=90°,∴CE⊥AC;当x=时,即AD=,如图2,∴DH=AD﹣AH=,∵tan∠DCH===,∴∠DCH=30°,∴∠BCE=∠DCH+∠DCE=90°,∴CE⊥BC.9.解:(1)∵在△ABC中,AC=1,AB=x,BC=3﹣x.,解得1<x<2;(2)①若AC为斜边,则1=x2+(3﹣x)2,即x2﹣3x+4=0,无解,②若AB为斜边,则x2=(3﹣x)2+1,解得x=,满足1<x<2,③若BC为斜边,则(3﹣x)2=1+x2,解得x=,满足1<x<2,综上,x=或;(3)在△ABC中,作CD⊥AB于D,设CD=h,△ABC的面积为S,则S=xh,①若点D在线段AB上,则+=x,∴(3﹣x)2﹣h2=x2﹣2x+1﹣h2,即x=3x﹣4,∴x2(1﹣h2)=9x2﹣24x+16,即x2h2=﹣8x2+24x﹣16.∴S2=x2h2=﹣2x2+6x﹣4=﹣2(x﹣)2+(≤x<2),当x=时(满足≤x<2),S2取最大值,从而S取最大值;②若点D在线段MA上,则﹣=x,同理可,得S2=x2h2=﹣2x2+6x﹣4=﹣2(x﹣)2+(1<x≤),易知此时S<,综合①②得,△ABC的最大面积为.10.解:(1)由题意PC=1+t,CQ=3﹣t,在Rt△PQC中,∵∠C=90°,PQ=3,PC=1+t,CQ=3﹣t,∴32=(1+t)2+(3﹣t)2,解得t=.∴PQ=3时,t的值为.(2)S=•PC•CQ=•(1+t)(3﹣t)=﹣t2+t+(0≤t≤3).(3)∵直线DQ将△CPQ分成面积比为1:2两部分,∴CD=2PD或PD=2CD,∴1=2t或t=2,解得t=或2,当t=时,S=﹣×++=,当t=2时,S=﹣×4+2+=,∴t=s或2s时,直线DQ将△CPQ分成面积比为1:2两部分.11.解:(1)∵△ABC是等边三角形,∴AB=BC﹣AC=2,∠BAC=∠ABC=∠ACB=60°.∵AD=AC,∴AD=AB,∴∠ABD=∠ADB,∵∠ABD+∠ADB+∠BAC+∠CAD=180°,∠CAD=90°,∠ABD=15°,∴∠EBC=45°.过点E作EG⊥BC,垂足为点G.设AE=x,则EC=2﹣x.在Rt△CGE中,∠ACB=60°,∴,,∴BG=2﹣CG=1+x,在Rt△BGE中,∠EBC=45°,∴,解得.所以线段AE的长是.(2)①设∠ABD=α,则∠BDA=α,∠DAC=∠BAD﹣∠BAC=120°﹣2α.∵AD=AC,AH⊥CD,∴,又∵∠AEF=60°+α,∴∠AFE=60°,∴∠AFE=∠ACB,又∵∠AEF=∠BEC,∴△AEF∽△BEC,∴,由(1)得在Rt△CGE中,,,∴BE2=BG2+EG2=x2﹣2x+4,∴(0<x<2).②当∠CAD<120°时,y=7,则有7=,整理得3x2+x﹣2=0,解得x=或﹣1(舍弃),.当120°<∠CAD<180°时,同法可得y=当y=7时,7=,整理得3x2﹣x﹣2=0,解得x=﹣(舍弃)或1,∴AE=1.12.解:(1)如图1中,过点C作CE⊥y轴于E,则∠CEB=∠AOB.∵△ABC是等腰直角三角形,∴BC=BA,∠ABC=90°,∴∠BCE+∠CBE=90°=∠BAO+∠CBE,∴∠BCE=∠ABO,在△BCE和△BAO中,,∴△CBE≌△BAO(AAS),∵A(﹣1,0),B(0,2),∴AO=BE=1,OB=CE=2,∴OE=1+2=3,∴C(﹣2,3),故答案为:﹣2,3;(2)动点A在运动的过程中,c+d的值不变.过点C作CE⊥y轴于E,则∠CEA=∠AOB,∵△ABC是等腰直角三角形,∴BC=BA,∠ABC=90°,∴∠BCE+∠CBE=90°=∠ABO+∠CBE,∴∠BCE=∠ABO,在△BCE和△BAO中,,∴△CBE≌△BAO(AAS),∵B(﹣1,0),A(0,a),∴BO=AE=1,AO=CE=a,∴OE=1+a,∴C(﹣a,1+a),又∵点C的坐标为(c,d),∴c+d=﹣a+1+a=1,即c+d的值不变;(3)存在,使△PAB与△ABC全等,如图2中,过C作CM⊥x轴于M,过P作PE⊥x轴于E则∠CMB=∠PEB=90°,∵△CAB≌△PAB,∴∠PBA=∠CBA=45°,BC=BP,∴∠CBP=90°,∴∠MCB+∠CBM=90°,∠CBM+∠PBE=90°,∴∠MCB=∠PBE,在△CMB和△BEP中,,∴△CMB≌△BEP(AAS),∴PE=BM,CM=BE,∵C(﹣2,3),B(﹣1,0),∴PE=1,OE=BE﹣BO=3﹣1=2,即P的坐标是(2,1).13.解:(1)∵+=0,又∵≥0,≥0,∴a=﹣1,b=1.(2)如图1中,作AM⊥x轴于M,AH⊥y轴于H,在RM上取一点K,使得AK=KR,连接AK,AO.∵A(﹣1,1),∴AM=AH=1,∵AK=KR,∴∠KRA=∠KAR=15°,∴∠AKM=∠KAR+∠KRA=30°,∴AK=KR=2AM=2,MK=,∴MR=2+,∴AR===+,∵B(m,m),∴OB平分∠EOB,∵OA平分∠EOM,∴OA⊥OB,∴∠AOB=∠ARB=90°,∴A,O,R,B四点共圆,∴∠BAR=∠BOR=45°,∴△ABR是等腰直角三角形,∴AB=AR=2+2,∵AH∥MR,∴∠HAR=∠ARM=15°,∴∠EA=30°,∴AE==,∴==.(3)如图,作SH⊥AD于H.由题意四边形ADOC是正方形,∴∠ACD=45°=∠CAT+∠ATC,∵∠CAT+∠SAC=45°,∴∠SAC=∠ATC,∵∠ASC=∠TSA,∴△SAC∽△STA,∴=,∴SA2=SC•ST,∵CS=n,CT=k,CD=,∴SH=DH=(﹣n),AH=n,∴AS2=AH2+HS2=n2+(﹣n)2=n(n+k),∴k=(0<n<).14.解:(1)如图1,过A作AC∥x轴,过B作BC⊥AC于C,BC交x轴于E,AC交y轴于D,∵A (﹣3,﹣2),B (2,4),∴△AOB 的面积=S △ACB ﹣S △AOD ﹣S △BOE ﹣S 长方形ODCE ,=﹣﹣﹣2×2,=15﹣3﹣4﹣4,=4;(2)设直线AB 的解析式为:y =kx +b (k ≠0),则,解得:,∴直线AB 的解析式为:y =x +,当x =0时,y =,∴C (0,),当y =0时,x +=0,解得:x =﹣,∴D (,0);(3)①当点P 在x 轴上时,∵△ABP 的面积为6,∴=6,∴PD =2,如图3,点P 在x 轴的正半轴上,P (,0);同理得当点P在x轴的负半轴上,P(﹣,0);②当点P在y轴上时,=6,∴CP=,∴P(0,4)或(0,﹣);综上,点P的坐标是(,0)或(,0)或(0,4)或(0,).15.解:(1)如图1中,∵A(0,4),∴OA=4,=×OB×OA=8,∵S△AOB∴OB=4,∵△AOB与△AOC关于y轴对称,∴OC=OB=4.(2)如图2中,结论:DG=GE.理由:作DH∥EC交AC于H.∵OA=OC,∠AOC=90°,∴∠DAH=∠ACO=45°,∵DH∥OC,∴∠AHD=∠ACO=45°,∴∠DAH=∠AHD,∴AD=DH,∵AD=EC,∴DH=EC,∵∠DHG=∠GCE,∠DGH=∠CGE,∴△DGH≌△EGC(AAS),∴DG=EG.(3)如图3中,连接DB,DC,作DH∥EC交AC于H.设AD=DH=x,则AH=x,HC=4﹣x,∵HG=CG,∴HG=HC=2﹣x,∵OA⊥BC,OB=OC,∴AB=AC,DB=DC,∴∠ABC=∠ACB,∠DBO=∠DCO,∴∠ABD=∠ACD,∵∠CEG=∠ABD,∴∠ACD=∠CEG,∵DH∥CE,∴∠HDG=∠CEG=∠DCH,∵∠DHG=∠DHC,∴△DHG∽△CHD,∴=,∴=,解得x=2,∴AH=CH=2,∴H(2,2),∵GH=GC,∴G(3,1).16.证明:(1)如图1中,作DH⊥AB于H.∵∠ACD=∠AHD=90°,AD=AD,∠DAC=∠DAH,∴△ADC≌△ADH(ASA),∴AC=AH,DC=DH,∵CA=CB,∠C=90°,∴∠B=45°,∵∠DHB=90°,∴∠HDB=∠B=45°,∴HD=HB,∴BH=CD,(2)如图2中,作BM⊥AD交AD的延长线于M,连接CM.∵∠ACB=∠AMB=90°,∴C,A,B,M四点共圆,∴∠AMC=∠ABC=45°,∵∠CEM=45°,∴∠CEM=∠CME,∴CE=CM,∴∠ECM=∠ACB=90°,∴∠ACE=∠BCM,∵CA=CB,CE=CM,∴△ACE≌△BCM(SAS),∴AE=BM,∵在Rt∠EMB中,∠MEB=30°,∵BE=2BM=2AE.(3)如图3中,作CH⊥MN于H.∵∠ACB=∠AMB=90°,∴C,A,B,M四点共圆,∵CN⊥CM,∴∠NCM=90°∴∠CNM=∠CMN,∴CN=CM,∵CH⊥MN,∴HN=HM.∵CD=DB,∠CHD=∠BMD=90°,∠ADH=∠BDM,∴△CHD≌△BMD(AAS),∴DH=DM,∵HN=HM,∴DN=3DM.17.解:(1)①如图1中,作AK⊥CD交CD的延长线于K.∵CD⊥BM,AK⊥CK,∠ACB=90°,∴∠CHB=∠K=90°,∠CBH+∠BCH=90°,∠BCH+∠ACK=90°,∴∠CBH=∠ACK,∵CB=CA,∴△CHB≌△AKC(AAS),∴AK=CH,∵∠CHM=∠K=90°,∴MH∥AK,∵AM=BM,∴CH=KH,∴AK=KH,∵∠K=90°,∴∠AHD=45°.②如图2中,作AK⊥CD交CD的延长线于K,作CM⊥AB于M.设DH=CH=a.∵CA=CB,∠ACB=90°,∴∠CAB=45°,∵∠AHD=45°,∠AHD=∠ACH+∠CAH,∴∠ACH+∠CAH=∠CAH+∠DAH,∴∠DAH=∠ACD,∵∠ADH=∠CAD,∴△ADH∽△CDA,∴=,∴=,∴AD=a,∵CA=CB,∠ACB=90°,CM⊥AB,∴AM=BM,∴CM=AM=BM,设AM=CM=BM=x,在Rt△CMD中,∵CM2=DM2+CD2,∴x2+(x﹣a)2=4a2,解得x=a(负根已经舍弃).∴BD=AB﹣AD=(+)a﹣a=a,∴==.∵△ADH∽△CDA,∴==,设AH=m,则AC=m,AK=KH=m,∴tan∠ACK==,∴∠ACH=30°,∴∠CAH=∠AHD﹣∠ACH=45°﹣30°=15°.(2)作AJ⊥BM交BM的延长线于J.设AM=CM=y,则BC=2yn.∵CH⊥BM,BM===•y,∴CH===•y,∴HM==•y,∵AJ⊥BJ,CH⊥BJ,∴∠J=∠CHM=90°,∵∠AMJ=∠CMH,AM=CM,∴△AMJ≌△CMH(AAS),∴AJ=CH=•y,HM=JM=•y,∵∠BHQ=∠AHJ,∴tan∠BHQ=tan∠AHJ===n.18.(1)解:如图1中.∵△ABC为等边三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在△EBC和△DCA中,,∴△EBC≌△DCA(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵△EBC≌△DCA,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK为等边三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在△ABK和△AFC中,,∴△ABK≌△AFC(SAS),∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴FP=CK,∴PK=CK,∵FP=FK+PK∴FP=AF+CF,∵CF=CP,设CP=9a,∵CF=2a,∴FP=7a,∴AF=5a,∴==.19.(1)证明:①如图1中,∵△ABC是等边三角形,∴AB=BC,∠B=∠BAC=60°,∵AE=BF,∴△ABF≌△CAE(SAS),∴AF=EC.②如图1中,∵△ABF≌△CAE,∴∠BAF=∠ACE,∵∠AOE=∠OAC+∠ACO=∠OCA+∠BAF=∠BAC=60°,又∵△ACD是等边三角形,∴∠ADC=∠DAC=∠DCA=60°,∴∠AOE=∠ADC,∵∠AOE+∠AOC=180°,∴∠ADC+∠AOC=180°,∴A,D,C,O四点共圆,∴∠AOD=∠ACD=60°,∠COD=∠CAD=60°,∴∠AOD=∠COD,∴OD平分∠AOC.(2)证明:如图2中,取AE的中点M,连接CM.∵AE=2CF,AM=ME,∴AM=CF,∵∠CAM=∠ACF=60°,AC=CA,∴△ACM≌△CAF(SAS),∴∠ACM=∠CAF,∵∠CME=∠CAM+∠ACM=60°+∠ACM,∠CFP=∠ACF+∠CAF=60°+∠CAF,∴∠CME=∠CFP,∵EM=CF,∠PCF=∠CEM,∴△CME≌△PFC(ASA),∴CE=PC.20.解:(1)结论:AD=2PD.理由:如图1中,∵△ABC是等边三角形,∴∠B=60°,∵∠EDC=120°,∴∠EDB=180°﹣120°=60°,∴∠B=∠EDB=∠BED=60°,∴△BDE是等边三角形,∵BP=PE,∴DP⊥AB,∴∠APD=90°,∵DE=DC,DE=DB,∴BD=CD,∵AB=AC,∠BAC=60°,∴∠PAD=∠BAC=30°,∴AD=2PD.(2)结论成立.理由:延长DP到N,使得PN=PD,连接BN,EN,延长ED到M,使得DM=DE,连接BD,BM,CM.∵DE=DC=DM,∠MDC=180°﹣∠EDC=60°,∴△DCM是等边三角形,∵CA=CB,CM=CD,∠DCM=∠ACB=60°,∴∠BCM=∠ACD,∴△BCM≌△ACD(SAS),∴AD=BM,∵PB=PE,PD=PN,∴四边形BNED是平行四边形,∴BN∥DE,BN=DE,∵DE=DM,∴BN=DM,BN∥DM,∴四边形BNDM是平行四边形,∴BM=DN=2PD,∴AD=2PD.(3)如图3中,作∠PDK=∠BDC=120°,且PD=PK,连接PK,CK.∵DB=DC,DP=DK,∠BDC=∠PDK,∴∠BDP=∠CDK,∴△PDB≌△KDC(SAS),∴PB=CK,∵PB+PC=PC+CK=定值,∴P,C,K共线时,PK定值最大,此时PD的值最大,此时,∠DPB=∠DKP=∠DPK=30°,∠BPC=∠DPB+∠DPK=60°.故答案为60°.。

2020年中考数学复习《三角形综合》练习(含解析)

2020年中考数学复习《三角形综合》练习(含解析)

2020年中考数学复习《三角形综合》练习1.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.2.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O.(1)求证:△DBC≌△ECB;(2)求证:OB=OC.3.如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.4.如图,已知等边△ABC,CD⊥AB于D,AF⊥AC,E为线段CD上一点,且CE=AF,连接BE,BF,EG⊥BF于G,连接DG.(1)求证:BE=BF;(2)试说明DG与AF的位置关系和数量关系.5.例2 如图,在△ABC中,D,E分别是边BC,AB的中点,AD,CE相交于点G,求证:==证明:连结ED.请根据教材提示,结合图①,写出完整的证明过程.结论应用:在▱ABCD中,对角线AC、BD交于点O,E为边BC的中点,AE、BD交于点F.(1)如图②,若▱ABCD为正方形,且AB=6,则OF的长为.(2)如图③,连结DE交AC于点G,若四边形OFEG的面积为,则▱ABCD的面积为.6.如图,在△ABC中,内角A、B、C所对的边分别为a、b、c.(1)若a=6,b=8,c=12,请直接写出∠A与∠B的和与∠C的大小关系;(2)求证:△ABC的内角和等于180°;(3)若=,求证:△ABC是直角三角形.7.如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.8.已知,在Rt△ABC中,∠ACB=90°,D是BC边上一点,连接AD,分别以CD和AD 为直角边作Rt△CDE和Rt△ADF,使∠DCE=∠ADF=90°,点E,F在BC下方,连接EF.(1)如图1,当BC=AC,CE=CD,DF=AD时,求证:①∠CAD=∠CDF,②BD=EF;(2)如图2,当BC=2AC,CE=2CD,DF=2AD时,猜想BD和EF之间的数量关系?并说明理由.9.如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC 交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.10.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF;(3)如图3,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+AN =AM.11.如图,是具有公共边AB的两个直角三角形,其中,AC=BC,∠ACB=∠ADB=90°.(1)如图1,若延长DA到点E,使AE=BD,连接CD,CE.①求证:CD=CE,CD⊥CE;②求证:AD+BD=CD;(2)若△ABC与△ABD位置如图2所示,请直接写出线段AD,BD,CD的数量关系.12.如图,△ABC是等腰直角三角形,∠ACB=90°,D是射线CB上一点(点D不与点B 重合),以AD为斜边作等腰直角三角形ADE(点E和点C在AB的同侧),连接CE.(1)如图①,当点D与点C重合时,直接写出CE与AB的位置关系;(2)如图②,当点D与点C不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)当∠EAC=15°时,请直接写出的值.13.如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.14.如图,△ABC中,AB=AC,∠BAC=90°,点D,E分别在AB,BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.(1)求证:DE=EF;(2)判断BD和CF的数量关系,并说明理由;(3)若AB=3,AE=,求BD的长.15.如图,△ABC中,AB=AC,DE垂直平分AB,交线段BC于点E(点E与点C不重合),点F为AC上一点,点G为AB上一点(点G与点A不重合),且∠GEF+∠BAC=180°.(1)如图1,当∠B=45°时,线段AG和CF的数量关系是.(2)如图2,当∠B=30°时,猜想线段AG和CF的数量关系,并加以证明.(3)若AB=6,DG=1,cos B=,请直接写出CF的长.16.如图,在△ABC中,AB=7.5,AC=9,S△ABC=.动点P从A点出发,沿AB方向以每秒5个单位长度的速度向B点匀速运动,动点Q从C点同时出发,以相同的速度沿CA方向向A点匀速运动,当点P运动到B点时,P、Q两点同时停止运动,以PQ为边作正△PQM(P、Q、M按逆时针排序),以QC为边在AC上方作正△QCN,设点P运动时间为t秒.(1)求cos A的值;(2)当△PQM与△QCN的面积满足S△PQM=S△QCN时,求t的值;(3)当t为何值时,△PQM的某个顶点(Q点除外)落在△QCN的边上.17.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD =1,OB=,请直接写出当点C与点M重合时AC的长.18.(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是;位置关系是.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.19.如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.20.如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD =CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若AC=2,CE=1,求△CGF的面积.答案与解析一.解答题(共20小题)1.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.【分析】(1)根据平行线的性质得到∠B=∠FCD,∠BED=∠F,由AD是BC边上的中线,得到BD=CD,于是得到结论;(2)根据全等三角形的性质得到BE=CF=2,求得AB=AE+BE=1+2=3,于是得到结论.【解答】(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3,∵AD⊥BC,BD=CD,∴AC=AB=3.2.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O.(1)求证:△DBC≌△ECB;(2)求证:OB=OC.【分析】(1)根据等腰三角形的性质得到∠ECB=∠DBC根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到∠DCB=∠EBC根据等腰三角形的判定定理即可得到OB=OC【解答】(1)证明:∵AB=AC,∴∠ECB=∠DBC,在△DBC与△ECB中,∴△DBC≌△ECB(SAS);(2)证明:由(1)知△DBC≌△ECB,∴∠DCB=∠EBC,∴OB=OC.3.如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.【分析】(1)根据等腰三角形的性质得到∠BAD=∠CAD,根据三角形的内角和即可得到∠BAD=∠CAD=90°﹣42°=48°;(2)根据等腰三角形的性质得到∠BAD=∠CAD根据平行线的性质得到∠F=∠CAD,等量代换得到∠BAD=∠F,于是得到结论.【解答】解:(1)∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∠ADC=90°,又∠C=42°,∴∠BAD=∠CAD=90°﹣42°=48°;(2)∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∵EF∥AC,∴∠F=∠CAD,∴∠BAD=∠F,∴AE=FE.4.如图,已知等边△ABC,CD⊥AB于D,AF⊥AC,E为线段CD上一点,且CE=AF,连接BE,BF,EG⊥BF于G,连接DG.(1)求证:BE=BF;(2)试说明DG与AF的位置关系和数量关系.【分析】(1)由等边三角形的性质可得AB=AC=BC,∠BAC=∠ACB=∠ABC=60°,BD=AD,∠BCD=30°,由“SAS”可证△ABF≌△CBE,可得BF=BE;(2)通过证明△BEF是等边三角形,可得BG=GF,由三角形中位线定理可得AF=2GD,AF∥DG.【解答】证明:(1)∵△ABC是等边三角形∴AB=AC=BC,∠BAC=∠ACB=∠ABC=60°∵CD⊥AB,AC=BC∴BD=AD,∠BCD=30°,∵AF⊥AC∴∠F AC=90°∴∠F AB=∠F AC﹣∠BAC=30°∴∠F AB=∠ECB,且AB=BC,AF=CE∴△ABF≌△CBE(SAS)∴BF=BE(2)AF=2GD,AF∥DG理由如下:连接EF,∵△ABF≌△CBE∴∠ABF=∠CBE,∵∠ABE+∠EBC=60°∴∠ABE+∠ABF=60°,且BE=BF∴△BEF是等边三角形,且GE⊥BF∴BG=FG,且BD=AD∴AF=2GD,AF∥DG5.教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.例2 如图,在△ABC中,D,E分别是边BC,AB的中点,AD,CE相交于点G,求证:==证明:连结ED.请根据教材提示,结合图①,写出完整的证明过程.结论应用:在▱ABCD中,对角线AC、BD交于点O,E为边BC的中点,AE、BD交于点F.(1)如图②,若▱ABCD为正方形,且AB=6,则OF的长为.(2)如图③,连结DE交AC于点G,若四边形OFEG的面积为,则▱ABCD的面积为6.【分析】教材呈现:如图①,连结ED.根据三角形中位线定理可得DE∥AC,DE=AC,那么△DEG∽△ACG,由相似三角形对应边成比例以及比例的性质即可证明==;结论应用:(1)如图②.先证明△BEF∽△DAF,得出BF=DF,那么BF=BD,又BO=BD,可得OF=OB﹣BF=BD,由正方形的性质求出BD=6,即可求出OF =;(2)如图③,连接OE.由(1)易证=2.根据同高的两个三角形面积之比等于底边之比得出△BEF与△OEF的面积比==2,同理,△CEG与△OEG的面积比=2,那么△CEG的面积+△BEF的面积=2(△OEG的面积+△OEF的面积)=2×=1,所以△BOC的面积=,进而求出▱ABCD的面积=4×=6.【解答】教材呈现:证明:如图①,连结ED.∵在△ABC中,D,E分别是边BC,AB的中点,∴DE∥AC,DE=AC,∴△DEG∽△ACG,∴===2,∴==;结论应用:(1)解:如图②.∵四边形ABCD为正方形,E为边BC的中点,对角线AC、BD交于点O,∴AD∥BC,BE=BC=AD,BO=BD,∴△BEF∽△DAF,∴==,∴BF=DF,∴BF=BD,∵BO=BD,∴OF=OB﹣BF=BD﹣BD=BD,∵正方形ABCD中,AB=6,∴BD=6,∴OF=.故答案为;(2)解:如图③,连接OE.由(1)知,BF=BD,OF=BD,∴=2.∵△BEF与△OEF的高相同,∴△BEF与△OEF的面积比==2,同理,△CEG与△OEG的面积比=2,∴△CEG的面积+△BEF的面积=2(△OEG的面积+△OEF的面积)=2×=1,∴▱ABCD的面积=4×=6.故答案为6.6.如图,在△ABC中,内角A、B、C所对的边分别为a、b、c.(1)若a=6,b=8,c=12,请直接写出∠A与∠B的和与∠C的大小关系;(2)求证:△ABC的内角和等于180°;(3)若=,求证:△ABC是直角三角形.【分析】(1)根据三角形中大角对大边,即可得到结论;(2)画出图形,写出已知,求证;过点A作直线MN∥BC,根据平行线性质得出∠MAB =∠B,∠NAC=∠C,代入∠MAB+∠BAC+∠NAC=180°即可求出答案;(3)化简等式即可得到a2+c2=b2,根据勾股定理的逆定理即可得到结论.【解答】解:(1)∵在△ABC中,a=6,b=8,c=12,∴∠A+∠B<∠C;(2)如图,过点B作MN∥AC,∵MN∥AC,∴∠MBA=∠A,∠NBC=∠C(两直线平行,内错角相等),∵∠MBA+∠ABC+∠NBC=180°(平角的定义),∴∠A+∠ABC+∠C=180°(等量代换),即:三角形三个内角的和等于180°;(3)∵=,∴ac=(a+b+c)(a﹣b+c)=[(a2+2ac+c2)﹣b2],∴2ac=a2+2ac+c2﹣b2,∴a2+c2=b2,∴△ABC是直角三角形.7.如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.【分析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC即可解决问题.(2)只要证明∠FBE=∠FEB即可解决问题.【解答】(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.8.已知,在Rt△ABC中,∠ACB=90°,D是BC边上一点,连接AD,分别以CD和AD 为直角边作Rt△CDE和Rt△ADF,使∠DCE=∠ADF=90°,点E,F在BC下方,连接EF.(1)如图1,当BC=AC,CE=CD,DF=AD时,求证:①∠CAD=∠CDF,②BD=EF;(2)如图2,当BC=2AC,CE=2CD,DF=2AD时,猜想BD和EF之间的数量关系?并说明理由.【分析】(1)①根据同角的余角相等证明;②作FH⊥BC交BC的延长线于H,证明△ACD≌△DHF,根据全等三角形的性质得到DH=AC,结合图形证明即可;(2)作FG⊥BC交BC的延长线于G,证明△ACD∽△DGF,根据相似三角形的性质得到DG=2AC,证明结论.【解答】(1)证明:①∵∠ACB=90°,∴∠CAD+∠ADC=90°,∵∠CDF+∠ADC=90°,∴∠CAD=∠CDF;②作FH⊥BC交BC的延长线于H,则四边形FECH为矩形,∴CH=EF,在△ACD和△DHF中,,∴△ACD≌△DHF(AAS)∴DH=AC,∵AC=CB,∴DH=CB,∴DH﹣CD=CB﹣CD,即HG=BD,∴BD=EF;(2)BD=EF,理由如下:作FG⊥BC交BC的延长线于G,∵∠CAD=∠GDF,∠ACD=∠DGF=90°,∴△ACD∽△DGF,∴===2,即DG=2AC,GF=2CD,∵BC=2AC,CE=2CD,∴BC=DG,GF=CE,∴BD=CG,∵GF∥CE,GF=CE,∠G=90°,∴四边形FECG为矩形,∴CG=EF,∴BD=EF.9.如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC 交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.【分析】(1)由条件易证△ABC≌△ADE,得∠BAC=∠DAE,∴∠BAD=∠CAE.(2)PD=AD﹣AP=6﹣x,∵点P在线段BC上且不与B、C重合,∴AP的最小值即AP⊥BC时AP的长度,此时PD可得最大值.(3)I为△APC的内心,即I为△APC角平分线的交点,应用“三角形内角和等于180°“及角平分线定义即可表示出∠AIC,从而得到m,n的值.【解答】解:(1)在△ABC和△ADE中,(如图1)∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE即∠BAD+∠DAC=∠DAC+∠CAE∴∠BAD=∠CAE.(2)∵AD=6,AP=x,∴PD=6﹣x当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值.(3)如图2,设∠BAP=α,则∠APC=α+30°,∵AB⊥AC∴∠BAC=90°,∠PCA=60°,∠P AC=90°﹣α,∵I为△APC的内心∴AI、CI分别平分∠P AC,∠PCA,∴∠IAC=∠P AC,∠ICA=∠PCA∴∠AIC=180°﹣(∠IAC+∠ICA)=180°﹣(∠P AC+∠PCA)=180°﹣(90°﹣α+60°)=α+105°∵0<α<90°,∴105°<α+105°<150°,即105°<∠AIC<150°,∴m=105,n=150.10.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF;(3)如图3,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+AN =AM.【分析】(1)根据等腰三角形的性质、直角三角形的性质得到AD=BD=DC=,求出∠MBD=30°,根据勾股定理计算即可;(2)证明△BDE≌△ADF,根据全等三角形的性质证明;(3)过点M作ME∥BC交AB的延长线于E,证明△BME≌△AMN,根据全等三角形的性质得到BE=AN,根据等腰直角三角形的性质、勾股定理证明结论.【解答】(1)解:∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=BD=DC,∠ABC=∠ACB=45°,∠BAD=∠CAD=45°,∵AB=2,∴AD=BD=DC=,∵∠AMN=30°,∴∠BMD=180°﹣90°﹣30°=60°,∴∠MBD=30°,∴BM=2DM,由勾股定理得,BM2﹣DM2=BD2,即(2DM)2﹣DM2=()2,解得,DM=,∴AM=AD﹣DM=﹣;(2)证明:∵AD⊥BC,∠EDF=90°,∴∠BDE=∠ADF,在△BDE和△ADF中,,∴△BDE≌△ADF(ASA)∴BE=AF;(3)证明:过点M作ME∥BC交AB的延长线于E,∴∠AME=90°,则AE=AM,∠E=45°,∴ME=MA,∵∠AME=90°,∠BMN=90°,∴∠BME=∠AMN,在△BME和△NMA中,,∴△BME≌△NMA(ASA),∴BE=AN,∴AB+AN=AB+BE=AE=AM.11.如图,是具有公共边AB的两个直角三角形,其中,AC=BC,∠ACB=∠ADB=90°.(1)如图1,若延长DA到点E,使AE=BD,连接CD,CE.①求证:CD=CE,CD⊥CE;②求证:AD+BD=CD;(2)若△ABC与△ABD位置如图2所示,请直接写出线段AD,BD,CD的数量关系.【分析】(1)①根据四边形的内角和得到∠DAC+∠DBC=180°,推出∠DBC=∠EAC,根据全等三角形的性质得到CD=CE,∠BCD=∠ACE,求得∠DCE=90°,根据垂直的定义得到结论;②由已知条件得到△CDE是等腰直角三角形,求得DE=CD,根据线段的和差即可得到结论;(2)如图2,在AD上截取AE=BD,连接CE,根据等腰直角三角形的性质得到∠BAC =∠ABC=45°,求得∠CBD=∠CAE,根据全等三角形的性质得到CD=CE,∠BCD =∠ACE,求得∠DCE=90°,根据线段的和差即可得到结论.【解答】(1)证明:①在四边形ADBC中,∠DAC+∠DBC+∠ADB+∠ACB=360°,∵∠ADB+∠ACB=180°,∴∠DAC+∠DBC=180°,∵∠EAC+∠DAC=180°,∴∠DBC=∠EAC,∵BD=AE,BC=AC,∴△BCD≌△ACE(SAS),∴CD=CE,∠BCD=∠ACE,∵∠BCD+∠DCA=90°,∴∠ACE+∠DCA=90°,∴∠DCE=90°,∴CD⊥CE;②∵CD=CE,CD⊥CE,∴△CDE是等腰直角三角形,∴DE=CD,∵DE=AD+AE,AE=BD,∴DE=AD+BD,∴AD+BD=CD;(2)解:AD﹣BD=CD;理由:如图2,在AD上截取AE=BD,连接CE,∵AC=BC,∠ACB=90°,∴∠BAC=∠ABC=45°,∵∠ADB=90°,∴∠CBD=90°﹣∠BAD﹣∠ABC=90°﹣∠BAD﹣45°=45°﹣∠BAD,∵∠CAE=∠BAC﹣∠BAD=45°﹣∠BAD,∴∠CBD=∠CAE,∵BD=AE,BC=AC,∴△CBD≌△CAE(SAS),∴CD=CE,∠BCD=∠ACE,∵∠ACE+∠BCE=∠ACB=90°,∴∠BCD+∠BCE=90°,即∠DCE=90°,∴DE===CD,∵DE=AD﹣AE=AD﹣BD,∴AD﹣BD=CD.12.如图,△ABC是等腰直角三角形,∠ACB=90°,D是射线CB上一点(点D不与点B 重合),以AD为斜边作等腰直角三角形ADE(点E和点C在AB的同侧),连接CE.(1)如图①,当点D与点C重合时,直接写出CE与AB的位置关系;(2)如图②,当点D与点C不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)当∠EAC=15°时,请直接写出的值.【分析】(1)根据等腰直角三角形的性质、平行线的判定定理解答;(2)在AF上截取AF=CD,连接EF,证明△EAF≌△EDC,根据全等三角形的性质得到EF=EC,∠AEF=∠DEC,根据平行线的判定定理证明;(3)分图②、图③两种情况,根据全等三角形的性质、等腰直角三角形的性质计算,得到答案.【解答】解:(1)当点D与点C重合时,CE∥AB,理由如下:∵△ABC是等腰直角三角形,∴∠CAB=45°,∵△ADE是等腰直角三角形,∴∠ADE=45°,∴∠CAB=∠ADE,∴CE∥AB;(2)当点D与点C不重合时,(1)的结论仍然成立,理由如下:在AC上截取AF=CD,连接EF,∵∠AED=∠ACB=90°,∴∠EAF=∠EDC,在△EAF和△EDC中,,∴△EAF≌△EDC(SAS),∴EF=EC,∠AEF=∠DEC,∵∠AED=90°,∴∠FEC=90°,∴∠ECA=45°,∴∠ECA=∠CAB,∴CE∥AB;(3)如图②,∠EAC=15°,∴∠CAD=30°,∴AD=2CD,AC=CD,∴FC=(﹣1)CD,∵△CEF为等腰直角三角形,∴EC=FC=CD,∵△ABC是等腰直角三角形,∴AB=AC=CD,∴==,如图③,∠EAC=15°,由(2)得,∠EDC=∠EAC=15°,∴∠ADC=30°,∴CD=AC,AB=AC,延长AC至G,使AG=CD,∴CG=AG﹣AC=DC﹣AC=AC﹣AC,在△EAG和△EDC中,,∴△EAG≌△EDC(SAS),∴EG=EC,∠AEG=∠DEC,∴∠CEG=90°,∴△CEG为等腰直角三角形,∴EC=CG=AC,∴=,综上所述,当∠EAC=15°时,的值为或.13.如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.【分析】(1)由折叠的性质和等边三角形的性质可得∠DFC=∠A,可证DF∥AB;(2)过点D作DM⊥AB交AB于点M,由题意可得点F在以D为圆心,DF为半径的圆上,由△ACD的面积为S1的值是定值,则当点F在DM上时,S△ABF最小时,S最大;(3)过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,由勾股定理可求BG的长,通过证明△BGD∽△BHE,可求EC的长,即可求AE的长.【解答】解:(1)∵△ABC是等边三角形∴∠A=∠B=∠C=60°由折叠可知:DF=DC,且点F在AC上∴∠DFC=∠C=60°∴∠DFC=∠A(2)存在,过点D作DM⊥AB交AB于点M,∵AB=BC=6,BD=4,∴CD=2∴DF=2,∴点F在以D为圆心,DF为半径的圆上,∴当点F在DM上时,S△ABF最小,∵BD=4,DM⊥AB,∠ABC=60°∴MD=2∴S△ABF的最小值=×6×(2﹣2)=6﹣6∴S最大值=×2×3﹣(6﹣6)=﹣3+6(3)如图,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,∵△CDE关于DE的轴对称图形为△FDE∴DF=DC=2,∠EFD=∠C=60°∵GD⊥EF,∠EFD=60°∴FG=1,DG=FG=∵BD2=BG2+DG2,∴16=3+(BF+1)2,∴BF=﹣1∵EH⊥BC,∠C=60°∴CH=,EH=HC=EC∵∠GBD=∠EBH,∠BGD=∠BHE=90°∴△BGD∽△BHE∴∴∴EC=﹣1∴AE=AC﹣EC=7﹣14.如图,△ABC中,AB=AC,∠BAC=90°,点D,E分别在AB,BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.(1)求证:DE=EF;(2)判断BD和CF的数量关系,并说明理由;(3)若AB=3,AE=,求BD的长.【分析】(1)只要证明EA=ED,EA=EF即可解决问题;(2)结论:BD=CF.如图2中,在BE上取一点M,使得ME=CE,连接DM.想办法证明DM=CF,DM=BD即可;(3)如图3中,过点E作EN⊥AD交AD于点N.设BD=x,则DN=,DE=AE =,由∠B=45°,EN⊥BN.推出EN=BN=x+=,在Rt△DEN中,根据DN2+NE2=DE2,构建方程即可解决问题;【解答】(1)证明:如图1中,∵∠BAC=90°,∴∠EAD+∠CAE=90°,∠EDA+∠F=90°,∵∠EAD=∠EDA,∴∠EAC=∠F,∴EA=ED,EA=EF,∴DE=EF.(2)解:结论:BD=CF.理由:如图2中,在BE上取一点M,使得ME=CE,连接DM.∵DE=EF.∠DEM=∠CEF,EM=EC.∴△DEM≌△FEC,∴DM=CF,∠MDE=∠F,∴DM∥CF,∴∠BDM=∠BAC=90°,∵AB=AC,∴∠DBM=45°,∴BD=DM,∴BD=CF.(3)如图3中,过点E作EN⊥AD交AD于点N.∵EA=ED,EN⊥AD,∴AN=ND,设BD=x,则DN=,DE=AE=,∵∠B=45°,EN⊥BN.∴EN=BN=x+=,在Rt△DEN中,∵DN2+NE2=DE2,∴()2+()2=()2解得x=1或﹣1(舍弃)∴BD=1.15.如图,△ABC中,AB=AC,DE垂直平分AB,交线段BC于点E(点E与点C不重合),点F为AC上一点,点G为AB上一点(点G与点A不重合),且∠GEF+∠BAC=180°.(1)如图1,当∠B=45°时,线段AG和CF的数量关系是AG=CF.(2)如图2,当∠B=30°时,猜想线段AG和CF的数量关系,并加以证明.(3)若AB=6,DG=1,cos B=,请直接写出CF的长.【分析】(1)如图1,连接AE,根据线段垂直平分线的性质得到AE=BE,根据等腰直角三角形的性质得到∠BAE=∠B=45°,BE=EC=AE,∠BAE=∠EAC=∠C=45°,根据全等三角形的性质即可得到结论;(2)如图2,连接AE,根据等腰三角形的性质和三角形的内角和得到∠BAC=120°,根据线段垂直平分线的性质得到AE=BE,求得∠BAE=∠B=30°,根据相似三角形的性质得到,解直角三角形即可得到AG=CF;(3)①当G在DA上时,如图3,连接AE,根据线段垂直平分线的性质得到AD=BD =3,AE=BE,由三角函数的定义得到BE===4,根据相似三角形的性质得到=,过A作AH⊥BC于点H由三角函数的定义即可得到结论.②当点G在BD 上,如图4,方法同(1).【解答】解:(1)相等,理由:如图1,连接AE,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B=45°,∴AE⊥BC,∵AB=AC,∴BE=EC=AE,∠BAE=∠EAC=∠C=45°,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=360°﹣180°=180°,∵∠AFE+∠CFE=180°,∴∠AGE=∠CFE,∵∠GAE=∠C=45°,∴△AEG≌△CEF(AAS),∴AG=CF;故答案为:AG=CF;(2)AG=CF,理由:如图2,连接AE,∵AB=AC,∴∠B=∠C=30°,∴∠BAC=120°,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B=30°,∴∠CAE=90°,∠BAE=∠C,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=180°,∵∠CFE+∠AFE=180°,∴∠AGE=∠CFE,∴△AGE∽△CFE,∴,在Rt△ACE中,∵∠C=30°,∴=sin C=,∴=,∴AG=CF;(3)①当G在DA上时,如图3,连接AE,∵DE垂直平分AB,∴AD=BD=3,AE=BE,∵cos B=,∴BE===4,∴AE=BE=4,∴∠BAE=∠B,∵AB=AC,∴∠B=∠C,∴∠C=∠BAE,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=360°﹣180°=180°,∵∠AFE+∠CFE=180°,∴∠CFE=∠AGE,∴△CFE∽△AGE,∴=,过A作AH⊥BC于点H,∵cos B=,cos45°=,∵>,∴∠B<45°,∴E在H的左侧,∵cos B=,∴BH=AB=×6=,∵AB=AC,∴BC=2BH=9,∵BE=4,∴CE=9﹣4=5,∵AG=AD﹣DG=3﹣1=2,∴=,∴CF=2.5;②当点G在BD上,如图4,同(1)可得,△CFE∽△AGE,∴=,∵AG=AD+DG=3+1=4,∴=,∴CF=5,综上所述,CF的长为2.5或5.16.如图,在△ABC中,AB=7.5,AC=9,S△ABC=.动点P从A点出发,沿AB方向以每秒5个单位长度的速度向B点匀速运动,动点Q从C点同时出发,以相同的速度沿CA方向向A点匀速运动,当点P运动到B点时,P、Q两点同时停止运动,以PQ为边作正△PQM(P、Q、M按逆时针排序),以QC为边在AC上方作正△QCN,设点P运动时间为t秒.(1)求cos A的值;(2)当△PQM与△QCN的面积满足S△PQM=S△QCN时,求t的值;(3)当t为何值时,△PQM的某个顶点(Q点除外)落在△QCN的边上.【分析】(1)如图1中,作BE⊥AC于E.利用三角形的面积公式求出BE,利用勾股定理求出AE即可解决问题;(2)如图2中,作PH⊥AC于H.利用S△PQM=S△QCN构建方程即可解决问题;(3)分两种情形:①如图3中,当点M落在QN上时,作PH⊥AC于H.②如图4中,当点M在CQ上时,作PH⊥AC于H.分别构建方程求解即可;【解答】解:(1)如图1中,作BE⊥AC于E.∵S△ABC=•AC•BE=,∴BE=,在Rt△ABE中,AE==6,∴coaA===.(2)如图2中,作PH⊥AC于H.∵P A=5t,PH=3t,AH=4t,HQ=AC﹣AH﹣CQ=9﹣9t,∴PQ2=PH2+HQ2=9t2+(9﹣9t)2,∵S△PQM=S△QCN,∴•PQ2=וCQ2,∴9t2+(9﹣9t)2=×(5t)2,整理得:5t2﹣18t+9=0,解得t=3(舍弃)或.∴当t=时,满足S△PQM=S△QCN.(3)①如图3中,当点M落在QN上时,作PH⊥AC于H.易知:PM∥AC,∴∠MPQ=∠PQH=60°,∴PH=HQ,∴3t=(9﹣9t),∴t=.②如图4中,当点M在CQ上时,作PH⊥AC于H.同法可得PH=QH,∴3t=(9t﹣9),∴t=,综上所述,当t=s或s时,△PQM的某个顶点(Q点除外)落在△QCN 的边上.17.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为1;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD =1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC ∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.18.(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是MG=NG;位置关系是MG⊥NG.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.【分析】(1)利用SAS判断出△ACD≌△AEB,得出CD=BE,∠ADC=∠ABE,进而判断出∠BDC+∠DBH=90°,即:∠BHD=90°,最后用三角形中位线定理即可得出结论;(2)同(1)的方法即可得出结论;(3)同(1)的方法得出MG=NG,最后利用三角形中位线定理和等量代换即可得出结论.【解答】解:(1)连接BE,CD相交于H,∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=90°∴∠CAD=∠BAE,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,∴∠BHD=90°,∴CD⊥BE,∵点M,G分别是BD,BC的中点,∴MG CD,同理:NG BE,∴MG=NG,MG⊥NG,故答案为:MG=NG,MG⊥NG;(2)连接CD,BE相交于点H,同(1)的方法得,MG=NG,MG⊥NG;(3)连接EB,DC,延长线相交于H,同(1)的方法得,MG=NG,同(1)的方法得,△ABE≌△ADC,∴∠AEB=∠ACD,∴∠CEH+∠ECH=∠AEH﹣∠AEC+180°﹣∠ACD﹣∠ACE=∠ACD﹣45°+180°﹣∠ACD﹣45°=90°,∴∠DHE=90°,同(1)的方法得,MG⊥NG,∴△MGN是等腰直角三角形.19.如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【分析】(1)利用直角三角形斜边中线的性质定理即可证明;(2)利用四边形内角和定理求出∠CME即可解决问题;(3)首先证明△ADE是等腰直角三角形,△DEM是等边三角形,设FM=a,则AE=CM=EM=a,EF=2a,推出=,=,由此即可解决问题;【解答】(1)证明:如图1中,∵DE⊥AB,∴∠DEB=∠DCB=90°,∵DM=MB,∴CM=DB,EM=DB,∴CM=EM.(2)解:∵∠AED=90°,∠A=50°,∴∠ADE=40°,∠CDE=140°,∵CM=DM=ME,∴∠MCD=∠MDC,∠MDE=∠MED,∴∠CME=360°﹣2×140°=80°,∴∠EMF=180°﹣∠CME=100°.(3)证明:如图2中,设FM=a.∵△DAE≌△CEM,CM=EM,∴AE=ED=EM=CM=DM,∠AED=∠CME=90°∴△ADE是等腰直角三角形,△DEM是等边三角形,∴∠DEM=60°,∠MEF=30°,∴AE=CM=EM=a,EF=2a,∵CN=NM,∴MN=a,∴=,=,∴=,∴EM∥AN.(也可以连接AM利用等腰三角形的三线合一的性质证明)20.如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD =CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若AC=2,CE=1,求△CGF的面积.【分析】(1)直接判断出△ACE≌△BCD即可得出结论;(2)先判断出∠BCF=∠CBF,进而得出∠BCF=∠CAE,即可得出结论;(3)先求出BD=3,进而求出CF=,同理:EG=,再利用等面积法求出ME,进而求出GM,最后用面积公式即可得出结论.【解答】解:(1)在△ACE和△BCD中,,∴△ACE≌△BCD,∴∠CAE=∠CBD;(2)如图2,记AE与CF的交点为M,在Rt△BCD中,点F是BD的中点,∴CF=BF,∴∠BCF=∠CBF,由(1)知,∠CAE=∠CBD,∴∠BCF=∠CAE,∴∠CAE+∠ACF=∠BCF+∠ACF=∠ACB=90°,∴∠AMC=90°,∴AE⊥CF;(3)如图3,记AE与CF的交点为M,∵AC=2,∴BC=AC=2,∵CE=1,∴CD=CE=1,在Rt△BCD中,根据勾股定理得,BD==3,∵点F是BD中点,∴CF=DF=BD=,同理:EG=AE=,连接EF,过点F作FH⊥BC,∵∠ACB=90°,点F是BD的中点,∴FH=CD=,∴S△CEF=CE•FH=×1×=,由(2)知,AE⊥CF,∴S△CEF=CF•ME=×ME=ME,∴ME=,∴ME=,∴GM=EG﹣ME=﹣=,∴S△CFG=CF•GM=××=.。

2020年九年级数学中考三轮复习:《三角形综合训练》(解析版)

2020年九年级数学中考三轮复习:《三角形综合训练》(解析版)

中考三轮复习:《三角形综合训练》1.如图1,在平面直角坐标系中,已知点A(a,0),B(b,0),C(2,7),连接AC,交y轴于D,且a=,()2=5.(1)求点D的坐标.(2)如图2,y轴上是否存在一点P,使得△ACP的面积与△ABC的面积相等?若存在,求点P的坐标,若不存在,说明理由.(3)如图3,若Q(m,n)是x轴上方一点,且△QBC的面积为20,试说明:7m+3n是否为定值,若为定值,请求出其值,若不是,请说明理由.解:(1)∵a=,()2=5,∴a=﹣5,b=5,∵A(a,0),B(b,0),∴A(﹣5,0),B(5,0),∴OA=OB=5.如图1,连接OC,设OD=x,∵C(2,7),∴S△AOC=×5×7=17.5,∵S△AOC =S△AOD+S△COD,∴5x•=17.5,∴x=5,∴点D的坐标为(0,5);(2)如图2,∵A(﹣5,0),B(5,0),C(2,7),∴S△ABC=×(5+5)×7=35,∵点P在y轴上,∴设点P的坐标为(0,y),∵S△ACP =S△ADP+S△CDP,D(0,5),∴5×|5﹣y|×+2×|5﹣y|×=35,解得:y=﹣5或15,∴点P的坐标为(0,﹣5)或(0,15);(3)7m+3n是定值.∵点Q在x轴的上方,∴分两种情况考虑,如图3,当点Q在直线BC的左侧时,过点Q作QH⊥x轴,垂足为H,连接CH,∵S△QBC =S△QHC+S△HBC﹣S△QHB,且S△QBC=20,∴=20,∴7m+3n=﹣5.如图4,当点Q在直线BC的右侧时,过点Q作QH⊥x轴,垂足为H,连接CH,∵S△QBC =S△QHC+S△HBC﹣S△QHB,且S△QBC=20,∴=20,∴7m+3n=75,综上所述,7m+3n的值为﹣5或75.2.平面直角坐标系中,A(a,0),B(0,b),a,b满足(2a+b+5)2+=0,将线段AB平移得到CD,A,B的对应点分别为C,D,其中点C在y轴负半轴上.(1)求A,B两点的坐标;(2)如图1,连AD交BC于点E,若点E在y轴正半轴上,求的值;(3)如图2,点F,G分别在CD,BD的延长线上,连结FG,∠BAC的角平分线与∠DFG 的角平分线交于点H,求∠G与∠H之间的数量关系.解:(1)∵(2a+b+5)2≥0,≥0,且(2a+b+5)2+=0,∴,解得:,∴A(﹣4,0),B(0,3).(2)设C(0,c),E(0,y),∵将线段AB平移得到CD,A(﹣4,0),B(0,3).∴由平移的性质得D(4,3+c),过D作DP⊥x轴于P,∴AO=4=OP,DP=3+c,OE=y,OC=﹣c,∵S△ADP =S△AOE+S梯形OEDP,∴,∴,解得y=.∴BE﹣OE=(BO﹣OE)﹣OE=BO﹣2OE=3﹣2×=﹣c=OC,∴=1.(3)∠G与∠H之间的数量关系为:∠G=2∠H﹣180°.如图,设AH与CD交于点Q,过H,G分别作DF的平行线MN,KJ,∵HD平分∠BAC,HF平分∠DFG,∴设∠BAH=∠CAH=α,∠DFH=∠GFH=β,∵AB平移得到CD,∴AB∥CD,BD∥AC,∴∠BAH=∠AQC=∠FQH=α,∠BAC+∠ACD=180°=∠BDC+∠ACD,∴∠BAC=∠BDC=∠FDG=2α,∵MN∥FQ,∴∠MHQ=∠FQH=α,∠NHF=∠DFH=β,∴∠QHF=180°﹣∠MHQ﹣∠NHF=180°﹣(α+β),∵KJ∥DF,∴∠DGK=∠FDG=2α,∠DFG=∠FGJ=2β,∴∠DGF=180°﹣∠DGK﹣∠FGJ=180°﹣2(α+β),∴∠DGF=2∠QHF﹣180°.3.在平面直角坐标系中,O 为坐标原点,A (m ,n +1),B (m +2,n ).(1)当m =1,n =2时.如图1,连接AB 、AO 、BO .直接写出△ABO 的面积为 .(2)如图2,若点A 在第二象限、点B 在第一象限,连接AB 、AO 、BO ,AB 交y 轴于H ,△ABO 的面积为2.求点H 的坐标.(3)若点A 、B 在第一象限,在y 轴正半轴上存在点C ,使得∠CAB =90°,且CA =AB ,求m 的值,及OC 的长(用含n 的式子表示).解:(1)∵A (1,3),B (3,2),∴S △ABC =3×3﹣×1×3﹣×2×1﹣×2×3=.故答案为.(2)如图2中,∵S △ABO =S △AOH +S △OBH =•OH •(m +2﹣m )=2,∴OH =2(3)如图3中,作AD ⊥y 轴于D ,BE ⊥DA 交D 的延长线于E .∵∠ADC =∠E =∠CAB =90°,∴∠DAC +∠EAB =90°,∠EAB +∠ABE =90°,∴∠DAC =∠ABE ,∵AC =AB ,∴△DAC≌△EBA(AAS),∴AD=BE=m,CD=AE=2,∴OC+CD=n+1,∴OC=n﹣1(n>1),∴OC+CD=n+m=n+1,∴m=1.4.在△ABC中,AB=AC,点D在射线BC上,连接AD.(1)如图1,当点D在线段BC上时,若AB=5,BC=8,CD=2,求△ABD的面积;(2)如图2,当点D在线段BC的延长线上时,过B作BE⊥AC分别交AC于点E,交AD 于点F,截取AC中点G,延长BG到点H,连接AH,使∠AHB=∠ACB﹣∠ABH,若∠ADB=45°,求证:AH=DF.解:(1)如图1中,作AH⊥BC于H.∵AB=AC=5,AH⊥BC,∴BH=CH=BC=4,∴在Rt△ABH中,AH===3,∴S=•BD•AH=×6×3=9.△ABD(2)如图2中,作FM⊥BD于M,作AN⊥BC于N.∵AB=AC,AN⊥BC,∴BN=CN,∠BAN=∠CAN,∠ABC=∠ACB,∵BE⊥AC,∴∠ANC=∠ANB=∠BEC=90°,∴∠CN+∠ACB=90°,∠FBM+∠ACB=90°,∴∠FBM=∠CAN=∠BAN,∵∠H=∠ACB﹣∠ABH,∴∠H=∠ABC﹣∠ABH=∠HBC,∵AG=GC,∠AGH=∠CGB,∴△AGH≌△CGB(AAS),∴AH=BC,∵∠AND=90°,∠D=45°,∴∠NAD=∠D=45°,∵∠BFA=∠D+∠FBD,∠BAF=∠DAN+∠BAN,∴∠BFA=∠BAF,∴BA=BF,∵∠ANB=∠BMF=90°,∴△ANB≌△BMF(AAS),∴BN=FM,∵DF=FM,∴DF =BN , ∴DF =2BN =BAH ,即AH =DF .5.如图,等腰三角形ABC 中,AB =AC =10cm ,BC =12cm ,AD 为底边BC 上的高,动点P 从点D 出发,沿DA 方向匀速运动,速度为1cm /s ,运动到A 点停止,设运动时间为t (s ),连接BP .(0≤t ≤8)(1)求AD 的长;(2)设△APB 的面积为y (cm 2),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使得S △APB :S △ABC =1:3,若存在,求出t 的值;若不存在,说明理由.(4)是否存在某一时刻t ,使得点P 在线段AB 的垂直平分线上?若存在,求出t 的值;若不存在,说明理由.解:(1)∵AB =AC ,AD ⊥BC ,∴BC =DC =6cm ,在Rt △ABD 中,∵∠ADB =90°,AB =10cm ,BD =6cm ,∴AD ===8(cm ).(2)y =S △APB =S △ABD ﹣S △PBD =×6×8﹣×6×t =﹣3t +24.∴y =24﹣3t (0≤t ≤8).(3)∵S△APB :S△ABC=1:3,∴(24﹣3t):×12×8=1:3,解得t=.∴满足条件的t的值为.(4)由题意点P在线段AB的垂直平分线上,∴PA=PB,在Rt△PBD中,∵PB2=PD2+BD2,∴t2=(8﹣t)2+62,解得t=.∴满足条件的t的值为.6.如图1,△ABC是边长为8的等边三角形,AD⊥BC下点D,DE⊥AB于点E (1)求证:AE=3EB;(2)若点F是AD的中点,点P是BC边上的动点,连接PE,PF,如图2所示,求PE+PF 的最小值及此时BP的长;(3)在(2)的条件下,连接EF,若AD=,当PE+PF取最小值时,△PEF的面积是2.(1)证明:如图1中,∵△ABC是等边三角形,∴AB=BC=AC=8,∠B=∠BAC=60°∵AD⊥BC,∴BD=DC=4,∵DE⊥AB,∴∠DEB=90°,∠BDE=30°,∴BE=BD=2,∴AE=AB﹣BE=8﹣2=6,∴AE=3BE.(2)解:如图2中,延长DF到H,使得DH=DF,连接EF,连接EH交BC于点P,此时PE+PF的值最小.∵∠AED=90°,AF=FD,∴EF=AF=DF,∵DF=DH,∴DE=DF=DH,∴∠FEH=90°,∵在Rt△ABD中,∠ADB=90°,BD=4,∠B=60°,∴AD=BD•tan60°=4,∵∠BAD=∠BAC=30°,FE=FA,∴∠FEA=∠FAE=30°,∴∠EFH=60°,∠H=30°,∵FH=AD=4,∴EH=FH•cos30°=6,∴PE+PF的最小值=PE+PH=EH=6,∵PD=DH•sin30°=2,∴BP=BD﹣PD=2.(3)解:如图2中,∵BE=BP=2,∠B=60°,∴△BPE是等边三角形,∴PE=2,∵∠PEF=90°,EF=AF=DF=2,∴S=•PE•EF=×2×2=2.△PEF7.在△ABC中,∠ABC=60°(1)AB=AC,PA=5,PB=3①如图1,若点P是△ABC内一点,且PC=4,求∠BPC的度数.②如图2,若点P是△ABC外一点,且∠APB=60°,求PC的长.(2)如图3,AB<AC,点P是△ABC内一点,AB=6,BC=8,则PA+PB+PC的最小值是2.解:(1)在△ABC中,∠ABC=60°,AB=AC,∴△ABC是等边三角形,①如图1,将△ABP绕点B顺时针旋转60°得到△CBP′,连接PP′,∴BP=BP′,∠PBP′=∠ABC=60°,∴△BPP′是等边三角形;∴PP′=PB,∠BPP′=60°,由旋转的性质得,P′C=PA=5,∵PP′2+PC2=32+42=25=P′C2,∴△CPP′是直角三角形,∠CPP′=90°,∴∠BPC=∠BPP′+∠CPP′=60°+90°=150°;②如图2中,以AP为边向上作等边△PAE,作EF⊥BP交BP的延长线于F.∵∠EAP=∠BAC=60°,∴∠EAB=∠PAC,∵AE=AP,AB=AC,∴△EAB≌△PAC(SAS),∴BE=PC,∵∠APE=∠APB=60°,∴∠EPF=180°﹣60°﹣60°=120°,∵PE=PA=5,∴PF=PE•cos60°=,EF=PE•sin60°=,∴BF=BP+PF=3+=,∴BE===7,∴PC=PE=7.(2)如图3中,将△PBF绕点B逆时针旋转60°得到△BFE,作EH⊥CB交CB的延长线于H.∵∠ABC=60°,∠PBF=60°,∵∠ABP=∠EBF,∴∠EBF+∠BC=60°,∴∠EBC=120°,∵PB=BF,∠PBF=60°,∴△PBF是等边三角形,∴PB=PF,∵PA=EF,∴PA+PB+PC=CP+PF+EF,根据两点之间线段最短可知,当E,F,P,C共线时,PA+PB+PC的值最小,最小值=EC 的长,在Rt△EBH中,∵∠EBH=60°,EB=6,∴BH=BE•cos60°=3,EH=EB•sin60°=3,∴CH=BH+CB=3+8=11,∴EC===2.8.全等三角形是研究图形性质的主要工具,以此为基础,我们又探索出一些轴对称图形的性质与判定.通过寻找或构造轴对称图形,能运用其性质及判定为解题服务.(1)如图①,BE⊥AC,CD⊥AB,BD=CE,BE与CD相交于点F.①求证:BE=CD;②连接AF,求证:AF平分∠BAC.(2)如图②,在△ABC中,AB=AC,点D、E分别在AB、AC上,且BD=CE.请你只用无刻度的直尺画出∠BAC的平分线.(不写画法,保留画图痕迹).(3)如图③,在△ABC中,仍然有条件“AB=AC,点D,E分别在AB和AC上”.若∠ADC+∠AEB=180°,则CD与BE是否仍相等?为什么?(1)①证明:∵BE⊥AC,CD⊥AB,∴∠BDF=∠CEF=90°,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD;②证明:由①得:DF=EF,∵BE⊥AC,CD⊥AB,∴AF平分∠BAC.(2)解:连接BE、CD交于点O,作射线AO交BC于F,如图②所示:AF即为所求;理由如下:∵AB=AC,∴∠DBC=∠ECB,在△BDC和△CEB中,,∴△BDC≌△CEB(SAS),∴∠BCD=∠CBE,∴∠ABO=∠ACO,OB=OC,同理:△ABO≌△ACO(SAS),∴∠OAB=∠OAC,∴AF是∠BAC的平分线;(3)解:CD=BE,理由如下:分别作CF⊥AB于F,BG⊥AC于G,如图③所示:∴∠CFB=90°,∠BGC=90°,∵AB=AC,∴∠ABC=∠ACB,在△FBC和△GCB中,,∴△FBC≌△GCB(AAS).∴CF=BG,∵∠ADC+∠AEB=180°,又∵∠BEG+∠AEB=180°,∴∠ADC=∠BEG,在△CFD和△BGE中,,∴△CFD≌△BGE(AAS),∴CD=BE.9.如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒lcm 的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)当点P在AC上,且满足PA=PB时,求出此时t的值;(2)当点P在∠BAC的角平分线上时,求出此时t的值;(3)当P在运动过程中,求出t为何值时,△BCP为等腰三角形.(直接写出结果)(4)若M为AC上一动点,N为AB上一动点,是否存在M、N使得BM+MN的值最小?如果有请求出最小值,如果没有请说明理由.解:(1)∵△ABC中,∠ACB=90°,AB=10,BC=6,∴由勾股定理得AC==8,连接BP,如图所示:当PA=PB时,PA=PB=t,PC=8﹣t,在Rt△PCB中,PC2+CB2=PB2,即(8﹣t)2+62=t2,解得:t=,∴当t=秒时,PA=PB;(2)如图1,过P作PE⊥AB,又∵点P恰好在∠BAC的角平分线上,且∠C=90°,AB=10,BC=6,∴CP=EP,在Rt△ACP和Rt△AEP中,,∴Rt△ACP≌Rt△AEP(HL),∴AC=AE=8,∴BE=2,设CP=EP=x,则BP=6﹣x,在Rt△BEP中,BE2+PE2=BP2,即22+x2=(6﹣x)2,解得x=,∴CP=,∴CA+CP=8+=,∴t=;当点P沿折线A﹣C﹣B﹣A运动到点A时,点P也在∠BAC的角平分线上,此时,t=10+8+6=24;综上,若点P恰好在∠BAC的角平分线上,t的值为秒或24秒;(3)①如图2,点P在CA上,当CP=CB=6时,△BCP为等腰三角形,则t=8﹣6=2;②如图3,当BP=BC=6时,△BCP为等腰三角形,∴AC+CB+BP=8+6+6=20,∴t=20;③如图4,若点P在AB上,当CP=CB=6时,△BCP为等腰三角形;作CD⊥AB于D,则根据面积法求得:CD==4.8,在Rt△BCD中,由勾股定理得,BD==3.6,∴PB=2BD=7.2,∴CA+CB+BP=8+6+7.2=21.2,此时t=21.2;④如图5,当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,则D为BC的中点,∴PD为△ABC的中位线,∴AP=BP=AB=5,∴AC+CB+BP=8+6+5=19,∴t=19;综上所述,t为2s或20s或21.2s或19s时,△BCP为等腰三角形.(4)存在M、N使得BM+MN的值最小,理由如下:作点B关于AC的对称点B',过B'作AB的垂线交AC于M,交AB于N,连接BM,如图6所示:则B'C=BC=6,B'M=BM,∠B'NB=90°,BM+MN=B'M+MN=B'N,∴BB'=2BC=12,∵∠ACB=∠B'NB=90°,∠B'BN=∠ABC,∴△B'BN∽△ABC,∴===,∴B'N=AC=×8=9.6,综上所述,存在M、N使得BM+MN的值最小,BM+MN的最小值为9.6.10.如图1,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,过点H作直线l⊥AO于H,分别交直线AB、AC、BC、于点N、E、M.(1)当直线l经过点C时(如图2),求证:BN=CD;(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;(3)请直接写出BN、CE、CD之间的等量关系.(1)证明:连接ND,如图2所示:∵AO平分∠BAC,∴∠BAD=∠CAD,∵直线l⊥AO于H,∴∠AHN=∠AHE=90°,∴∠ANH=∠AEH,∴AN=AC,∴NH=CH,∴AH是线段NC的中垂线,∴DN=DC,∴∠DNH=∠DCH,∴∠AND=∠ACB,∵∠AND=∠B+∠BDN,∠ACB=2∠B,∴∠B=∠BDN,∴BN=DN,∴BN=DC;(2)解:当M是BC中点时,CE和CD之间的等量关系为CD=2CE,理由如下:过点C作CN'⊥AO交AB于N',过点C作CG∥AB交直线l于点G,如图3所示:由(1)得:BN'=CD,AN'=AC,AN=AE,∴∠ANE=∠AEN,NN'=CE,∴∠ANE=∠CGE,∠B=∠BCG,∴∠CGE=∠AEN,∴CG=CE,∵M是BC中点,∴BM=CM,在△BNM和△CGM中,,∴△BNM≌△CGM(ASA),∴BN=CG,∴BN=CE,∴CD=BN'=NN'+BN=2CE;(3)解:BN、CE、CD之间的等量关系:当点M在线段BC上时,CD=BN+CE;理由如下:过点C作CN'⊥AO交AB于N',如图3所示:由(2)得:NN'=CE,CD=BN'=BN+CE;当点M在BC的延长线上时,CD=BN﹣CE;理由如下:过点C作CN'⊥AO交AB于N',如图4所示:同(2)得:NN'=CE,CD=BN'=BN﹣CE;当点M在CB的延长线上时,CD=CE﹣BN;理由如下:过点C作CN'⊥AO交AB于N',如图5所示:同(2)得:NN'=CE,CD=BN'=CE﹣BN.11.在平面直角坐标系中,直线AB交y轴于A(0,a),交x轴于B(b,0),且a,b满足(a﹣b)2+|3a+5b﹣88|=0.(1)求点A,B的坐标;(2)如图1,已知点D(2,5),求点D关于直线AB对称的点C的坐标.(3)如图2,若P是∠OBA的角平分线上的一点,∠APO=67.5°,求的值.解:(1)由题意得解得∴A(0,11),B(11,0)(2)如图一,延长FD交AB于点E,连结CE因为OB=OA=11所以三角形OAB是等腰直角三角形易得△DEC,△AFE都是等腰直角三角形所以FE=AF=OA﹣OF=11﹣5=6∴CE=DE=EF﹣FD=6﹣2=4所以C的横坐标为6.,纵坐标为5+4=9故C的坐标为(6,9)(3)如上图,作PM垂直AB于点M,作PM垂直OB于点L,在L的左侧取一点N,使得NL=AM ∵PB是∠ABO的平分线所以PM=PL∴△AMP≌△NLP∴∠NLP=∠APM∴∠APN=∠MPL∵∠ABO=45°∴∠MPL=135°∴∠APN=135°又∠APO=67.5°∴∠NPO=∠APO=67.5°∵PN=PA,PO=PO∴△OPN≌OPA∴∠PON=∠POA=45°,NO=AO=11设NL=a,则MA=a,∴BL=BM=a+11∵BL=22﹣a∴22﹣a=a+11∴a=11﹣∴LO=11﹣(11﹣)=∴PO=LO=11所以=312.以△ABC的边AB,AC为直角边向外作等腰直角三角形ABE和等腰直角三角形ACD,AB =AE,AC=AD,∠BAE=∠CAD=90°,M是BC中点,连接AM,DE.(1)如图1,在△ABC中,当∠BAC=90°时,求AM与DE的数量和位置关系.(2)如图2,当△ABC为一般三角形时,(1)中的结论是否依然成立?说明理由.(3)如图3,若以△ABC的边AB,AC为直角边向内作等腰直角三角形ABE和等腰直角三角形ACD,其他条件不变(1)中的结论是否依然成立,并说明理由.解:(1)AM=DE,AM⊥DE,理由如下:延长MA交DE于F,如图1所示:∵∠BAC=90°,M是BC中点,∴AM=BC,∵∠BAE=∠CAD=90°,∠BAC=90°,∴∠EAD=90°,在△ABC和△AED中,,∴△ABC≌△AED(SAS),∴DE=BC,∠ABC=∠AED,∴AM=DE,∵∠BAE=90°,∴∠BAM+∠EAF=90°,∴∠AED+∠EAF=90°,∴∠AFE=90°,∴AM⊥DE;(2)(1)中的结论成立,AM=DE,AM⊥DE,理由如下:延长AM至N,使MN=AM,连接BN、CN,延长MA交DE于F,如图2所示:∵M是BC中点,∴BM=CM,∴四边形ABNC是平行四边形,∴BN=AC=AD,BN∥AC,∴∠NBA+∠BAC=180°,∵∠BAE=∠CAD=90°,∴∠DAE+∠BAC=180°,∴∠NBA=∠DAE,在△ABN和△EAD中,,∴△ABN≌△EAD(SAS),∴AN=DE=2AM,∠BAN=∠AED,∴AM=DE,∵∠BAE=90°,∴∠BAN+∠EAF=90°,∴∠AED+∠EAF=90°,∴∠AFE=90°,∴AM⊥DE;(3)(1)中的结论成立,理由如下:由(1)的结论,当∠BAC=90°,可得AM=DE,AM⊥DE,当∠BAC≠90°时,延长CA到F,使AF=AC,连接BF,延长AM交DE于G,如图3所示:则AF=AX=AD,∵M是BC中点,∴AM是△BCF的中位线,∴AM=BF,AM∥BF,∴∠MAC=∠F,∵∠BAE=∠DAC=90°,∴∠DAF=90°,∴∠BAE=∠DAF,∴∠BAF=∠EAD,在△ABF和△AED中,,∴△ABF≌△AED(SAS),∴BF=DE,∠F=∠ADE,∴AM=DE,∴∠BAC=∠ADE,∵∠MAC+∠DAM=∠DAC=90°,∴∠ADE+∠DAM=90°,∴∠AGD=90°,∴AM⊥DE;综上所述,(1)中的结论成立.13.在平面直角坐标系中,点A的坐标为(0,4)(1)如图1,若点B的坐标为(3,0),△ABC是等腰直角三角形,BA=BC,∠ABC=90°,求C点坐标.(2)如图2,若点E是AB的中点,求证:AB=2OE;(3)如图3,△ABC是等腰直角三角形,BA=BC,∠ABC=90°,△ACD是等边三角形,连接OD,若∠AOD=30°,求B点坐标.(1)解:过点C作CD⊥x轴于D,如图1所示:∵∠ABC=90°,∴∠ABO+∠CBD=90°,∵∠AOB=90°,∴∠ABO+∠BAO=90°,∴∠CBD=∠BAO,∵CD⊥x轴,∴∠BDC=90°=∠AOB,在△BDC和△AOB中,,∴△AOB≌△BDC(AAS),∴OA=DB,OB=DC,∵点A(0,4),点B(3,0),∴DB=4,DC=3,∴OD=4+3=7,∴C点坐标为(7,3);(2)证明:延长OE至F点,使得EO=EF,连接FB,如图2所示:∵点E为AB的中点,∴EA=EB,在△AOE和△BFE中,,∴△AOE≌△BFE(SAS),∴OA=FB,∠AOE=∠F,∴OA∥BF,∴∠AOB+∠FBO=180°,∵∠AOB=90°,∴∠FBO=90°,∴∠AOB=∠FBO,在△AOB和△FBO中,,∴△AOB≌△FBO(SAS),∴AB=OF,∵EA=EB,EO=EF,∴OE=AE=EB,∴AB=2OE;(3)解:过点D作DM⊥y轴于M,CN⊥OD于N,CH⊥y轴于H,CG⊥x轴于G,如图3所示:则四边形OHCG是矩形,∴OH=CG,∵∠AOD=30°,∴∠ODM=90°﹣30°=60°,OD=2DM,∵△ADC为等边三角形,∴AD=CD=AC,∠ADC=60°,∵∠ADM+∠ADO=60°,∠CDN+∠ADO=60°,∴∠ADM=∠CDN,在△DMA和△DNC中,,∴△DMA≌△DNC(AAS),∴DM=DN,∴OD=2MD=2DN,∴DN=ON,∴CD=CO=AC,∴HA=HO=CG=2,由(1)得CG=OB∴OB=2,∴B点坐标为(2,0).14.已知,△ABC,AD⊥BD于点D,AE⊥CE于点E,连接DE.(1)如图1,若BD,CE分别为△ABC的外角平分线,求证:DE=(AB+BC+AC);(2)如图2,若BD,CE分别为△ABC的内角平分线,(1)中的结论成立吗?若成立请说明理由;若不成立,请猜想出新的结论并证明;(3)如图3,若BD,CE分别为△ABC的一个内角和一个外角的平分线,AB=8,BC=10,AC=7,请直接写出DE的长为 4.5 .(1)证明:如图1,分别延长AE、AD交BC于H、K,在△BAD和△BKD中,∵,∴△BAD≌△BKD(ASA),∴AD=KD,AB=KB,同理可证,AE=HE,AC=HC,∴DE=HK,又∵HK=BK+BC+CH=AB+BC+AC,∴DE=(AB+AC+BC);(2)解:结论不成立.DE=(AB+AC﹣BC).理由:如图2,分别延长AE、AD交BC于H、K,在△BAD和△BKD中,∵,∴△BAD≌△BKD(ASA),∴AD=KD,AB=KB,同理可证,AE=HE,AC=HC,∴DE=HK,又∵HK=BK﹣BH=AB+AC﹣BC,∴DE=(AB+AC﹣BC);(3)解:分别延长AE、AD交BC或延长线于H、K,在△BAD和△BKD中,∵,∴△BAD≌△BKD(ASA),∴AD=KD,AB=KB同理可证,AE=HE,AC=HC,∴DE=KH又∵KH=BC﹣BK+HC=BC+AC﹣AB.∴DE=(BC+AC﹣AB),∵AB=8,BC=10,AC=7,∴DE=(10+7﹣8)=4.5,故答案为4.5.15.在平面直角坐标系中,点A(a,0)、C(b,0)、B(0,),a、b满足:a2+2ab+2b2﹣4b+4=0,且AB=AC.(1)判断△ABC的形状并证明;(2)如图1,点D为BA延长线上一点,AD=AB,E为x轴负半轴上一点,F为DE上一点,连接CF交AD于点G,∠EFC=120°,求的值;(3)如图2,R(3a,0)点P为线段BR上一动点,以AP为边作等腰△APQ,PA=PQ,且∠APQ=∠RAB,连接AQ.当点P运动时,△ABQ的面积是否变化?若不变,求其值;若变化,求其变化范围.解:(1)结论:△ABC是等边三角形.理由:∵a2+2ab+2b2﹣4b+4=0,∴(a+b)2+(b﹣2)2=0,∵(a+b)2≥0,(b﹣2)2≥0,∴a=﹣2,b=2,∴A(﹣2,0),C(2,0),∴OA=OC,∵BO⊥AC,∴BA=BC,∵AB=AC,∴AB=AC=BC,∴△ABC是等边三角形.(2)如图1中,作BH∥DE交x轴于H.∵∠DEA=∠BHA,∠DAE=∠BAH,AD=AB,∴△DAE≌△BAH(AAS),∴AE=AH,∵∠D+∠DGF=∠EFH=120°,∠D+∠DEA=∠DAC=120°,∴∠DEA=∠DGF=∠AGH,∴∠AGH=∠BHC,∵∠GAH=∠BCH=120°,AH=BC,∴△AHG≌△CBH(AAS),∴AG=CH,∴===2.=4.(3)结论:△ABQ的面积不变,S△ABQ理由:如图2中,在x轴的正半轴上取一点M,使得PR=PM,连接PM,QR.由题意R(﹣6,0),A(﹣2,0),B(0,﹣2),∴OR=6,OB=2,∴tan∠PQM=,tan∠OAB=∴∠PRM=∠PMR=30°,∠OAB=60°,∴∠RPM=120°,∵∠RPM=∠APQ=120°,∴∠APM=∠RPQ,∵PR=PM,PQ=PQ,∴△PRQ≌△PMA(SAS),∴∠PRQ=∠AMP=30°,∴∠ARQ=60°=∠OAB,∴AB∥QR,∴S△ABQ =S△ABR=×4×2=4.16.在平面直角坐标系中,点A(0,m)和点B(n,0)分别在y轴和x轴的正半轴上,满足(m﹣n)2+|m+n﹣8|=0,连接线段AB,点C为AB上一动点.(1)填空:m= 4 ,n= 4 ;(2)如图,连接OC并延长至点D,使得DC=OC,连接AD.若△AOC的面积为2,求点D 的坐标;(3)如图,BC=OB,∠ABO的平分线交线段AO于点E,交线段OC于点F,连接EC.求证:①△ACE为等腰直角三角形;②BF﹣EF=OC.解:(1)∵(m﹣n)2+|m+n﹣8|=0,∴m=n=4,故答案为:4,4;(2)如图1,过点C作CH⊥OA,CG⊥OB,∵点A(0,4)和点B(4,0),∴OA=OB=4,=×4×4=8,∴S△ABO∵△AOC的面积为2,∴AO×CH=×4×CH=2,S=6=×OB×CG=×4×CG,△BOC∴CH=1,CG=3,∴点C(1,3),∵DC=OC,∴点D(2,6)(3)①∵OA=OB=4,∠AOB=90°,∴∠OAB=∠OBA=45°,∵BE平分∠ABO,∴∠EBO=∠EBC,且BE=BE,OB=OC,∴△OBE≌△CBE(SAS)∴∠EOB=∠ECB=90°,∴∠ACE=90°,且∠OAB=45°,∴∠CAE=∠AEC=45°,∴AC=CE,且∠ACE=90°,∴△ACE是等腰直角三角形;②如图2,作OM平分∠AOB,交BE于点M,∵OM平分∠AOB,∴∠AOM=∠BOM=45°,∴∠AOM=∠BOM=∠OAB=∠OBA,∵OB=OC,BE平分∠ABO,∠ABO=45°,∴∠OBE=22.5°,BE⊥OC,∠COB=∠OCB=67.5°,∴∠AOC=22.5°=∠COM,∴∠AOC=∠BOM,且OB=OA,∠OAB=∠OBM,∴△ACO≌△OMB(ASA)∴BM=OC,∵∠EFO=∠MFO=90°,OF=OF,∠AOC=∠COM,∴△EFO≌△MFO(ASA)∴EF=FM,∴BF﹣EF=BF﹣FM=BM=OC.17.【问题发现】(1)如图①,数学课外资料《全品》P4页有一道题条件为:“D是等边三角形ABC的边BC上的一动点,以AD为边在AB上方作等边△ADE,若AB=10,AD=8……”,小明认为AD有最小值,条件AD=8是错误的,他的想法得到了王老师的肯定,那么AD的最小值是5.王老师又让小明研究了以下两个问题:【问题探究】(2)如图②,在等腰直角△ABC中,∠ACB=90°,AC=BC=2,点D在AB上,且AD =1,以CD为直角边向右作等腰直角△DCE,连接BE,求△BDE的周长;【问题解决】(3)如图③,△ABC中,∠A=45°,∠ABC=60°,AB=3+,点D是边AB上任意一点,以CD为边在AD的右侧作等边△DCE,连接BE,试求△BDE面积的最大值.【问题发现】解:(1)当AD⊥BC时,AD的值最小,∵△ABC是等边三角形,AD⊥BC,∴BC=AB=10,BD=BC=5,∴AD===5,故答案为:5;【问题探究】解:(2)作CM⊥AB于M,如图②所示:∵∠ACB=90°,AC=BC=2,∴∠A=∠ABC=45°,AB=AC=4,CM=AB=AM=BM=2,∴DM=AM﹣AD=1,∴BD=BM+DM=3,CD===,∵△DCE是等腰直角三角形,∴CD=CE,∠DCE=90°=∠ACB,DE=CD=,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE=1,∴△BDE的周长=BD+BE+DE=3+1+=4+;【问题解决】解:(3)作CM⊥AB于M,作EN⊥AB于N,如图③所示:∵∠A=45°,∠ABC=60°,∴△ACM是等腰直角三角形,∠BCM=30°,∴AM=CM,CM=BM,设BM=x,则AM=CM=x,∴AB=x+x=3+,解得:x=,∴BM=,CM=AM=3,设AD=y,则DM=3﹣y,BD=3+﹣y,∵△CDE是等边三角形,∴∠DCE=60°CD=CE,∴∠DCM+∠BCE=30°=∠BCM,在MB上截取MH=MD=3﹣y,连接CH,则CD=CH=CE,∵CM⊥DH,∴∠DCM=∠HCM,∴∠BCH=∠BCE,在△BCH和△BCE中,,∴△BCH≌△BCE(SAS),∴∠CBH=∠CBE=60°,BH=BE=3+﹣y﹣2(3﹣y)=y+﹣3,∴∠EBN=60°,∵EN⊥AB,∴∠BEN=30°,∴BN=BE,EN=BN=BE=(y+﹣3),∵△BDE的面积=BD×EN=×(3+﹣y)×(y+﹣3)=(﹣y2+6y﹣6)=﹣(y﹣3)2+,∴当y=3,即AD=3时,△BDE面积的最大值为.18.等腰Rt△ABC中,∠ABC=90°,AB=BC,F为AB上的一点,连接CF,过点B作BH⊥CF交CF于G,交AC于H.(1)如图1,延长BH到点E,连接AE,当∠EAB=90°,AE=3,求BF的长;(2)如图2,若F为AB的中点,连接FH,求证:BH+FH=CF;(3)如图3,在AB上取点K,使AK=BF,连接HK并延长与CF的延长线交于点P,若G 为CP的中点,PG=2.求AH+BH的值(直接写出答案)解:(1)∵BH⊥CF,∠ABC=90°,∴∠ABE+∠CFB=∠CFB+∠BCF=90°,∴∠ABE=∠BCF,在△ABE与△BCF中,,∴△ABE≌△BCF(ASA),∴BF=AE=3.(2)证明:如图2中,过点A作AD⊥AB交BH的延长线于点D.∴∠BAD=∠CBF=90°,∴∠D+∠ABD=∠CFB+∠ABD=90°,∴∠ABD=∠BCF,在△ABD与△BCF中,,∴Rt△BAD≌Rt△CBF(AAS),∴AD=BF,BD=CF.∵F为AB的中点,∴AF=BF,∴AD=AF,在△ADH与△AFH中,,∴△AHD≌△AHF(SAS),∴DH=FH.∵BD=BH+DH=BH+FH,∴BH+FH=CF;(3)如图3中,过A作AM⊥AB,交BH延长线于M,由(2)证得△MAB≌△FBC,∴AM=BF=AK,∠AMB=∠CFB,∵△ABC是等腰直角三角形,∴∠CAB=45°,∵∠MAB=90°,∴∠MAH=45°,∴∠MAH=∠CAB,在△MAH与△KAH中,,∴△MAH≌△KAH(SAS),∴∠AMB=∠AKH,∴∠AKH=∠CFB,∵∠AKH=∠PKF,∠CFB=∠PFK,∴∠PKF=∠PFK,∵FC⊥BH,G是PC中点,∴CH=PH,∴∠AHK=2∠P,在△PFK中,∠PKF==90°﹣∠P,则90°﹣∠P+45°+2∠P=180°,解得∠P=30°,在CH上取一点R,使RH=BH,连接BR,∴∠RHB==60°,∴△RHB是等边三角形,∴BH=BR=RH,∵∠CAB=∠ACB=45°,∠AHB=180°﹣60°=120°,∠BRC=180°﹣60°=120°,∴∠ABH=∠RBC,在△ABH与△CBR中,,∴△ABH≌△CBR(ASA),∴AH=CR,∵cos30°=,∴CH==CG=PG,∴RH+RC=BH+AH=PG=,∴BH+AH=.19.如图(1),AB=8cm,AC⊥AB,BD⊥AB,AC=BD=6cm.点P在线段AB上以2m/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t (s)(1)若点Q的运动速度与点P的运动速度相等,当t=1时,判断线段PC与PQ满足的关系,并说明理由.(2)如图(2),将图(1)中的AC⊥AB,BD⊥AB为改“∠CAB=∠DBA=a°”,其它条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.解:(1)△ACP≌△BPQ,∵AC⊥AB,BD⊥AB∴∠A=∠B=90°∵AP=BQ=2∴BP=6∴BP=AC,在△ACP和△BPQ中,,∴△ACP≌△BPQ,∴∠C=∠QPB,∵∠APC+∠C=90°,∴∠APC+∠QPB=90°,∴PC⊥PQ;(2)存在x的值,使得△ACP与△BPQ全等,①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:6=8﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:6=xt,2t=8﹣2t解得:x=3,t=2.20.已知△ABC是等边三角形.(1)如图1,点D是BC边的中点,点P在直线AC上,若△PAD是轴对称图形,则∠APD 的度数为120°或75°或30°或15°.(2)如图2,点D在BC边上,∠ADG=60°,DG与∠ACB的外角平分线交于G,GH⊥AC 于H,当点D在BC边上移动时,请判断线段AH,AC,CD之间的数量关系,并说明理由.(3)如图3,点D在BC延长线上,连接AD,E为AD上一点,AE=AC,连接BE交AC于F,若AF=2ED=3,则线段CF的长为.解:(1)如图1中,当△PAD是等腰三角形时,是轴对称图形.当AP=AD时,可得∠AP1D=15°,∠AP3D=75°.当PA=PD时,可得∠AP2D=120°.当DA=DP时,可得∠AP4D=30°,综上所述,满足条件的∠APD的值为120°或75°或30°或15°.故答案为120°或75°或30°或15°.(2)结论:AC+CD=2AH.理由:如图2中,连接AG,作GN⊥CM于N,在BA上截取BQ,使得BQ=BD,∵△ABC是等边三角形,∴AB=BC=AC,∠B=∠BAC=∠ACB=60°,∵BQ=BD,∴△BDQ是等边三角形,AQ=DC,∴∠BQD=60°,∴∠AQD=120°,∵CG是∠ACB的外角平分线,∴∠ACG=60°,∠DCG=120°,∵∠ADG=60°,∴∠ADB+∠GDC=120°,∵∠QAD+∠ADB=120°,∴∠QAD=∠CDG,∴△AQD≌△DCG(ASA),∴AD=DG,∵∠ADG=60°,∴△ADG是等边三角形,∴AG=DG,∵GH⊥C,GN⊥CM,CG平分∠ACM,∴GH=GN,∠GHC=∠GNC=90°,∵CG=CG,∴Rt△CGH≌Rt△CGN(HL),Rt△AGH≌Rt△DGN,∴CH=CN,AH=DN,∴AC+CD=AH+CH+DN﹣CN=2AH.(3)如图3中,在BC上截取BG=CF,则CG=AF=3,过点D作QH∥AB,分别交AC,BE 的延长线于Q,H.∵AB=AE,∴∠ABE=∠AEB,∵QH∥AB,∴∠ABE=∠H,∵∠AEB=∠DEH,∴∠H=∠DEH,∴DE=DH=1.5,设AB=BC=AC=m,∵△ABG≌△BCF(SAS),∴∠BAG=∠CBF,设∠BAG=∠CBF=x,∵AB=AE,∴∠ABE=∠AEB=60°﹣x,∴∠BAE=180°﹣2(60°﹣x)=60°+2x,∴∠DAG=∠DGA=60°+x,∴DA=DG=m+1.5,∴CD=m﹣1.5=CQ=DQ,∴QH=QD+DH=m,∴QH=AB,∵∠AFB=∠QFH,∠BAF=∠Q,∴△ABF≌△QHF(AAS),∴AF=FQ,∴3=m﹣2+m﹣1,5,∴m=,∴CF=.故答案为.。

2020年中考数学三轮复习专项练习:《三角形》(含答案)

2020年中考数学三轮复习专项练习:《三角形》(含答案)

备战2020中考数学三轮复习专项练习:《三角形》1.如图,▱ABCD 中,AE ⊥BC 于点E ,F 是AE 上一点,∠FBE =45°,FC ⊥CD 于点C . (1)若AB =2,BF =2,求△ABF 的面积;(2)如图2,连接AC ,求证:AF +BC =AC .2.如图,点A 的坐标为(﹣6,6),AB ⊥x 轴,垂足为B ,AC ⊥y 轴,垂足为C ,点D ,E 分别是射线BO 、OC 上的动点,且点D 不与点B 、O 重合,∠DAE =45°.(1)如图1,当点D 在线段BO 上时,求△DOE 的周长;(2)如图2,当点D 在线段BO 的延长线上时,设△ADE 的面积为S 1,△DOE 的面积为S 2,请猜想S 1与S 2之间的等量关系,并证明你的猜想.3.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是.4.点C为线段AB上一点,以AC为斜边作等腰Rt△ADC,连接BD,在Rt△ABD外侧,以BD 为斜边作等腰Rt△BED,连接EC.(1)如图1,当∠DBA=30°时:①求证:AC=BD;②判断线段EC与EB的数量关系,并证明;(2)如图2,当0°<∠DBA<45°时,EC与EB的数量关系是否保持不变?对于以上问题,小牧同学通过观察、实验,形成了解决该问题的几种思路:想法1:尝试将点D为旋转中心,过点D作线段BD垂线,交BE延长线于点G,连接CG;通过证明△ADB≌△CDG解决以上问题;想法2:尝试将点D为旋转中心,过点D作线段AB垂线,垂足为点G,连接EG.通过证明△ADB∽△GDE解决以上问题;想法3:尝试利用四点共圆,过点D作AB垂线段DF,连接EF,通过证明D、F、B、E四点共圆,利用圆的相关知识解决以上问题.请你参考上面的想法,证明EC=EB(一种方法即可).5.在△ABC中,AB=AC,∠BAC=α,点D是△ABC外一点,点D与点C在直线AB的异侧,且点D,A,C不共线,连接AD,BD,CD.(1)如图1,当α=60°.∠ADB=30°时,画出图形,直接写出AD,BD,CD之间的数量关系;(2)当α=90°,∠ADB=45°时,利用图2,继续探究AD,BD,CD之间的数量关系并证明;(提示:尝试运用图形变换,将要研究的有关线段尽可能转移到一个三角形中)(3)当∠ADB=时,进一步探究AD,BD,CD之间的数量关系,并用含α的等式直接表示出它们之间的关系.6.已知△ABC是等边三角形,点D为平面内一点,连接DB、DC,∠BDC=120°.(1)如图①,当点D在BC下方时,连接AD,延长DC到点E,使CE=BD,连接AE.①求证:△ABD≌△ACE;②如图②,过点A作AF⊥DE于点F,直接写出线段AF、BD、DC间的数量关系;(2)若AB=2,DC=6,直接写出点A到直线BD的距离.7.如图1,等边三角形ABC中,D为BC边上一点,满足BD<CD,连接AD,以点A为中心,将射线AD顺时针旋转60°,与△ABC的外角平分线BM交于点E.(1)依题意补全图1;(2)求证:AD=AE;(3)若点B关于直线AD的对称点为F,连接CF.①求证:AE∥CF;②若BE+CF=AB成立,直接写出∠BAD的度数为°.8.如图,在Rt△ABC中,∠ACB=90°,点O,M分别是Rt△ABC的内心和外心,连接OA,OB,OM.(1)求∠AOB的度数;(2)延长AC至点D,使AD=AB,连接BD,求证:AO⊥BD;(3)在(2)中,延长BC至点E,使BE=AB,连接DE,找出DE与OM之间的等量关系,并证明这个结论.9.若一个三角形一边长的平方等于另两边长的乘积的2倍,我们把这个三角形叫做好玩三角形.(1)在△ABC中,AB=1,BC=,AC=3,求证:△ABC是好玩三角形.(2)一个等腰三角形的腰长为m,底边长为n,当这个等腰三角形为好玩三角形时,求的值.(3)如图1,△CDE是以DE为斜边的等腰直角三角形,点A,B都在直线DE上,连结AC,BC.若∠A+∠B=45°,求证:线段AD,DE,BE三条线段组成的三角形是好玩三角形.(4)如图2,在Rt△ABC中,点D,E,F,G都在线段AB上,以DE,EF,FG为边分别向上作正方形,H,K,M,N分别落在Rt△ABC的边上.以DE,EF,FG为三边长恰好能组成好玩三角形,直接写出的值.10.如图,△ABC是等边三角形,过AB边上点D作DG∥BC,交AC于点G,在GD的延长线上取点E,使ED=CG,连接AE,CD.(1)求证:AE=DC;(2)过E作EF∥DC,交BC于点F,求证:∠AEF=∠ACB.11.已知:如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4.D是边AB的中点,点E为边AC上的一个动点(与点A、C不重合),过点E作EF∥AB,交边BC于点F.联结DE、DF,设CE=x.(1)当x=1时,求△DEF的面积;(2)如果点D关于EF的对称点为D′,点D′恰好落在边AC上时,求x的值;(3)以点A为圆心,AE长为半径的圆与以点F为圆心,EF长为半径的圆相交,另一个交点H恰好落在线段DE上,求x的值.12.如图1,△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC于D.(1)点E、F分别在DA、DC的延长线上,且AE=CF,连接BE、AF,猜想线段BE和AF 的数量关系和位置关系,并证明你的结论;(2)如图2,连接EF,将△DEF绕点D顺时针旋转角α(0°<α<90°),连接AE、CE,若四边形ABCE恰为平行四边形,求DA与DE的数量关系;(3)如图3,连接EF,将△DEF绕点D逆时针旋转,当点A落在线段EF上时,设DE与AB交于点G,若AE:AF=3:4,求的值.13.在△ABC中,∠ABC和∠ACB的平分线相交于点O,(1)若∠ABC=60°,∠ACB=40°,求∠BOC的度数;(2)若∠ABC=60°,OB=4,且△ABC的周长为16,求△ABC的面积.14.如图,在△ABC中,∠BAC=90°,AB=AC=6,AD⊥BC于点D.点G是射线AD上一点.(1)若GE⊥GF,点E,F分别在AB,AC上,当点G与点D重合时,如图①所示,容易证明AE+AF=AD.当点G在线段AD外时,如图②所示,点E与点B重合,猜想并证明AE,AF与AG存在的数量关系.(2)当点G在线段AD上时,AG+BG+CG的值是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.15.已知△ABC,AB=AC,BD是∠ABC的角平分线,EF是BD的中垂线,且分别交BC于点E,交AB于点F,交BD于点K,连接DE,DF.(1)证明:DE∥AB.(2)若CD=3,求四边形BEDF的周长.16.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC、∠NCB的平分线交于点Q,试探索∠Q、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的3倍,请直接写出∠A的度数.17.如图1,在△ABC中,∠BAC=90°,AB=AC=3,D为BC边的中点,∠MDN=90°,将∠MDN绕点D顺时针旋转,它的两边分别交AB、AC于点E、F.(1)求证:△ADE≌△CDF;(2)求四边形AEDF的面积;(3)如图2,连接EF,设BE=x,求△DEF的面积S与x之间的函数关系式.18.如图,在等边△ABC中,延长AB至点D,延长AC交BD的中垂线于点E,连接BE,DE.(1)如图1,若DE=3,BC=2,求CE的长;(2)如图2,连接CD交BE于点M,在CE上取一点F,连接DF交BE于点N,且DF=CD,求证:AB=EF;(3)在(2)的条件下,若∠AED=45°,直接写出线段BD,EF,ED的等量关系.参考答案1.解:(1)∵AE⊥BC,∠FBE=45°,∴∠FEB=∠BFE=45°,∴BE=EF,∵BE2+EF2=BF2=4,∴BE=EF=,∴AE===3,∴AF=AE﹣EF=2,∴△ABF的面积=×AF×BE=2;(2)∵AB∥CD,∴∠ABC+∠BCD=180°,∵FC⊥CD,∴∠FCD=90°,∴∠ABC+∠FCE=90°,∵AE⊥BC,∴∠ABC+∠BAE=90°,∴∠BAE=∠ECF,又∵BE=EF,∠AEB=∠CEF=90°,∴△ABE≌△CFE(AAS),∴AE=CE,∴AC=AE,∵AF+BC=AF+BE+EC=AF+EF+AE=2AE,∴AF+BC=AC.2.解:(1)∵点A的坐标为(﹣6,6),AB⊥x轴,AC⊥y轴,∴AB=AC=OC=OB=6,如图1,将△ACE绕点A顺时针旋转90°得到△ABF,∴BF=CE,AF=AE,∠BAF=∠CAE,∵∠DAE=45°,∴∠BAD+∠CAE=45°,∴∠BAD+∠BAF=45°=∠DAF=∠DAE,又∵AF=AE,AD=AD,∴△ADF≌△ADE(SAS),∴DE=DF,∴△DOE的周长=DE+OD+OE=BD+CE+OD+OE=OB+OC=12;=18+,(2)猜想:S1理由如下:如图2,将△ACE绕点A顺时针旋转90°得到△ABF,∴BF=CE,AF=AE,∠BAF=∠CAE,∵∠DAE=45°,∴∠CAD+∠CAE=45°,∴∠CAD+∠BAF=45°=∠DAF=∠DAE,又∵AF=AE,AD=AD,∴△ADF≌△ADE(SAS),∴DE=DF,设BF=CE=x,OD=y,则OE=6+x,DF=6﹣x+y=DE,∵DE2=OE2+OD2,∴(6﹣x+y)2=(6+x)2+y2,∴xy=6y﹣12x,=×OD×OE=×(6+x)y=6y﹣6x,∴S2=DF×AB=×(6﹣x+y)×6=18+,∵S1=18+.∴S13.(1)证明:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△BCE和△CAD中,,∴△BCE≌△CAD(AAS);(2)解:∵:△BCE≌△CAD,BE=5,DE=7,∴BE=DC=5,CE=AD=CD+DE=5+7=12.∴由勾股定理得:AC=13,∴△ACD的周长为:5+12+13=30,故答案为:30.4.解:(1)①如图1,过点D作DF⊥AC于F,则∠DFC=90°,∵△ADC是AC为斜边作等腰Rt△ADC,∴AC=2DF,在Rt△DFB中,∠DBA=30°,∴BD=2DF,∴AC=BD;②∵△ADC是等腰直角三角形,∴∠ACD=45°,∵∠DBA=30°,∴∠CDB=∠ACD﹣∠DBA=15°,∵△BDE是等腰直角三角形,∴∠BDE=45°,∴∠CDE=∠CDB+∠BDE=60°,在Rt△ADC中,AC=DC,在Rt△BDE中,BD=BE=DE,由①知,AC=BD,∴BE=CD=ED,∴△CDE是等边三角形,∴DE=CE,∴EC=EB;(2)如图2,过点D作DG⊥BD交BE的延长线于G,连接CG,∴∠BDG=90°=∠ADC,∴∠ADB=∠CDG,∵△BED是以BD为斜边作等腰Rt△BED,∴∠BED=90°,∠DBE=45°,∴∠DGE=90°﹣∠DBE=45°=∠DBE,∴BD=GD,∵AD=CD,∴△ADB≌△CDG(ASA),∴∠DCG=∠DAB,∵∠ACD=45°,∴∠BCG=∠ACG=90°,在Rt△BDG中,DB=DG,∠BED=90°,∴EG=EB,∴BE=BE(直角三角形斜边的中线等于斜边的一半).5.解:(1)AD2+BD2=CD2,理由:如图1,过AD为边在AD上侧作等边三角形ADE,连接BE,则AD=DE=AE,∠DAE=∠ADE=60°,∵∠ADB=30°,∴∠BDE=∠DBA+∠ADE=90°,在Rt△BDE中,根据勾股定理得,BD2+DE2=BE2,∴BD2+AD2=BE2,∵∠DAE=∠BAC=60°,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴AD2+BD2=CD2;(2)如图2,过点A作AE⊥AD,且AE=AD,连接BE,DE,∴∠ADE=45°,∵∠BDA=45°,∴∠BDE=90°,根据勾股定理得,DE2+BD2=BE2,∵DE2=2AD2,∴2AD2+BD2=BE2,∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴2AD2+BD2=CD2;(3)如图3,将线段AD绕点A顺时针旋转α得到AE,连接DE,BE,∴∠ADE=(180°﹣∠DAE)=90°﹣α,∵∠ADB=α,∴∠BDE=90°,根据勾股定理得,DE2+BD2=BE2,∵∠DAE=∠BAC=α,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴DE2+BD2=CD2,过点A作AF⊥DE于F,则DE=2DF,∴∠DAF=90°﹣∠ADE=α,在Rt△ADF中,sin∠DAF=,∴DF=AD•sin∠DAF=AD•sin,∴DE=2DF=2AD•sin,即:(2AD•sin)2+BD2=CD2.6.证明:(1)①∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=∠BAC=60°,∵∠ABD+∠BDC+∠ACD+∠BAC=360°,∠BDC=120°,∴∠ABD+∠ACD=180°,∵∠ACE+∠ACD=180°,∴∠ACE=∠ABD,又∵AB=AC,BD=CE,∴△ABD≌△ACE(SAS);②∵△ABD≌△ACE,∴AD=AE,∠BAD=∠CAE,∴∠DAC+∠CAE=∠DAC+∠BAD=∠BAC=60°,∴∠DAE=60°,∴△ADE是等边三角形,∴AD=ED,∵AF⊥DE,AD=AE,∴DF=DE=AD,∠DAF=30°,∴AF=DF=AD,∵DE=CD+CE=CD+BD,∴AF=AD=(CD+BD);(2)如图②,若点D在BC下方时,∵△ABD≌△ACE,∴点A到直线BD的距离=点A到直线CE的距离,设DF=x,则AF=x,∵AC2=AF2+CF2,∴52=3x2+(6﹣x)2,∴x1=4,x2=﹣1(舍去),∴AF=4,如图3,若点D在BC上方时,过点C作CH⊥BD交BD延长线于H,过点D作DF⊥BC于F,过点A作AN⊥BD,交BD的延长线于N,∵∠BDC=120°,∴∠CDH=60°,∵CH⊥BD,∴∠DCH=30°,CD=6,∴DH=3,CH=DH=3,∵BH===5,∴BD=BH﹣DH=2,∵S△BDC=BD×CH=×BC×DF,∴2×3=2×DF,∴DF=,∵∠BDC=120°,∴∠DBC+∠DCB=60°,又∵∠ABD+∠DBC=60°,∴∠ABD=∠DCB,∴sin∠ABD=sin∠DCB=,∴,∴AN=,综上所述:点A到直线BD的距离为4或.7.解:(1)补全图形如图1所示;(2)由旋转知,∠DAE=60°,∵△ABC是等边三角形,∴AB=AC,∠ABC=∠C=∠BAC=60°,∴∠DAE=∠BAC,∴∠BAE=∠CAD,∵BE是△ABC的外角的平分线,∴∠ABM=(180°﹣60°)=60°=∠C,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴AD=AE;(3)①如图2,连接AF,∵点F是点B关于AD的对称点,∴∠BAD=∠FAD,AF=AB,∴AF=AC,∴∠AFC=∠ACF,设∠BAD=α,则∠FAD=α,∴∠CAF=∠BAC﹣∠BAD﹣∠FAD=60°﹣2α,∴∠ACF=(180°﹣∠CAF)=60°+α,由(2)知,∠BAE=∠CAD=60°﹣α,∴∠CAE=∠BAE+∠BAC=60°﹣α+60°=120°﹣α,∴∠ACF+∠CAE=60°+α+120°﹣α=180°,∴AE∥CF;②如图2,连接BF,设∠BAD=α,∵点F是点B关于AD的对称点,∴AD⊥BF,垂足记作点G,则∠AGB=90°,∴∠ABG=90°﹣α,∵∠ABC=60°,∴∠CBG=30°﹣α,连接DF,则BD=DF,∴∠CDF=2∠CBG=60°﹣2α,由(2)知,△ABE≌△ACD,∴BE=CD,∵BE+CF=AB,∴CD+CF=BC=BD+CD,∴BD=CF,∴DF=CF,∴∠DCF=∠CDF=60°﹣2α,由①知,∠ACF=60°+α,∴∠DCF=∠ACF﹣∠ACB=α,∴60°﹣2α=α,∴α=20°,即∠BAD=20°,故答案为:20.8.(1)解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵点O是△ABC的内心,∴∠OAB+∠OBA=∠CAB+∠CBA=45°,∴∠AOB=180°﹣(∠OAB+∠OBA)=135°.(2)证明:如图1中,∵点O是△ABC的内心,∴OA平分∠BAD,∵AD=AB,∴AO⊥BD(等腰三角形三线合一).(3)解:结论:DE=2OM.理由:如图2中,连接OE,OD,延长OM到K,使得MK=OM,连接AK,BK.∵BE=BA,∠OBE=∠OBA,BO=BO,∴△OBE≌△OBA(SAS),∴OA=OE,∠BOE=∠BOA=135°,∴∠AOE=90°,同法可证∠DOB=90°,OD=OB,∵AM=MB,OM=MK,∴四边形AOBK是平行四边形,∴AK=OB=OD,AK∥OB,∴∠KAO+∠AOB=180°,∵∠AOB+∠EOD=180°,∴∠KAO=∠EOD,∵OA=OE,AK=OD,∴△OAK≌△EOD(SAS),∴OK=ED,∴OK=2OM,∴DE=2OM.9.(1)证明:∵AB=1,BC=,AC=3,∴BC2=()2=6,AB•AC=1×3=3,∴BC2=2AB•AC,∴△ABC是好玩三角形;(2)解:∵等腰三角形为好玩三角形,∴m2=2mn或n2=2m•n=2m2,∴=2或=;(3)证明:∵△CDE是以DE为斜边的等腰直角三角形,∴∠DCE=90°,∠CED=∠CDE=45°,∴∠A+∠ACD=45°,∵∠A+∠B=45°,∴∠ACD=∠B,∵∠CDE=∠DEC=45°,∴CD=CE,∠ADC=∠CEB=135°,∴△ADC∽△CEB,∴,在Rt△CDE中,CD=CE,∴DE2=2CD2,∴CD•CE=AD•BE,∴CD2=AD•BE,∴DE2=2AD•BE,∴线段AD,DE,BE三条线段组成的三角形是好玩三角形;(4)设DE=a,EF=b,FG=c,∵四边形DEPH是正方形,∴∠ADH=∠AEK=90°,DH=DE=a,在Rt△ADH中,AD==①,同理:AE=②,BG=c•tan A③,BF=b•tan A④,②﹣①得,AE﹣AD==a⑤,④﹣③得,BF﹣BG=(b﹣c)tan A=c⑥,⑤×⑥得,(b﹣a)(b﹣c)=ac,∴b2﹣bc﹣ab+ac=ac⑦,∵以DE,EF,FG为三边长恰好能组成好玩三角形,∴(b)2=2ac,∴b2=8ac⑧,将⑧代入⑦得,8ac﹣bc﹣ab+ac=ac,∴8ac=b(a+c)⑨,由⑧得,b=2,将b=2代入⑨中,得8ac=2(a+c),∴a2﹣6ac+c2=0,∴a==(3±2)c,∴=3±2,即=3±2.10.解:(1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=∠ACB=60°,∵DG∥BC,∴∠ADG=∠AGD=60°,∴△ADG是等边三角形,∴AD=DG,∠ADE=∠DGC=120°,在△ADE和△DGC中,∴△ADE≌△DGC(SAS),∴AE=CD;(2)∵△ADE≌△DGC,∵∠AED=∠DCG,∵EF∥CD,∴∠FEG=∠CDG,∵DG∥BC,∴∠CDG=∠DCB,∴∠FEG=∠DCB,∴∠AEF=∠ACB.11.解:(1)如图1,过E作EM⊥AB于M,当x=1时,CE=1,AE=4﹣1=3,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,∴AB=5,sin∠A==,∴,∴EM=,∵EF∥AB,∴,即,∴EF=x=,∴△DEF的面积=•EM==;(2)如图2,过E作EN⊥AB于N,连接DD',交EF于Q,∵点D关于EF的对称点为D′,∴DD'⊥EF,QD=DD',∴∠EQD'=90°,∵EF∥AB,∴∠ADQ=∠EQD'=90°,∵D是AB的中点,∴AD=AB=,tan∠A=,∴DD'==,∴QD=,∵EF∥AB,EN⊥AB,QD⊥AB,∴∠END=∠NDQ=∠EQD=90°,∴四边形ENDQ是矩形,∴EN=QD=,Rt△AEN中,sin∠A=,∴,AE=4﹣x,∴x=;(3)如图3,连接AF,交ED于G,Rt△CEF中,∠ECF=90°,tan∠CEF=tan∠CAB=,∴,CF=x,∴EF=x,∴AF===,∵EF∥AB,∴,即=,∴,∴AG=,∵⊙A与⊙F相交于点E、H,且H在ED上,∴AF⊥DE,∴∠AGE=90°,∴∠AGE=∠ACF=90°,∵∠EAG=∠FAC,∴△AEG∽△AFC,∴,即AG•AF=AC•AE,∴=4(4﹣x),解得:x1=0(舍),x2=.12.解:(1)BE=AF,BE⊥AF,理由如下:延长FA交BE于H,∵△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC,∴∠BAD=∠ACD=45°,AB=AC,∴∠BAE=∠ACF=135°,又∵AB=AC,AE=CF,∴△ABE≌△CAF(SAS),∴AF=BE,∠EBA=∠FAC,∵∠BAF=∠ABE+∠BHA=∠BAC+∠CAF,∴∠BAC=∠BHA=90°,∴BE⊥AF;(2)∵△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC,∴AD=BC,∵四边形ABCE恰为平行四边形,∴AE=BC=2AD,AE∥BC,∴∠EAD=∠ADB=90°,∴DE===AD;(3)如图3,连接BE,过点E作EH⊥AB于H,DN⊥AB于N,由图1可得:∵△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC,∴AD=BD=CD,AD⊥CD,又∵AE=CF,∴DE=DF,∴△DEF是等腰直角三角形,∴∠DFE=∠DEF=45°由图3可得:∠EDF=∠BDA=90°,∴∠ADF=∠BDE,又∵AD=BD,DE=DF,∴△ADF≌△BDE(SAS),∴BE=AF,∠DFE=∠BED=45°,∴∠AEB=90°,∵AE:AF=3:4,∴设AE=3a,AF=BE=4a,∴AB===5a,∵AD=BD,∠ADB=90°,DN⊥AB,∴DN=BN=AN=a,=AE×BE=AB×EH,∵S△ABE∴EH==a,∴AH==a,∵∠BED=∠AED=45°,∴,∴BG=,AG=,∴GH=a,GN=a,∴EG==a,DG==a,∴==.13.解:(1)∵BO、CO分别平分∠ABC和∠ACB,∵∠ABC=60°,∠ACB=40°∴∠OBC=30°,∠OCB=20°,∴∠COB=180°﹣(30°+20°)=130°;(2)过O作OD⊥AB于D点,OE⊥AC于E,OF⊥BC于F,连接AO,如图,∵∠ABC=60°,OB=4∴∠OBD=30°,∴OD=OB=2,∵∠ABC和∠ACB的平分线相交于点O,∴OE=OF=2,∵S△ABC =S△AOB+S△AOC+S△BOC=×2×AB+×2×AC+×2×BC=AB+BC+AC,又∵△ABC的周长为16,∴S△ABC=16.14.解:(1)AE+AF=AG,理由如下:如图,过点G作HG⊥AG交AB延长线于点H,∵∠BAC=90°,AB=AC=6,AD⊥BC,∴∠DAB=∠DAC=45°,∴∠AHG=∠BAD=45°,∴AG=HG,∴AH=AG,∵∠EGF=∠AGH=90°,∴∠AGF=∠EGH,又∵∠AHG=∠FAG=45°,∴△AGF≌△HGE(ASA),∴AF=BH,∴AH=AE+BH=AE+AF=AG;(2)如图,将△ABG绕点A顺时针旋转60°得到△AB'G',连接GG',B'C,过点B'作B'N ⊥AC,交CA的延长线于点N,∴AB=AB'=6,AG=A'G,∠BAB'=60°,∠GAG'=60°,BG=B'G,∴△AGG'是等边三角形,∴AG=GG',∴AG+BG+CG=GG'+B'G+CG,∴当点B',点G',点G,点C共线时,AG+BG+CG的值最小,最小值为B'C的长,∵∠B'AC=∠B'AB+∠BAC=60°+90°=150°,∴∠B'AN=30°,∴B'N=3,AN=B'N=3,∴CN=6+3,∴B'C===3+3,∴AG+BG+CG的最小值为3+3.15.解:(1)∵∠ABD=∠BDE,∴DE∥AB,∴∠EBD=∠BDE,∵∠BD是∠ABC的角平分线,∴∠ABD=∠CBD,∴∠ABD=∠BDE,∴DE∥AB.(2)∵∠ABD=∠BDE,∴BF∥FD,∴∠ABD=∠FDB,∵∠BD是∠ABC的角平分线,∴∠ABD=∠CBD,∴∠FDB=∠CBD,∴DF∥BC,∵DE∥AB,∴四边形BEDF是菱形,∵AB=AC,∴∠ABC=∠ACB,∵∠ABC=∠DEC,∴CD=DE=3,∴四边形BEDF的周长为4×3=12.16.(1)解:∵∠A=80°.∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°﹣(∠ABC+∠ACB)=180°﹣×100°=130°,(2)∵外角∠MBC,∠NCB的角平分线交于点Q,∴∠QBC+∠QCB=(∠MBC+∠NCB)=(360°﹣∠ABC﹣∠ACB)=(180°+∠A)=90°+∠A∴∠Q=180°﹣(90°+∠A)=90°﹣∠A;(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=∠A;∵∠EBQ=∠EBC+∠CBQ=∠ABC+∠MBC=(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的3倍,那么分四种情况:①∠EBQ=3∠E=90°,则∠E=30°,∠A=2∠E=60°;②∠EBQ=3∠Q=90°,则∠Q=30°,∠E=60°,∠A=2∠E=120°;③∠Q=3∠E,则∠E=22.5°,解得∠A=45°;④∠E=3∠Q,则∠E=67.5°,解得∠A=135°.综上所述,∠A的度数是60°或120°或45°或135°.17.(1)证明:∵∠BAC=90°,AB=AC,D为BC中点,∴∠B=∠C=∠BAD=∠CAD=45°,∠ADC=90°,∴AD=DC=BD,∵∠ADE+∠ADF=90°,∠ADF+∠CDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA);(2)解:∵△ADE≌△CDF,∴四边形AEDF的面积=S△ADC =S△ABC,∵S△ABC=AB•AC=,∴四边形AEDF的面积=;(3)解:∵BE=x,∴AE=AB﹣BE=3﹣x,∵△ADE≌△CDF,∴FC=AE=3﹣x,∴AF=AC﹣FC=x,∴△DEF的面积S=四边形AEDF的面积﹣△AEF的面积=﹣×x×(3﹣x)=x2﹣x+(0<x≤3).18.解:(1)过点E作EH⊥BD于H,∵点E在BD的中垂线上,∴EB=ED=3,∵EH⊥BD,∴BH=HD,∵等边△ABC中,BC=2,∴∠A=60°,AB=BC=AC=2,∴∠AEH=30°,∴EH=AH=(2+BH)=6+BH,AE=2AH=2(2+BH),∵BE2=EH2+BH2,∴90=36+3BH2+12BH+BH2,∴BH=(负值舍去),∴CE=AE﹣AC=2+2BH=9﹣;(2)延长CA到H,使∠AHD=∠DEF,∴DH=DE=BE,∴∠DFC=∠DCF,∴∠DFE=∠DCH,∴△DFE≌△DCH(AAS),∴EF=CH,∵∠CAB=∠ABC=60°=∠ACB,∴∠CBD=∠AED+∠ADE=120°=∠EBD+∠CBE,∵EB=ED,∴∠EBD=∠EDB,∴∠CBE=∠AED=∠AHD,又∵∠BCE=∠HAD=120°,DH=BE,∴△HAD≌△BCE(AAS),∴BC=AH,∵EF=CH=AH+AC,∴AB=EF;(3)如图3,过点D作DP⊥AE于P,∵CD=DF,DP⊥AE,∴CP=PF,∵∠A=60°,DP⊥AE,∴∠ADP=30°,∴AD=2AP,DP=AP,∵∠AED=45°,DP⊥AE,∴∠AED=∠EDP=45°,∴DE=DP,∵AD=2AP,DP=PE=AP,∴AP=(AB+BD)=EF+BD,DP=AP=EF+BD,∴DE=DP=EF+BD.。

2020届九年级中考数学专题冲刺训练:《三角形综合》(解析版)

2020届九年级中考数学专题冲刺训练:《三角形综合》(解析版)

专题冲刺训练:《三角形综合》1.数学活动课上,小明同学根据学习函数的经验,对函数的图象、性质进行了探究.下面是小明同学探究过程,请补充完整:如图1,已知在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2cm,点P为AB边上的一个动点,连接PC,设BP=xcm,CP=ycm,【初步感知】(1)当CP⊥AB时,则①x= 1 ;②y=;【深入思考】(2)试求y与x之间的函数关系式并写出自变量x的取值范围;(3)通过取点测量,得到了x与y的几组值,如表:x/cm0 0.5 1 1.5 2 2.5 3 3.5 4 y/cm 2 1.8 1.7 1.8 2 2.3 2.6 3 3.5 (说明:补全表格时相关数值保留一位小数)1)建立平面直角坐标系,如图2,提出已补全后的表格中各对应值为坐标的点,画出该函数的图象;2)结合画出的函数图象,写出该函数的两条性质:①当0≤x≤1时,y随x增大而减小;②当1≤x≤4时,y随x增大而增大.解:(1)①当CP⊥AB时,∵∠CPB=∠ACB=90°,∴∠BCP=∠A=30°,∴BP=BC=1cm,∴x=1,故答案为:1.②∵∠BCP=30°,∠BPC=90°,BC=2cm,∴CP=BC•cos30°=2×=(cm),∴y=.故答案为:.(2)过点C作CD⊥AB于点D,∵∠ACB=90°,∠A=30°,BC=2cm,∴BD=1,CD=,①当0≤x≤1时,如图1,PD=1﹣x,PC===,∴,②当1<x≤4时,如图2,PD=x﹣1,PC===.综合①②得:y=(0≤x≤4).(3)1)由(2)知y=(0≤x≤4).当x=1.5时,y=≈1.8.当x=4时,y==2.故答案为:1.8;3.5.补图:如图3,2)性质:①当0≤x≤1时,y随x增大而减小;②当1≤x≤4时,y随x增大而增大;③y的最小值为.故答案为:当0≤x≤1时,y随x增大而减小;当1≤x≤4时,y随x增大而增大.2.如图,在△ABC中,AC=,tan A=3,∠ABC=45°,射线BD从与射线BA重合的位置开始,绕点B按顺时针方向旋转,与射线BC重合时就停止旋转,射线BD与线段AC相交于点D,点M是线段BD的中点.(1)求线段BC的长;(2)①当点D与点A、点C不重合时,过点D作DE⊥AB于点E,DF⊥BC于点F,连接ME,MF,在射线BD旋转的过程中,∠EMF的大小是否发生变化?若不变,求∠EMF的度数;若变化,请说明理由.②在①的条件下,连接EF,直接写出△EFM面积的最小值.解:(1)如图1中,作CH⊥AB于H.在Rt△ACH中,∵∠AHC=90°,AC=,tan A==3,∴AH=1,CH=3,∵∠CBH=45°,∠CHB=90°,∴∠HCB=∠CBH=45°,∴CH=BH=3,∴BC=CH=3.(2)①结论:∠EMF=90°不变.理由:如图2中,∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°,∵DM=MB,∴ME=BD,MF=BD,∴ME=MF=BM,∴∠MBE=∠MEB,∠MBF=∠MFB,∵∠DME=∠MEB+∠MBE,∠DMF=∠MFB+∠MBF,∴∠EMF=∠DME+∠DMF=2(∠MBE+∠MBF)=90°,②如图2中,作CH⊥AB于H,由①可知△MEF是等腰直角三角形,∴当ME的值最小时,△MEF的面积最小,∵ME=BD,∴当BD⊥AC时,ME的值最小,此时BD===,∴EM的最小值=,∴△MEF的面积的最小值=××=.故答案为.3.△ABC与△ADE都是等边三角形,DE与AC交于点P,点P恰为DE的中点,延长AD交BC 于点F,连结BD、CD,取CD的中点Q,连结PQ.求证:PQ=BD.(1)如图1,厘清思路,完成解答:本题证明的思路可以用下列框图表示:根据上述思路,请你完整地书写本题的证明过程;(2)如图2,特殊位置,求线段长:若点P为AC的中点,连接PF,已知PQ=,求PF的长.(3)知识迁移,探索新知:若点P是线段AC上任意一点,直接写出PF与CD的数量关系.(1)证明:如图1中,∵△ADE是等边三角形,DP=PE,∴AP⊥DE,∠EAC=∠DAP=∠DAE=30°,∵△ABC是等边三角形,∴∠BAC=60°,∴∠CAF=∠BAF=30°,∴AF垂直平分线段BC,∴BD=CD,∵∠CPD=90°,DQ=QC,∴PQ=CD,∴PQ=BD.(2)解:如图2中,当点P是AC的中点时,∵DO是线段AC的垂直平分线,∴B,D,P共线,∵BA=CD=2PQ=2,∠DFC=90°,∠DCF=30°,∴CF=CD•cos30°=3,∵PC=AC,CF=BC,AC=BC,∴CF=CP=3,∵∠PCF=60°,∴△PCF是等边三角形,∴PF=CF=3.(3)解:结论:PF=CD.理由:如图1﹣1中,连接PF,EC.∵AC垂直平分线段DE,∴CD=CE,∵△ABC,△ADE都是等边三角形,AF是△ABC的高,AP是△ADE的高,∴AP=AE,AF=AC,∴=,∴=,∵∠PAF=∠EAC=30°,∴△PAF∽△EAC,∴==,∴PF=EC=CD.4.综合与实践:操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:如图2中,∵∠CAB=∠EAD=120°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠BAD=∠ACE,BD=EC=4,同法可证∠BEC=∠BAC=120°,∴∠FEC=60°,∵CF⊥EF,∴∠F=90°,∴∠FCE=30°,∴EF=EC=2.5.在△ABC中,CA=CB=3,∠ACB=120°,将一块足够大的直角三角尺PMN(∠M=90°、∠MPN=30°)按如图所示放置,顶点P在线段AB上滑动,三角尺的直角边PM始终经过点C,并且与CB的夹角∠PCB=α,斜边PN交AC于点D.(1)当PN∥BC时,判断△ACP的形状,并说明理由.(2)在点P滑动的过程中,当AP长度为多少时,△ADP≌△BPC,为什么?(3)在点P的滑动过程中,△PCD的形状可以是等腰三角形吗?若不可以,请说明理由:若可以,请直接写出α的度数.解:(1)当PN∥BC时,∠α=∠NPM=30°,又∵∠ACB=120°,∴∠ACP=120°﹣30°=90°,(2)当AP=3时,△ADP≌△BPC,理由为:∵∠ACB=120°,CA=CB,∴∠A=∠B=30°,又∵∠APC是△BPC的一个外角,∴∠APC=∠B+∠α=30°+∠α,∵∠APC=∠DPC+∠APD=30°+∠APD,∴∠α=∠APD,又∵AP=BC=3,∴△ADP≌△BPC;(3)△PCD的形状可以是等腰三角形,则∠PCD=120°﹣α,∠CPD=30°,①当PC=PD时,△PCD是等腰三角形,∴∠PCD=∠PDC==75°,即120°﹣α=75°,∴∠α=45°;②当PD=CD时,△PCD是等腰三角形,∴∠PCD=∠CPD=30°,即120°﹣α=30°,∴α=90°;③当PC=CD时,△PCD是等腰三角形,∴∠CDP=∠CPD=30°,∴∠PCD=180°﹣2×30°=120°,即120°﹣α=120°,∴α=0°,此时点P与点B重合,点D和A重合,综合所述:当α=45°或90°或0°时,△PCD是等腰三角形.6.如图,△ABC是等边三角形,AB=2cm.动点P从点C出发,以lcm/s的速度在边BC的延长线上运动.以CP为边作等边三角形CPQ,点A、Q在直线BC同侧.连结AP、BQ 相交于点E.设点P的运动时间为t(s)(t>0).(1)当t= 2 s时,△ABC≌△QCP.(2)求证:△ACP≌△BCQ.(3)求∠BEP的度数.(4)设AP与CQ交于点F,BQ与AC交于点G,连结FG,当点G将边AC分成1:2的两部分时,直接写出△CFG的周长.解:(1)∵△ABC,△CPQ都是等边三角形,∴当PC=AB=2时,△ABC≌△QCP.∴t=2s,故答案为2.(2)∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵△CPQ是等边三角形,∴∠PCQ=60°,CP=CQ,∴∠ACP=∠BCQ=120°,∴△ACP≌△BCQ(SAS).(3)∵△ACP≌△BCQ,∴∠CAP=∠CBQ,∵∠BEP=∠ABE+∠BAE,∴∠BEP=∠ABC+∠BAC,∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,∴∠BEP=120°.(4)如图1中,∵△ACP≌△BCQ,∴∠CAF=∠CBG,∵CA=CB,∠ACF=∠BCG=60°,∴△ACF≌△BCG(ASA),∴CF=CG,∵∠GCF=60°,∴△GCF是等边三角形,当AG=2CG时,CG=cm,∴△CFG的周长为2cm如图2中,当CG=2AG时,CG=cm,△FCG的周长为4cm.综上所述,△CFG的周长为2cm或4cm.7.如图,在△ABC中,∠BAC=90°,AB=5cm,BC=13cm,点D在线段AC上,且CD=7cm,动点P从距B点15cm的E点出发,以每秒2cm的速度沿射线EA的方向运动,时间为t 秒.(1)求AD的长.(2)用含有t的代数式表示AP的长.(3)在运动过程中,是否存在某个时刻,使△ABC与△ADP全等?若存在,请求出t值;若不存在,请说明理由.(4)直接写出t=1或14或12.5或秒时,△PBC为等腰三角形.解:(1)在Rt△ABC中,∵∠BAC=90°,AB=5cm,BC=13cm,∴AC===12(cm),∵CD=7cm,∴AD=AC﹣CD=12﹣7=5(cm).(2)当0≤t≤10时,PA=20﹣2t.当t>10时,PA=2t﹣20.(3)∵AD=BD=5cm,∠BAC=∠PAD=90°,∴当AC=PA时,△ABC与△ADP全等,∴20﹣2t=12或2t﹣20=12,解得t=4或16,∴满足条件的t的值为4或16.(4)当BC=BP时,15﹣2t=13或2t﹣15=13,解得t=1或14.当CP=CB时,PA=AB=5,则有2t﹣20=5,解得t=12.5.当PC=PB时,122+(2t﹣20)2=(2t﹣15)2,解得t=,故答案为1或14或12.5或.8.(1)如图①,已知线段AB,以AB为边作等边△ABC.(尺规作图,保留作图痕迹,不写作法)(2)如图②,已知△ABC,AB=3,AC=2分别以AB,BC为边作等边△ABD和等边△BCE,连接DE,AE.求AE的最大值.(3)如图③,已知△ABC,∠ABC=30°,AB=3,BC=4,P为△ABC内一点,连接AP,BP,CP.求AP+BP+PC的最小值.解:(1)如图1中,△ABC即为所求.(2)如图2中,∵△ABD,△BCE都是等边三角形,∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∴∠ABC=∠DBE,∴△ABC≌△DBE(SAS),∴DE=AC=2,∵AD=AB=3,AE≤AD+DE,∴AE≤2+3,∴AE≤5,∴AE的最大值为5.(3)如图3中,将△ABP绕点B逆时针旋转90°得到△TBD,连接PD,TC.作TE⊥CB 交CB的延长线于E.∵∠ABP=∠TBD,∠PBD=90°,∴∠CBT=∠CBP+∠PBD+∠DBT=∠PBD+∠CBP+∠ABP=90°+30°=120°,∴∠CBT是定值,BT=AB=3,BC=4,∵PB=PD,∠PBD=90°,∴PD=PB,∴PA+PB+PC=DT+PD+PC,∵TC≤TD+DP+PC,∴PA+PB+PC的最小值为线段TC的长,在Rt△ETB中,∵∠TBE=60°,BT=3,∴BE=BT=,TE=EB=,在Rt△ECT中,TC===,∴AP+BP+PC的最小值为.9.【教材呈现】下图是华师版九年级上册数学教材第77页的部分内容.请根据教材提示,结合图23.4.2,写出完整的证明过程.【结论应用】如图,△ABC是等边三角形,点D在边AB上(点D与点A、B不重合),过点D作DE∥BC交AC于点E,连结BE,M、N、P分别为DE、BE、BC的中点,顺次连结M、N、P.(1)求证:MN=PN;(2)∠MNP的大小是.【教材呈现】:证明:∵点D,E分别是AB,AC的中点,∴==,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠ABC,==,∴DE∥BC,DE=BC.【结论应用】(1)证明:∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°,∵DE∥AB,∴∠ABC=∠ADE=60°,∠ACB=∠AED=60°,∴∠ADE=∠AED=60°,∴△ADE是等边三角形,∴AD=AE,∴BD=CE,∵EM=MD,EN=NB,∴MN=BD,∵BN=NE,BP=PC,∴PN=EC,∴NM=NP.(2)∵EM=MD,EN=NB,∴MN∥BD,∵BN=NE,BP=PC,∴PN∥EC,∴∠MNE∠ABE,∠PNE=∠AEB,∵∠AEB=∠EBC+∠C,∠ABC=∠C=60°,∴∠MNP=∠ABE+∠EBC+∠C=∠ABC+∠C=120°.10.如图1,在△ABC中,∠BAC=90°,点D为AC边上一点,连接BD,点E为BD上一点,连接CE,∠CED=∠ABD,过点A作AG⊥CE垂直为G,交ED于点F.(1)求证:∠FAD=2∠ABD;(2)如图2,若AC=CE,点D为AC的中点,求证AB=AC;(3)在(2)的条件下,如图3,若EF=3,求线段DF的长.(1)证明:如图1中,∵∠BAC=90°,∴∠ADB=90°﹣∠ABD,∵AG⊥CE,∴∠FGE=90°,∴∠EFG=∠AFD=90°﹣∠CED,∴∠FAD=180°﹣∠AFD﹣∠ADF=∠CED+∠ABD,∵∠CED=∠ABD,∴∠FAD=2∠ABD.(2)如图2中,∵∠AFD=90°﹣∠CED,∠ADB=90°﹣∠ABD,∠CED=∠ABD,∴∠AFD=∠ADF,∴AF=AD,∠BFA=180°﹣∠AFD=180°﹣∠ADF=∠CDE,∵D为AC的中点,∴AD=CD=AF,∴△ABF≌△CED(AAS),∴AB=CE,∵CE=AC,∴AB=AC.(3)连接AE,过点A作AH⊥AE交BD延长线于点H,连接CH.∵∠BAC=90°,∴∠BAE=∠CAH,设∠ABD=∠CED=α,则∠FAD=2α,∠ACG=90°﹣2α,∵CA=CE,∴∠AEC=∠EAC=45°+α,∴∠AED=45°,∴∠AHE=45°,∴AE=AH,∵AB=AC,∴△ABE≌△ACH(SAS),∴∠AEB=∠AHC=135°,∴∠CHD=90°,过点A作AK⊥ED于H,∴∠AKD=∠CHD=90°,∵AD=CD,∠ADK=∠CDH,∴△AKD≌△CHD(AAS)∴DK=DH,∵AK⊥DF,AF=AD,AE=AH,∴FK=DK,EK=HK,∴DH=EF=3,∴DF=6.11.如图(1)AB=9cm,AC⊥AB,AC=BD=7cm,点P在线段AB上以2cm/s的速度由点A 向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t(s).(1)若点Q的速度与点P的速度相等,当t=1时,求证:△ACP≌△BPQ;(2)在(1)的条件下,判断此时PC和PQ的位置关系,并证明;(3)将图(1)中的“AC⊥AB,BD⊥AB”,改为“∠CAB=∠DBA=70°”,得到图(2),其他条件不变.设点Q的运动速度为xcm/s,请问是否存在实数x,使得△ACP与△BPQ 全等?若存在,求出相应的x和t的值;若不存在,请说明理由.解:(1)△ACP与△BPQ全等,理由如下:当t=1时,AP=BQ=2,则BP=9﹣2=7,∴BP=AC=7,又∵∠A=∠B=90°,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS);(2)结论:PC⊥PQ,证明:∵△ACP≌△BPQ,∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即PC⊥PQ;(3)AP=2t,BP=9﹣2t,BQ=xt①若△ACP≌△BPQ则AC=BP=7,AP=BQ,∴9﹣2t=7,解得:t=1(s),则x=2(cm/s);②若△ACP≌△BPQ,则AC=BQ=7,AP=BP,则,解得,t=2.25(s),∴xt=7,解得,,故当t=1s,x=2cm/s或t=2.25s,时,△ACP与△BPQ全等.12.如图①,△ABC是等边三角形,点P是BC上一动点(点P与点B、C不重合),过点P 作PM∥AC交AB于M,PN∥AB交AC于N,连接BN、CM.(1)求证:PM+PN=BC;(2)在点P的位置变化过程中,BN=CM是否成立?试证明你的结论;(3)如图②,作ND∥BC交AB于D,则图②成轴对称图形,类似地,请你在图③中添加一条或几条线段,使图③成轴对称图形(画出一种情形即可).(1)证明:如图①中,∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=60°,∵PM∥AC,PN∥AB,∴四边形PMAN是平行四边形,∠BPM=∠ACB=60°,∠CPN=∠ABC=60°,∴PN=AM,△BMP,∴PM=BM,P∴PM+PN=BM+AM=AB=BC,∴PM+PN=BC.(2)解:如图②中,结论成立.理由:连接BN,CM.∵△PNM是等边三角形,∴BM=PB,∵ND∥BC,PN∥AB,∴四边形PNDB是平行四边形,∴DN=PN,∵∠ADN=∠ABC=60°,∠AND=∠ACB=60°,∠A=60°,∴△ADN是等边三角形,∴AN=DN=PB=BM,∵∠A=∠CBM,AB=BC,∴△ABN≌△CBM(SAS),∴BN=CM.(3)解:如图③即为所求.作ND∥BC交AB于N,作ME∥BC交AC于M,作EF∥AB交BC于F,连接DF.13.如图1,已知Rt△ABC,∠ACB=90°,∠BAC=30°,斜边AB=4,ED为AB垂直平分线,且DE=2,连接DB,DA.(1)直接写出BC= 2 ,AC=2;(2)求证:△ABD是等边三角形;(3)如图2,连接CD,作BF⊥CD,垂足为点F,直接写出BF的长;(4)P是直线AC上的一点,且CP=AC,连接PE,直接写出PE的长.(1)解:如图1中,在Rt△ABC中,∵∠ACB=90°,∠BAC=30°,AB=4,∴BC=AB=2,AC===2.故答案为2,(2)证明:如图1中,∵DE垂直平分AB,∴AE=EB=2,AD=DB==4,∴AB=BD=AD=4,∴△ABD是等边三角形.(3)解:如图2中,∵△ABD是等边三角形,∴∠BAD=60°,∵∠BAC=30°,∴∠CAD=90°,∴CD===2,∵S△BCD =S△ABC+S△ABD﹣S△ACD,∴•2•BF=×2×2+×42﹣×4×2,∴BF=.(4)如图3中,延长DE交AC于P,连接PB.∵DP垂直平分线段AB,∴PB=PA,∵∠PBC=30°,∠C=90°,∴PB=2PC,∴PA=2PC,∴PC=AC满足条件,∴PE=AE•tan30°=.当CP′=AC时,作EH⊥AC于H.则EH=AE=1,PH=,P′H=++=,∴P′E===.14.用一条直线分割一个三角形,如果能分割出一个等腰三角形,那么就称这条直线为该三角形的一条等腰分割线.在直角三角形ABC中,∠ACB=90°,AC=4,BC=3.(1)如图1,O为AB的中点,则直线OC是△ABC的等腰分割线(填“是”或“不是”).(2)如图2,点P是边AC上一个动点,当直线BP是△ABC的等腰分割线时,求PC的长度.(3)如图3,若将△ABC放置在如图所示的平面直角坐标系中,点Q是边AB上的一点,如果直线CQ是△ABC的等腰分割线,则点Q的坐标为(﹣,0)或或或.(直接写出答案).解:(1)∵∠ACB=90°,O为AB中点,在Rt△ACB中,OC=AB=AO=BO,∴等腰△AOC和等腰△BOC.则直线OC是△ABC的等腰分割线;故答案为:是.(2)①当AP=BP时,BC=3,设CP=x,①当PA=PB=4﹣x,在Rt△BPC中,BC2+PC2=PB2,∴32+x2=(4﹣x)2,解得x=.即:CP=.②CP=CB时,CP=BC=3;即CP的长为或3.(3)∵∠ACB=90°,AC=4,BC=3,∴AB===5,=BC•AC=AB•OC,∵S△ABC∴OC=,∴==,①若△ACQ为等腰三角形,如图1,当AC=AQ时,AC=4,AQ=4,∴OQ=AQ﹣OA=4﹣=.∴Q,如图2,当QC=QA时,Q为AB中点,AQ=BQ=AB=.∴OQ=OA﹣AQ==,∴Q(,0),当CA=CQ时,Q不在边AB上,舍去.②若△BCQ为等腰三角形.如图3,当CQ=CB时,OQ=OB=,∴Q(,0),如图4,当BC=BQ时,BQ=BC=3,∴=,∴Q(,0),如图2,当QC=QB时,Q为AB中点,BQ=AQ=,此时Q(,0).综合以上可得点Q的坐标为(﹣,0)或或或.故答案为:(﹣,0)或或或.15.已知△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°,点M在边AC上,点N在边BC 上(点M,N不与所在线段端点重合),BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AC于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时,请直接写出△BCM与△ACN的关系:△BCM≌△ACN;BD与DE的位置关系:BD⊥DE.(2)当∠ACB=α,其他条件不变时,∠BDE的度数是多少?(用含α的代数式表示)(3)若△ABC是等边三角形,AB=3,N是BC边上的三等分点,直线ED与直线BC交于点F,求线段CF的长.解:(1)△BCM≌△ACN,BD⊥DE,理由如下:如图1:∵CA=CB,BN=AM,∴CB﹣BN=CA﹣AM即CN=CM,在△BCM和△ACN中,,∴△BCM≌△ACN(SAS).∴∠MBC=∠NAC,∵EA=ED,∴∠EAD=∠EDA,∵AG∥BC,∴∠GAC=∠ACB=90°,∠ADB=∠DBC,∴∠ADB=∠NAC,∴∠ADB+∠EDA=∠NAC+∠EAD,∵∠ADB+∠EDA=180°﹣90°=90°,∴∠BDE=90°,∴BD⊥DE.故答案为:△BCM≌△ACN,BD⊥DE;(2)①如图2中,当点E在AN的延长线上时,同(1)得:△BCM≌△ACN(SAS).∴∠CBM=∠CAN,∵AG∥BC,∴∠CBM=∠ADB=∠CAN,∠ACB=∠CAD,∵EA=ED,∴∠EAD=∠EDA,∴∠CAN+∠CAD=∠BDE+∠ADB,∴∠BDE=∠ACB=α.②如图3中,当点E在NA的延长线上时,则∠1+∠2=180°﹣∠EDA=180°﹣∠EAD=∠CAN+∠DAC,∵∠2=∠ADM=∠CBD=∠CAN,∴∠1=∠CAD=∠ACB=α,∴∠BDE=180°﹣α.综上所述,∠BDE=α或180°﹣α.(3)∵△ABC是等边三角形,∴AC=BC=AB=3,①如图4中,当BN=BC=时,作AK⊥BC于K.∵AD∥BC,∴==,∴AD=BC=,∵AC=3,∠DAC=∠ACB=60°,∴△ADC是直角三角形,则四边形ADCK是矩形,∴AK=DC,∠AKN=∠DCF=90°,∵AG∥BC,∴∠EAD=∠ANK,∠EDA=∠DFC,∵AE=DE,∴∠EAD=∠EDA,∴∠ANK=∠DFC,在△AKN和△DCF中,,∴△AKN≌△DCF(AAS),∴CF=NK=BK﹣BN=﹣=.②如图5中,当CN=BC=时,作AK⊥BC于K,DH⊥BC于H.∵AD∥BC,∴==2,∴AD=2BC=6,则△ACD是直角三角形,△ACK∽△CDH,则CH=AK=,同①得:△AKN≌△DHF(AAS),∴KN=FH=,∴CF=CH﹣FH=4.综上所述,CF的长为或4.16.在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB 于点E,DF∥AB交边AC于点F.(1)如图1,试判断四边形AEDF的形状,并说明理由;(2)如图2,若AD=4,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG交AD于点M,连接FH交EG于点N.(i)求EN•EG的值;(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上(1)解:四边形AEDF的形状是菱形;理由如下:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠EAD=∠FAD,∵DE∥AC,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴四边形AEDF是菱形;(2)(i)解:连接EF交AD于点Q,如图2所示:∵∠BAC=60°,四边形AEDF是菱形,∴∠EAD=30°,AD、EF相互垂直平分,△AEF是等边三角形,∴∠EAF=∠AEF=∠AFE=60°,∵AD=4,∴AQ=2,在Rt△AQE中,cos∠EAQ=,即cos30°=,∴AE===4,∴AE=AF=EF=4,在△AEG和△EFH中,,∴△AEG≌△EFH(SAS),∴∠AEG=∠EFH,∴∠ENH=∠EFH+∠GEF=∠AEG+∠GEF=60°,∴∠ENH=∠EAG,∵∠AEG=∠NEH,∴△AEG∽△NEH,∴=,∴EN•EG=EH•AE=3×4=12;(ii)证明:如图3,连接FM',∵DE∥AC,∴∠AED=180°﹣∠BAC=120°,由(1)得:△EDF是等边三角形,∴DE=DF,∠EDF=∠FED=∠EFD=60°,由旋转的性质得:∠MDM'=60°,DM=DM',∴∠EDM=∠FDM',在△EDM和△FDM'中,,∴△EDM≌△FDM'(SAS),∴∠MED=∠DFM',由(i)知,∠AEG=∠EFH,∴∠DFM'+∠EFH=∠MED+∠AEG=∠AED=120°,∴∠HFM'=∠DFM'+∠HFE+∠EFD=120°+60°=180°,∴H,F,M′三点在同一条直线上.17.已知:在△ABC中,∠ACB=90°,AC=BC,过点A、B向过点C的直线作垂线,垂足分别为D、E,CE交AB于点F.(1)如图1,求证:CD=BE;(2)如图2,连接AE、BD,若DE=BE,在不添加任何辅助线的情况下,请直接写出四个角,使写出的每一个角的正切值都等于.解:(1)∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,又∵∠ACD+∠CAD=90°,∴∠CAD=∠BCE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE;(2)∵DE=BE,CD=BE,∴CD=DE=BE,∵∴△ACD≌△CBE,∴AD=CE=2CD=2DF,∴ran∠CAD=,tan∠DAE=,tan,∵∠DBE=∠CBA=45°,∴∠ABD=∠CBD,∵∠BCD+∠CBD=∠BDE=45°,∠ABD+∠ABE=∠DBE=45°,∴∠BCD=∠ABD,∴tan∠ABD=tan∠BCD=,故∠CAD、∠EAD、∠BCE、∠ABD的正切值都为.18.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为 1 ;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点A与点O、D在同一条直线上时AD的长.解:(1)如图1中,设BD交AD于J.∵OA=OB,OC=OD,∠AOB=∠COD=40°,∴∠DOB=∠COA,∴△OAC≌△OBD(SAS),∴AC=BD,∠CAO=∠DBO,∵∠AJM=∠BJO,∴∠AMJ=∠BOJ=40°,∴=1,∠AMB=40°,故答案为:1,40°.(2)如图2中,结论:=,∠AMB=90°.理由:设AO交BM于J.在Rt△COD中,∵∠DOC=90°,∠DCO=30°,∴=tan60°=,同理可得:=,∴=,∵∠COD=∠AOB=90°,∴∠COA=∠DOB,∴△COA∽△DOB,∴==,∠JAM=∠JBO,∵∠AJM=∠BJO,∴∠AMJ=∠JOB=90°.(3)如图3﹣1中,当点D在线段OA上时,在Rt△AOB中,∵∠AOB=90°,OB=,∠A=30°,∴OA=OB=3,∵OD=1,∴AD=OA﹣OD=3﹣1=2.如图3﹣2中,当点D在AO的延长线上时,AD=OA+OD=3+1=4,综上所述,满足条件的AD的值为2或4.19.如图1,在直角三角形ABC中,∠BAC=90°,AD为斜边BC上的高线.(1)求证:AD2=BD⋅CD;(2)如图2,过A分别作∠BAD,∠DAC的角平分线,交BC于E,M两点,过E作AE的垂线,交AM于F.①当tan C=时,求的值;②如图3,过C作AF的垂线CG,过G点作GN∥AD交AC于M点,连接MN.若∠EAD=15°,AB=1,直接写出MN的长度.(1)证明:如图1中,∵AD⊥BC,∴∠ADB=∠ADC=90°,∵∠BAC=90°,∴∠B+∠C=90°,∵∠B+∠BAD=90°,∴∠BAD=∠C,∴△BAD∽△ACD,∴=,∴AD2=BD•CD.(2)①解:如图2中,作EH⊥AB于H,MG⊥AC于G.∵AD⊥BC,∴∠tan C==,∴可以假设AD=3k,CD=4k,则AC=5k,BD=k,AB=k,∵MA平分∠CAD,MD⊥AD,MG⊥AC,∴DM=MG,∵∠ADM=∠AGM=90°,AM=AM,∴Rt△MAD≌Rt△MAG(HL)∴AD=AG=3k,设MD=MG=x,则CG=2k,CM=4k﹣x,在Rt△CMG中,∵CM2=MG2+CG2,∴(4k﹣x)2=x2+(2k)2,∴x=k,∴DM=k,同法可得DE=k,∴==.②如图3中,∵AE平分∠BAD,∠EAD=15°,∴∠BAD=30°,∵AD⊥BC,∠BAC=90°,∴∠B=∠DAC=60°,∠C=30°,∵MA平分∠CAD,∴∠MAC=∠MAD=30°,∴∠MAC=∠MCA=30°,∴∠AMB=∠MAC+∠MCA=60°=∠B=∠BAM,∴MA=MC,△ABM是等边三角形,∴AM=BM,∴BM=CM,∵GN∥AD,∴∠GNC=∠DAC=60°,∵CG⊥AG,∴∠AGC=90°,∴∠ACG=60°=∠CNG,∴△CGN是等边三角形,∴NC =CG ,∵AC =2CG ,∴AN =CN ,∵BM =MC ,∴MN =AB =.20.如图,以直角三角形AOC 的直角顶点O 为原点,以OC 、OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足.D 为线段AC 的中点.在平面直角坐标系中,以任意两点P (x 1,y 1)、Q (x 2,y 2)为端点的线段中点坐标为,.(1)则A 点的坐标为 (0,4) ;点C 的坐标为 (2,0) .D 点的坐标为 (1,2) .(2)已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.设运动时间为t (t >0)秒.问:是否存在这样的t ,使S △ODP =S △ODQ ,若存在,请求出t 的值;若不存在,请说明理由.(3)点F 是线段AC 上一点,满足∠FOC =∠FCO ,点G 是第二象限中一点,连OG ,使得∠AOG =∠AOF .点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.解:(1)∵. ∴a ﹣2b =0,b ﹣2=0,解得a =4,b =2,∴A(0,4),C(2,0);∴x==1,y==2,∴D(1,2).故答案为(0,4),(2,0),(1,2).(2)如图1中,由条件可知:P点从C点运动到O点时间为2秒,Q点从O点运动到A点时间为2秒,∴0<t≤2时,点Q在线段AO上,即CP=t,OP=2﹣t,OQ=2t,AQ=4﹣2t,∴S△DOP =OP•y D=(2﹣t)×2=2﹣t,S△DOQ=OQ•x D=×2t×1=t,∵S△ODP =S△ODQ,∴2﹣t=t,∴t=1;(3)的值不变,其值为2.理由如下:如图2中,∵∠2+∠3=90°,又∵∠1=∠2,∠3=∠FCO,∴∠GOC+∠ACO=180°,∴OG∥AC,∴∠1=∠CAO,∴∠OEC=∠CAO+∠4=∠1+∠4,如图,过H点作AC的平行线,交x轴于P,则∠4=∠PHC,PH∥OG,∴∠PHO=∠GOF=∠1+∠2,∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,∴=,=,=2.。

2020年九年级数学中考三轮冲刺复习:《三角形综合训练》

2020年九年级数学中考三轮冲刺复习:《三角形综合训练》

三轮冲刺复习:《三角形综合训练》1.(1)问题发现如图1,△ABC是等边三角形,点D,E分别在边BC,AC上,若∠ADE=60°,则AB,CE,BD,DC之间的数量关系是.(2)拓展探究如图2,△ABC是等腰三角形,AB=AC,∠B=α,点D,E分别在边BC,AC上.若∠ADE =α,则(1)中的结论是否仍然成立?请说明理由.(3)解决问题如图3,在△ABC中,∠B=30°,AB=AC=4cm,点P从点A出发,以1cm/s的速度沿A →B方向勾速运动,同时点M从点B出发,以cm/s的速度沿B→C方向匀速运动,当其中一个点运动至终点时,另一个点随之停止运动,连接PM,在PM右侧作∠PMG=30°,该角的另一边交射线CA于点G,连接PC.设运动时间为t(s),当△APG为等腰三角形时,直接写出t的值.解:(1)问题发现AB,CE,BD,DC之间的数量关系是:,理由:∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAD+∠ADB=180°﹣60°=120°,∠ADE=60°,∴∠CDE+∠ADB=180°﹣60°=120°,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴.故答案为:.(2)拓展探究(1)中的结论成立,∵AB=AC,∠B=α,∴∠B=∠C=α,∴∠BAD+∠ADB=180°﹣α,∵∠ADE=α,∴∠CDE+∠ADB=180°﹣α,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴;(3)解决问题∵∠B=30°,AB=AC=4cm,∴∠B=∠C=30°,∴∠BPM+∠PMB=180°﹣30°=150°,∵∠PMG=30°,∴∠CMG+∠PMB=180°﹣30°=150°,∴∠BPM=∠CMG,又∠B=∠C=30°,∴△PBM∽△MCG,∴,由题意可知AP=t,BM=t,即BP=4﹣t,如图1,过点A作AH⊥BC于H,∵∠B=30°,AB=AC=4cm,∴AH=2cm,BH===2cm,∵AB=AC,AH⊥BC,∴BC=2BH=4cm,∴MC=(4t)cm,∴,即CG=3t,当G点在线段AC上时,若△APG为等腰三角形时,则AP=AG,如图2,此时AG=AC﹣CG=4﹣3t,∴4﹣3t=t,解得:t=1,当G点在CA延长线上时,若△APG为等腰三角形时,如图3,此时∠PAG=180°﹣120°=60°,则△APG为等边三角形,AP=AG,此时AG=CG﹣AC=3t﹣4,∴3t﹣4=t,解得:t=2,∴当△APG为等腰三角形时,t的值为1或2.2.定义:如果三角形的一个内角是另一个内角的2倍,那么称这个三角形为“倍角三角形”.如图①,在△ABC中,∠A=80°,∠B=40°,那么△ABC就是一个“倍角三角形”.[定义应用](1)已知△ABC是倍角三角形,∠A=60°.则这个三角形其余两个内角的度数分别为40°、80°或30°、90°.[性质探究](2)在△ABC中,∠A,∠B,∠C所对边的边长分别为a,b,c.若∠A=2∠B,且∠A =60°,如图②,易得到a2=b(b+c).那么在任意的△ABC中,满足∠A=2∠B,如图③,关系式a2=b(b+c)是否仍然成立?若成立,请加以证明;若不成立,请说明理由.[拓展应用](3)若一等腰三角形恰好是一个倍角三角形,求它的腰与底边之比.解:(1)∵△ABC是倍角三角形,∠A=60°.∴∠B+∠C=120°,如果∠A是∠C的2倍,则∠C=30°,∠B=90°,如果∠B是∠C的2倍,即∠B=2∠C,∴2∠C+∠C=120°,∴∠C=40°,∴∠B=80°,∴这个三角形其余两个角的度数分别为40°、80°或30°、90°故答案为:40°、80°或30°、90°.(2)对于任意的倍角△ABC,∠A=2∠B,关系式a2=b(b+c)仍然成立,如图2,延长BA至D,使AD=AC=b,连结CD,则∠CAB=2∠D,∴∠B=∠D,BC=CD=a,∴△ADC∽△CDB∴,即.∴a2=b(b+c).(3)∵等腰三角形恰好是一个倍角三角形,∴分两种情况考虑,如图2,AB=AC,∠A=2∠B,由(2)的结论可知:a2=b(b+c),b=c,∴a2=2b2,∴,如图3,若AB=BC,∠A=2∠B,由(2)知a2=b(b+c),a=c,∴a2=b(b+a),解得:(负值舍去).∴.综合可得,等腰三角形恰好是一个倍角三角形时,它的腰与底边之比为或.3.如图,已知平面直角坐标系中,点A(a,0)、B(0,b),a、b满足﹣+=0.(1)求△AOB的面积;(2)将线段AB经过水平、竖直方向平移后得到线段A′B′,已知直线A′B′经过点C (4,0),A′的横坐标为5.①求线段AB平移过程中扫过的面积;②请说明线段AB的平移方式,并说明理由;③线段A′B'上一点P(m,n),直接写出m、n之间的数量关系:2m﹣n=8 .解:(1)∵﹣+=0.∴,∴b=4,∴a=﹣2,∴A(﹣2,0),B(0,4),∴S=×2×4=4;△AOB(2)①如图1,连接A'B,CB,作A'D⊥x轴于点D,作B'E⊥x轴于点E,∵AB ∥A 'B ',∴S △A 'BA =S △ABC =×4×(4+2)=12,又∵S △A 'BA =S △ABO +S 梯形A 'BOD ﹣S △AA 'D ,∴12=4+(A 'D +4)×5﹣(5+2)×A 'D ,∴A 'D =2,∴A '(5,2),∵B (0,4),A (﹣2,0),AB 平移后得到线段A ′B ′,∴B '(7,6),∵S 四边形ABB 'E =S △AOB +S 梯形B 'BOE =×(4+6)×7=4+35=39.∴S 四边形AA 'B 'B =S 四边形ABB 'E ﹣S △AA 'C ﹣S △CB 'E=39﹣×3×6, =24.即线段AB 平移过程中扫过的面积为24.②∵A ′(5,2)经A (﹣2,0)平移得到,∴线段AB 向右平移7个单位,再向上平移2个单位得到线段A ′B ′.③2m ﹣n =8.如图2,过B '作B 'F ⊥x 轴于点F ,连接PF ,∵C(4,0),B'(7,6),P(m,n),∴S△B'CF=×3×6=9,∵S△B'CF =S△PCF+S△B'PF=×6×(7﹣m),∴×6×(7﹣m)=9,∴2m﹣n=8.4.如图1,在平面直角坐标系中,已知点A(a,0),B(b,0),C(2,7),连接AC,交y轴于D,且a=,()2=5.(1)求点D的坐标.(2)如图2,y轴上是否存在一点P,使得△ACP的面积与△ABC的面积相等?若存在,求点P的坐标,若不存在,说明理由.(3)如图3,若Q(m,n)是x轴上方一点,且△QBC的面积为20,试说明:7m+3n是否为定值,若为定值,请求出其值,若不是,请说明理由.解:(1)∵a=,()2=5,∴a=﹣5,b=5,∵A(a,0),B(b,0),∴A(﹣5,0),B(5,0),∴OA=OB=5.如图1,连接OC,设OD=x,∵C(2,7),∴S△AOC=×5×7=17.5,∵S△AOC =S△AOD+S△COD,∴5x•=17.5,∴x=5,∴点D的坐标为(0,5);(2)如图2,∵A(﹣5,0),B(5,0),C(2,7),∴S△ABC=×(5+5)×7=35,∵点P在y轴上,∴设点P的坐标为(0,y),∵S△ACP =S△ADP+S△CDP,D(0,5),∴5×|5﹣y|×+2×|5﹣y|×=35,解得:y=﹣5或15,∴点P的坐标为(0,﹣5)或(0,15);(3)7m+3n是定值.∵点Q在x轴的上方,∴分两种情况考虑,如图3,当点Q在直线BC的左侧时,过点Q作QH⊥x轴,垂足为H,连接CH,∵S△QBC =S△QHC+S△HBC﹣S△QHB,且S△QBC=20,∴=20,∴7m+3n=﹣5.如图4,当点Q在直线BC的右侧时,过点Q作QH⊥x轴,垂足为H,连接CH,∵S△QBC =S△QHC+S△HBC﹣S△QHB,且S△QBC=20,∴=20,∴7m+3n=75,综上所述,7m+3n的值为﹣5或75.5.如图1,已知面积为12的长方形ABCD,一边AB在数轴上.点A表示的数为﹣2,点B 表示的数为1,动点P从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设点P运动时间为t(t>0)秒.(1)长方形的边AD长为 4 单位长度;(2)当三角形ADP面积为3时,求P点在数轴上表示的数是多少;(3)如图2,若动点Q 以每秒3个单位长度的速度,从点A 沿数轴向右匀速运动,与P 点出发时间相同.那么当三角形BDQ ,三角形BPC 两者面积之差为时,直接写出运动时间t 的值.解:(1)∵点A 表示的数为﹣2,点B 表示的数为1,∴AB =3,∵长方形ABCD 的面积为12,∴CD =4,故答案为4;(2)∵S △ADP ==AP ×4=3,∴AP =1.5,点P 在点A 之左时,﹣2﹣1.5=﹣3.5,P 点在数轴上表示﹣3.5;点P 在点A 之右时,1.5﹣2=﹣0.5,P 点在数轴上表示﹣0.5;(3)①当Q 在B 点的左侧,且S △BDQ ﹣S △BPC =时,则(3﹣3t )×4﹣t ×4=, 解得t =; ②当Q 在B 点的左侧,S △BPC ﹣S △BDQ =时,则t ×4﹣(3﹣3t )×4=,解得t =;③当Q 在B 点的右侧,且S △BDQ ﹣S △BPC =时,则(3t ﹣3)×4﹣t ×4=, 解得t =;④当Q 在B 点的右侧侧,S △BPC ﹣S △BDQ =时,则t ×4﹣(3t ﹣3)×4=, 解得t =.6.如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E 在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.(1)试求证图(1)中:∠BAE=∠DEF;(2)当点E在线段BD上移动时,如图(1)所示,求证:AE=EF;(3)当点E在直线BD上移动时,在图(2)与图(3)中,分别猜想线段AE与EF有怎样的数量关系,并就图(3)的猜想结果说明理由.(1)证明:∵在Rt△BCD中,∠CBD=90°,点A在CB的延长线上,∴∠ABD=90°,∴∠AEB+∠A=90°,∵EF⊥EA,∴∠AEB+∠FED=90°,∴∠BAE=∠DEF;(2)证明:如图1中,在BA上截取BH,使得BH=BE.∵BC=AB=BD,BE=BH,∴AH=ED,∵∠AEF=∠ABE=90°,∴∠AEB+∠FED=90°,∠AEB+∠BAE=90°,∴∠FED=∠HAE,∵∠BHE=∠CDB=45°,∴∠AHE=∠EDF=135°,∴△AHE≌△EDF(AAS),∴AE=EF.(3)解:如图2中,在BC上截取BH=BE,同法可证:AE=EF,如图3中,延长BA至点H,使得BH=BE.同法可证:AE=EF.7.在平面直角坐标系中,点A(a,0)、C(b,0)、B(0,),a、b满足:a2+2ab+2b2﹣4b+4=0,且AB=AC.(1)判断△ABC的形状并证明;(2)如图1,点D为BA延长线上一点,AD=AB,E为x轴负半轴上一点,F为DE上一点,连接CF交AD于点G,∠EFC=120°,求的值;(3)如图2,R(3a,0)点P为线段BR上一动点,以AP为边作等腰△APQ,PA=PQ,且∠APQ=∠RAB,连接AQ.当点P运动时,△ABQ的面积是否变化?若不变,求其值;若变化,求其变化范围.解:(1)结论:△ABC是等边三角形.理由:∵a2+2ab+2b2﹣4b+4=0,∴(a+b)2+(b﹣2)2=0,∵(a+b)2≥0,(b﹣2)2≥0,∴a=﹣2,b=2,∴A(﹣2,0),C(2,0),∴OA=OC,∵BO⊥AC,∴BA=BC,∵AB=AC,∴AB=AC=BC,∴△ABC是等边三角形.(2)如图1中,作BH∥DE交x轴于H.∵∠DEA=∠BHA,∠DAE=∠BAH,AD=AB,∴△DAE≌△BAH(AAS),∴AE=AH,∵∠D+∠DGF=∠EFH=120°,∠D+∠DEA=∠DAC=120°,∴∠DEA=∠DGF=∠AGH,∴∠AGH=∠BHC,∵∠GAH=∠BCH=120°,AH=BC,∴△AHG≌△CBH(AAS),∴AG=CH,∴===2.=4.(3)结论:△ABQ的面积不变,S△ABQ理由:如图2中,在x轴的正半轴上取一点M,使得PR=PM,连接PM,QR.由题意R(﹣6,0),A(﹣2,0),B(0,﹣2),∴OR=6,OB=2,∴tan∠PQM=,tan∠OAB=∴∠PRM=∠PMR=30°,∠OAB=60°,∴∠RPM=120°,∵∠RPM=∠APQ=120°,∴∠APM=∠RPQ,∵PR=PM,PQ=PQ,∴△PRQ≌△PMA(SAS),∴∠PRQ=∠AMP=30°,∴∠ARQ=60°=∠OAB,∴AB∥QR,∴S△ABQ =S△ABR=×4×2=4.8.如图,AB∥CD,EF交AB于E,交CD于F,EP平分∠AEF,FP平分∠CFE,直线MN经过点P并与AB,CD分别交于点M,N.(1)如图①,求证:EM+FN=EF;(2)如图②,(1)的结论是否成立?若成立,请证明;若不成立,直接写出EM,FN,EF三条线段的数量关系.(1)证明:如图1,在EF上截取FQ=FN,∵FP平分∠CFE,∴∠PFN=∠PFQ,又FP=FP,∴△FPN≌△FPQ(SAS),∴∠PNF=∠PQF,又AB∥CD,∴∠PNF+∠PME=180°,∵∠PQF+∠PQE=180°,∴∠PME=∠PQE,∵EP平分∠MEP,∴∠PEM=∠PEQ,∵PE=PE,∴△PEM≌△PEQ(AAS),∴EM=EQ,∴EM+FN=EQ+FQ=EF;(2)解:(1)的结论不成立.EM,FN,EF三条线段的关系是:FN﹣EM=EF.如图2,延长EP交CD于H,∵AB∥CD,∴∠AEF+∠CFE=180°,∵EP平分∠AEF,FP平分∠CFE,∴∠PEF+∠PFE=90°,∴∠EPF=90°,∴∠EPF=∠HPF,∵PF=PF,∠PFH=∠PFE,∴△PFH≌△PFE(ASA),∴EF=HF,PH=PE,∵AB∥CD,∴∠EMP=∠PNH,∠PEM=∠PHN,∴△PEM≌△PHN(AAS),∴EM=NH,∴FN﹣NH=FN﹣EM=HF=EF,即FN﹣EM=EF.9.探究题:如图,AB⊥BC,射线CM⊥BC,且BC=5cm,AB=1cm,点P是线段BC(不与点B、C重合)上的动点,过点P作DP⊥AP交射线CM于点D,连结AD.(1)如图1,若BP=4cm,则CD=4cm;(2)如图2,若DP平分∠ADC,试猜测PB和PC的数量关系,并说明理由;(3)若△PDC是等腰三角形,则CD= 4 cm.(请直接写出答案)解:(1)∵BC=5cm,BP=4cm,∴PC=1cm,∴AB=PC,∵DP⊥AP,∴∠APD=90°,∴∠APB+∠CPD=90°,∵∠APB+∠CPD=90°,∠APB+∠BAP=90°,∴∠BAP=∠CPD,在△ABP和△PCD中,,∴△ABP≌△PCD,∴BP=CD=4cm;(2)PB=PC,理由:如图2,延长线段AP、DC交于点E,∵DP平分∠ADC,∴∠ADP=∠EDP.∵DP⊥AP,∴∠DPA=∠DPE=90°,在△DPA和△DPE中,,∴△DPA≌△DPE(ASA),∴PA=PE.∵AB⊥BP,CM⊥CP,∴∠ABP=∠ECP=Rt∠.在△APB和△EPC中,,∴△APB≌△EPC(AAS),∴PB=PC;(3)∵△PDC是等腰三角形,∴△PCD为等腰直角三角形,即∠DPC=45°,又∵DP⊥AP,∴∠APB=45°,∴BP=AB=1cm,∴PC=BC﹣BP=4cm,∴CD=CP=4cm,故答案为:4.10.综合与探究如图,在平面直角坐标系中,∠ABC=90°,AB=BC,点A(2,0)、B(0,1).(1)在图①中,点C坐标为(1,3);(2)如图②,点D在线段OA上,连接BD,作等腰直角三角形BDE,∠DBE=90°,连接CE.证明:AD=CE;(3)在图②的条件下,若C、D、E三点共线,求OD的长;(4)在y轴上找一点F,使△ABF面积为2.请直接写出所有满足条件的点F的坐标.(1)解:如图①中,作CH⊥y轴于H.∵A(2,0),B(0,1),∴OA=2,OB=1,∵∠CHB=∠AOB=∠ABC=90°,∴∠ABO+∠OAB=90°,∠ABO+∠CBH=90°,∴∠CBH=∠OAB,∵AB=BC,∴△AOB≌△BHC(AAS),∴CH=OB=1,OA=BH=2,∴OH=OB+BH=3,∴C(1,3).故答案为(1,3).(2)证明:如图②中,∵△DBE,△ABC都是等腰直角三角形,∴∠DBE=∠ABC=90°,BD=BE,BA=BC,∴∠DBA=∠EBC,∴△DBA≌△EBC(SAS),∴EC=AD.(3)解:如图②中,设CD交AB于J.∵△DBA≌△EBC,C,E,D共线,∴∠BCD=∠BAD,∵∠BCD+∠CJB=90°,∠CJB=∠AJD,∴∠BAD+∠AJD=90°,∴∠ADJ=90°,∴CD⊥OA,∵C(1,3),∴OD=1.(4)解:设F(0,m).由题意:•|m﹣1|•2=2,∴m=3或﹣1,∴F(0,3)或(0,﹣1)11.已知点P是线段MN上一动点,分别以PM,PN为一边,在MN的同侧作△APM,△BPN,并连接BM,AN.(Ⅰ)如图1,当PM=AP,PN=BP且∠APM=∠BPN=90°时,试猜想BM,AN之间的数量关系与位置关系,并证明你的猜想;(Ⅱ)如图2,当△APM,△BPN都是等边三角形时,(Ⅰ)中BM,AN之间的数量关系是否仍然成立?若成立,请证明你的结论;若不成立,试说明理由.(Ⅲ)在(Ⅱ)的条件下,连接AB得到图3,当PN=2PM时,求∠PAB度数.解:(Ⅰ)结论:BM=AN,BM⊥AN.理由:如图1中,∵MP=AP,∠APM=∠BPN=90°,PB=PN,∴△MBP≌△ANP(SAS),∴MB=AN.延长MB交AN于点C.∵△MBP≌△ANP,∴∠PAN=∠PMB,∵∠PAN+∠PNA=90°,∴∠PMB+∠PNA=90°,∴∠MCN=180°﹣∠PMB﹣∠PNA=90°,∴BM⊥AN.(Ⅱ)结论成立理由:如图2中,∵△APM,△BPN,都是等边三角形∴∠APM=∠BPN=60°∴∠MPB=∠APN=120°,又∵PM=PA,PB=PN,∴△MPB≌△APN(SAS)∴MB=AN.(Ⅲ)如图3中,取PB的中点C,连接AC,AB.∵△APM,△PBN都是等边三角形∴∠APM=∠BPN=60°,PB=PN∵点C是PB的中点,且PN=2PM,∴PC=PA=PM=PB=PN,∵∠APC=60°,∴△APC为等边三角形,∴∠PAC=∠PCA=60°,又∵CA=CB,∴∠CAB=∠ABC=30°,∴∠PAB=∠PAC+∠CAB=90°.12.如图,CD是经过∠BCA顶点C的一条直线,且直线CD经过∠BCA的内部,点E,F在射线CD上,已知CA=CB且∠BEC=∠CFA=∠α.(1)如图1,若∠BCA=80°,∠α=100°,问EF=BE﹣AF,成立吗?说明理由.(2)将(1)中的已知条件改成∠BCA=∠β,∠α+∠β=180°(如图2),问EF=BE ﹣AF仍成立吗?说明理由.解:(1)EF=BE﹣AF成立,理由如下:∵∠BCA=80°(已知),∴∠BCE+∠ACE=80°∵∠BEC=∠α=100°(已知),∴∠BEF=180°﹣100°=80°(平角定义).∴∠B+∠BCE=80°(三角形外角和定理)∴∠B=∠ACE(等量代换).在△BCE和△CAF中,,∴△BCE≌△CAF(AAS),∴BE=CF,AF=EC(全等三角形对应边相等).∴EF=CF﹣CE=BE﹣AF(等量代换).(2)EF=BE﹣AF成立,理由如下:∵∠BCA=∠β,∴∠BCE+∠ACE=∠β∵∠BEC=∠α=180°﹣∠β,∴∠BEF=180°﹣∠α=∠β.∴∠B+∠BCE=∠β.∴∠B=∠ACE在△BCE和△CAF中,,∴△BCE≌△CAF(AAS).∴BE=CF,AF=EC,∴EF=CF﹣CE=BE﹣AF.13.如图,△ABC中,∠A=45°,过点C作CD⊥AB于点D,E为AC的中点,连接EB,交CD于点F.(1)如图1,若∠EBA=30°,EB=2,求AE的长;(2)如图2,若F恰好为EB的中点,求证:CF=DF+CE.(1)解:过E作EG⊥AB于G,∴∠AGE=∠BGE=90°,∵∠EBA=30°,EB=2,∴EG=BE=1,∵∠A=45°,∴AG=EG=1,∴AE=;(2)证明:过E作EG⊥AB于G,∵CD⊥AB,∴EG∥CD,∵E为AC的中点,∴EG=CD,∵F恰好为EB的中点,∴DF=EG=CD,∴CF=CD,∵∠A=45°,∴CD=AD,∴CF=AD,∵DF+AD=CD+AD=AD+AD=AD,∴CF=DF+AD,∵CE,∴CF=DF+.14.△ABC是等边三角形,点E、F分别为射线AC、射线CB上两点,CE=BF,直线EB、AF 交于点D.(1)当E、F在边AC、BC上时如图(1),求证:△ABF≌△BCE.=25,EG⊥BC于G,EH⊥AB (2)当E在AC延长线上时,如图(2),AC=10,S△ABC于H,HE=8,EG=3.(3)E、F分别在AC、CB延长线上时,如图(3),BE上有一点P,CP=BD,∠CPB是锐角,求证:BP=AD.(1)证明:如图1中,∵△ABC是等边三角形,∴∠ABF=∠C=60°,BA=CB,∵BF=CE,∴△ABF≌△BCE(SAS).(2)解:如图2中,=AC2=25,∵S△ABC∴AC=10(负根已经舍弃),在RtAEH中,∵∠AHE=90°,∠A=60°,HE=8,∴AE===16,∴EC=AE﹣AC=16﹣10=6,在Rt△ECG中,∵∠G=90°,∠ECG=∠ACB=60°,EC=6,∴EG=EC•sin60°=6×=3.故答案为3.(3)解:如图3中,作CM⊥BE于M,BN⊥AF于N.∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,BA=CB,∴∠ABF=∠BCE=120°,∵BF=CE,∴△ABF≌△BCE(SAS),∴∠F=∠E,∠BAF=∠CBE,∴∠BNF=∠CME=90°,BF=EC,∴△BNF≌△CME(AAS),∴CM=BN,∵∠BND=∠CMP=90°,BD=CP,∴Rt△BND≌Rt△CMP(HL),∴∠BDN=∠CPM,∵∠BAD=∠CBP,AB=CB,∴△ABD≌△BCP(AAS),∴BP=AD.15.如图1,在平面直角坐标系中A(a,0),B(0,b),且a,b满足+(b﹣4)2=0.(1)A、B坐标分别为A(4,0)、B(0,4).(2)P为x轴上一点,C为AB中点,∠APC=∠PBO,求AP的长.(3)如图2,点E为第一象限一点,AE=AB,以AE为斜边构造等腰直角△AFE,连BE,连接OF并延长交BE于点G,求证:BG=EG.解:(1)∵+(b﹣4)2=0,又∵≥0,(b﹣4)2≥0,∴a=b=4,∴A(4,0),B(0,4),故答案为(4,0),(0,4).(2)如图1中,∵A(4,0),B(0,4),BC=AC,∴C(2,2),设P(m,0).∴直线PC的解析式为y=x+,∴直线PC与y轴交于F(0,),∵∠POF=∠POB,∠OPF=∠PBO,∴△OPF∽△OBP,∴OP2=OF•OB,∴m2=×4,解得m=4(舍弃)或﹣2,∴P(﹣2,0),∴OP=2,PA=OP+OA=2+4=6.(3)如图2中,连接AG.∵△AOB,∠AFE都是等腰直角三角形,∴AB=AO,AE=AF,∠OAB=∠FAE=45°,∴=,∠OAF=∠BAE,∴△OAF∽△BAE,∴∠AOF=∠ABE,∴B,O,A,G四点共圆,∴∠AOB+∠AGB=90°,∵∠AOB=90°,∴∠AGB=90°,∴AG⊥BE,∵AB=AE,∴BG=GE.16.已知,△ABC中,∠ABC=∠C,P是BC边上一点,作∠CPE=∠BPF,分别交边AC,AB 于点E,F.(1)若∠CPE=∠C(如图1),求证:PE+PF=AB;(2)若∠CPE≠∠C,过点B作∠CBD=∠CPE,交CA(或CA的延长线)于点D.试猜想:线段PE,PF和BD之间的数量关系,并就∠CPE>∠C情形(如图2)说明理由:(3)若点F与A重合(如图3),∠C=27°,且PA=AE.①求∠CPE的度数;②设PB=a,PA=b,AB=c,试证明:a2=bc+c2.(1)证明:∵∠B=∠C,∠CPE=∠BPF,∠CPE=∠C∴∠B=∠BPF=∠CPE=∠C,∴PF=BF,PE∥AF,PF∥AE,∴四边形AEPF是平行四边形,∴PE=AF,∴PE+PF=AF+BF=AB,(2)结论:PE+PF=BD,理由:过B作BG∥CD交EP的延长线于G,∴∠ABC=∠C=∠CBG,∵∠CPE=∠BPF,∴∠BPF=∠CPE=∠BPG,∵BP=BP∴△FBP≌△GBP(ASA),∴PF=PG,∵∠CBD=∠CPE,∴PE∥BD,又∵BG∥CD,∴四边形BDEG是平行四边形,∴EG=BD,∴PE+PF=PE+PG=EG=BD;(3)①设∠CPE=∠BPA=x∵∠C=27°,PA=AE,∴∠APE=∠AEP=∠C+∠CPE=27°+x,∵∠BPA+∠APE+∠CPE=180°,∴x+x+27°+x=180°,∴x=51°,即∠CPE=51°;②延长BA到M,使得AM=AP.连接PM,∵∠B=∠C=27°,∠BPA=∠CPE=51°,∴∠BAP=180°﹣27°﹣51°=102°=∠M+∠APM,∵AM=AP,∴∠M=∠APM=51°,∴∠M=∠BPA,∵∠B=∠B,∴△ABP∽△PBM,∴,∴BP2=AB•BM,∵PB=a,PA=AM=b,AB=c,∴a2=c(b+c)=bc+c2.17.如图所示,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A、B重合),另一直角边与∠CBM的平分线BF相交于点F.(1)如图1,当点E在AB边得中点位置时:①通过测量DE、EF的长度,猜想DE与EF满足的数量关系是DE=EF.②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是NE=BF,请证明你的猜想.(2)如图2,当点E在AB边上的任意位置时,猜想此时DE与EF有怎样的数量关系,并证明你的猜想.解:(1)①DE=EF;②NE=BF;理由如下:∵四边形ABCD为正方形,∴AD=AB,∠DAB=∠ABC=90°,∵N,E分别为AD,AB中点,∴AN=DN=AD,AE=EB=AB,∴DN=BE,AN=AE,∵∠DEF=90°,∴∠AED+∠FEB=90°,又∵∠ADE+∠AED=90°,∴∠FEB=∠ADE,又∵AN=AE,∴∠ANE=∠AEN,又∵∠A=90°,∴∠ANE=45°,∴∠DNE=180°﹣∠ANE=135°,又∵∠CBM=90°,BF平分∠CBM,∴∠CBF=45°,∠EBF=135°,在△DNE和△EBF中,∴△DNE≌△EBF(ASA),∴DE=EF,NE=BF.(2)DE=EF,理由如下:连接NE,在DA边上截取DN=EB,∵四边形ABCD是正方形,DN=EB,∴AN=AE,∴△AEN为等腰直角三角形,∴∠ANE=45°,∴∠DNE=180°﹣45°=135°,∵BF平分∠CBM,AN=AE,∴∠EBF=90°+45°=135°,∴∠DNE=∠EBF,∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,∴∠NDE=∠BEF,在△DNE和△EBF中,∴△DNE≌△EBF(ASA),∴DE=EF.18.知识链接:将两个含30°角的全等三角尺放在一起,让两个30°角合在一起成60°,经过拼凑、观察、思考,探究出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.如图,等边三角形ABC的边长为4cm,点D从点C出发沿CA向A运动,点E从B出发沿AB的延长线BF向右运动,已知点D、E都以每秒0.5cm的速度同时开始运动,运动过程中DE与BC相交于点P,设运动时间为x秒.(1)请直接写出AD长.(用x的代数式表示)(2)当△ADE为直角三角形时,运动时间为几秒?(3)求证:在运动过程中,点P始终为线段DE的中点.解:(1)由题意得,CD=0.5x,则AD=4﹣0.5x;(2)∵△ABC是等边三角形,∴AB=BC=AC=4cm,∠A=∠ABC=∠C=60°.设x秒时,△ADE为直角三角形,∴∠ADE=90°,BE=0.5x,AD=4﹣0.5x,AE=4+0.5x,∴∠AED=30°,∴AE=2AD,∴4+0.5x=2(4﹣0.5x),∴x=;答:运动秒后,△ADE为直角三角形;(3)如图2,作DG∥AB交BC于点G,∴∠GDP=∠BEP,∠DGP=∠EBP,∠CDG=∠A=60°,∠CGD=∠ABC=60°,∴∠C=∠CDG=∠CGD,∴△CDG是等边三角形,∴DG=DC,∵DC=BE,∴DG=BE.在△DGP和△EBP中,,∴△DGP≌△EBP(ASA),∴DP=PE,∴在运动过程中,点P始终为线段DE的中点.19.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF 的值.解:(1)∵|a﹣b|+b2﹣8b+16=0∴|a﹣b|+(b﹣4)2=0∵|a﹣b|≥0,(b﹣4)2≥0∴|a﹣b|=0,(b﹣4)2=0∴a=b=4过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM∴OA平分∠MON即OA是第一象限的角平分线(2)过A作AH平分∠OAB,交BM于点H∴∠OAH=∠HAB=45°∵BM⊥AE∴∠ABH=∠OAE在△AOE与△AHB中∴△AOE≌△AHB(ASA)∴AH=OE在△ONE和△AMH中∴△ONE≌△AMH(SAS)∴∠AMH=∠ONE设BM与NE交于K∴∠MKN=180°﹣2∠ONE=90°﹣∠NEA∴2∠ONE﹣∠NEA=90°(3)过H作HM⊥OF,HN⊥EF于M、N可证:△FMH≌△FNH(SAS)∴FM=FN同理:NE=EK∴OE+OF﹣EF=2HK过A作AP⊥y轴于P,AQ⊥x轴于Q可证:△APF≌△AQE(SAS)∴PF=EQ∴OE+OF=2OP=8∴2HK+EF=OE+OF=820.如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形△AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边三角形△CBD,连接DA并延长,交y轴于点E.(1)求证:△OBC≌△ABD.(2)在点C的运动过程中,∠CAD的度数是否会变化?如果不变,请求出∠CAD的度数;如果变化,请说明理由.(3)当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?解:(1)∵△AOB,△CBD都是等边三角形,∴OB=AB,CB=DB,∠ABO=∠DBC,∴∠OBC=∠ABC,在△OBC和△ABD中,∵,∴△OBC≌△ABD(SAS);(2)点C在运动过程中,∠CAD的度数不会发生变化,理由如下:∵△AOB是等边三角形,∴∠BOA=∠OAB=60°,∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,∴∠CAD=180°﹣∠OAB﹣∠BAD=60°;(3)∵△OBC≌△ABD,∴∠BOC=∠BAD=60°,又∵∠OAB=60°,∴∠OAE=180°﹣60°﹣60°=60°,∴∠EAC=120°,∠OEA=30°,∴以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,∵在Rt△AOE中,OA=1,∠OEA=30°,∴AE=2,∴AC=AE=2,∴OC=1+2=3,∴当点C的坐标为(3,0)时,以A,E,C为顶点的三角形是等腰三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考三轮复习:《三角形综合训练》1.如图1,在平面直角坐标系中,已知点A (a ,0),B (b ,0),C (2,7),连接AC ,交y 轴于D ,且a =,()2=5.(1)求点D 的坐标.(2)如图2,y 轴上是否存在一点P ,使得△ACP 的面积与△ABC 的面积相等?若存在,求点P 的坐标,若不存在,说明理由.(3)如图3,若Q (m ,n )是x 轴上方一点,且△QBC 的面积为20,试说明:7m +3n 是否为定值,若为定值,请求出其值,若不是,请说明理由.解:(1)∵a =,()2=5,∴a =﹣5,b =5,∵A (a ,0),B (b ,0),∴A (﹣5,0),B (5,0),∴OA =OB =5.如图1,连接OC ,设OD =x ,∵C (2,7),∴S △AOC =×5×7=17.5, ∵S △AOC =S △AOD +S △COD ,∴5x •=17.5,∴x =5, ∴点D 的坐标为(0,5);(2)如图2,∵A (﹣5,0),B (5,0),C (2,7),∴S △ABC =×(5+5)×7=35, ∵点P 在y 轴上,∴设点P 的坐标为(0,y ),∵S △ACP =S △ADP +S △CDP ,D (0,5),∴5×|5﹣y |×+2×|5﹣y |×=35, 解得:y =﹣5或15,∴点P 的坐标为(0,﹣5)或(0,15);(3)7m +3n 是定值.∵点Q 在x 轴的上方,∴分两种情况考虑,如图3,当点Q 在直线BC 的左侧时,过点Q 作QH ⊥x 轴,垂足为H ,连接CH ,∵S △QBC =S △QHC +S △HBC ﹣S △QHB ,且S △QBC =20, ∴=20,∴7m +3n =﹣5.如图4,当点Q 在直线BC 的右侧时,过点Q 作QH ⊥x 轴,垂足为H ,连接CH ,∵S △QBC =S △QHC +S △HBC ﹣S △QHB ,且S △QBC =20, ∴=20, ∴7m +3n =75,综上所述,7m +3n 的值为﹣5或75.2.平面直角坐标系中,A (a ,0),B (0,b ),a ,b 满足(2a +b +5)2+=0,将线段AB 平移得到CD ,A ,B 的对应点分别为C ,D ,其中点C 在y 轴负半轴上.(1)求A ,B 两点的坐标;(2)如图1,连AD 交BC 于点E ,若点E 在y 轴正半轴上,求的值;(3)如图2,点F ,G 分别在CD ,BD 的延长线上,连结FG ,∠BAC 的角平分线与∠DFG的角平分线交于点H ,求∠G 与∠H 之间的数量关系.解:(1)∵(2a +b +5)2≥0,≥0,且(2a +b +5)2+=0, ∴, 解得:, ∴A (﹣4,0),B (0,3).(2)设C (0,c ),E (0,y ),∵将线段AB 平移得到CD ,A (﹣4,0),B (0,3).∴由平移的性质得D (4,3+c ),过D 作DP ⊥x 轴于P ,∴AO =4=OP ,DP =3+c ,OE =y ,OC =﹣c ,∵S △ADP =S △AOE +S 梯形OEDP , ∴, ∴, 解得y =.∴BE ﹣OE =(BO ﹣OE )﹣OE =BO ﹣2OE =3﹣2×=﹣c =OC , ∴=1.(3)∠G 与∠H 之间的数量关系为:∠G =2∠H ﹣180°.如图,设AH 与CD 交于点Q ,过H ,G 分别作DF 的平行线MN ,KJ ,∵HD平分∠BAC,HF平分∠DFG,∴设∠BAH=∠CAH=α,∠DFH=∠GFH=β,∵AB平移得到CD,∴AB∥CD,BD∥AC,∴∠BAH=∠AQC=∠FQH=α,∠BAC+∠ACD=180°=∠BDC+∠ACD,∴∠BAC=∠BDC=∠FDG=2α,∵MN∥FQ,∴∠MHQ=∠FQH=α,∠NHF=∠DFH=β,∴∠QHF=180°﹣∠MHQ﹣∠NHF=180°﹣(α+β),∵KJ∥DF,∴∠DGK=∠FDG=2α,∠DFG=∠FGJ=2β,∴∠DGF=180°﹣∠DGK﹣∠FGJ=180°﹣2(α+β),∴∠DGF=2∠QHF﹣180°.3.在平面直角坐标系中,O 为坐标原点,A (m ,n +1),B (m +2,n ).(1)当m =1,n =2时.如图1,连接AB 、AO 、BO .直接写出△ABO 的面积为 . (2)如图2,若点A 在第二象限、点B 在第一象限,连接AB 、AO 、BO ,AB 交y 轴于H ,△ABO 的面积为2.求点H 的坐标.(3)若点A 、B 在第一象限,在y 轴正半轴上存在点C ,使得∠CAB =90°,且CA =AB ,求m 的值,及OC 的长(用含n 的式子表示).解:(1)∵A (1,3),B (3,2),∴S △ABC =3×3﹣×1×3﹣×2×1﹣×2×3=. 故答案为.(2)如图2中,∵S △ABO =S △AOH +S △OBH =•OH •(m +2﹣m )=2,∴OH =2(3)如图3中,作AD ⊥y 轴于D ,BE ⊥DA 交D 的延长线于E .∵∠ADC =∠E =∠CAB =90°,∴∠DAC +∠EAB =90°,∠EAB +∠ABE =90°,∴∠DAC =∠ABE ,∵AC =AB ,∴△DAC≌△EBA(AAS),∴AD=BE=m,CD=AE=2,∴OC+CD=n+1,∴OC=n﹣1(n>1),∴OC+CD=n+m=n+1,∴m=1.4.在△ABC中,AB=AC,点D在射线BC上,连接AD.(1)如图1,当点D在线段BC上时,若AB=5,BC=8,CD=2,求△ABD的面积;(2)如图2,当点D在线段BC的延长线上时,过B作BE⊥AC分别交AC于点E,交AD于点F,截取AC中点G,延长BG到点H,连接AH,使∠AHB=∠ACB﹣∠ABH,若∠ADB=45°,求证:AH=DF.解:(1)如图1中,作AH⊥BC于H.∵AB=AC=5,AH⊥BC,∴BH=CH=BC=4,∴在Rt△ABH中,AH===3,∴S=•BD•AH=×6×3=9.△ABD(2)如图2中,作FM⊥BD于M,作AN⊥BC于N.∵AB=AC,AN⊥BC,∴BN=CN,∠BAN=∠CAN,∠ABC=∠ACB,∵BE⊥AC,∴∠ANC=∠ANB=∠BEC=90°,∴∠CN+∠ACB=90°,∠FBM+∠ACB=90°,∴∠FBM=∠CAN=∠BAN,∵∠H=∠ACB﹣∠ABH,∴∠H=∠ABC﹣∠ABH=∠HBC,∵AG=GC,∠AGH=∠CGB,∴△AGH≌△CGB(AAS),∴AH=BC,∵∠AND=90°,∠D=45°,∴∠NAD=∠D=45°,∵∠BFA=∠D+∠FBD,∠BAF=∠DAN+∠BAN,∴∠BFA=∠BAF,∴BA=BF,∵∠ANB=∠BMF=90°,∴△ANB≌△BMF(AAS),∴BN=FM,∵DF=FM,∴DF=BN,∴DF=2BN=BAH,即AH=DF.5.如图,等腰三角形ABC中,AB=AC=10cm,BC=12cm,AD为底边BC上的高,动点P从点D出发,沿DA方向匀速运动,速度为1cm/s,运动到A点停止,设运动时间为t (s),连接BP.(0≤t≤8)(1)求AD的长;(2)设△APB的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使得S△APB :S△ABC=1:3,若存在,求出t的值;若不存在,说明理由.(4)是否存在某一时刻t,使得点P在线段AB的垂直平分线上?若存在,求出t的值;若不存在,说明理由.解:(1)∵AB=AC,AD⊥BC,∴BC=DC=6cm,在Rt△ABD中,∵∠ADB=90°,AB=10cm,BD=6cm,∴AD===8(cm).(2)y=S△APB =S△ABD﹣S△PBD=×6×8﹣×6×t=﹣3t+24.∴y=24﹣3t(0≤t≤8).(3)∵S△APB :S△ABC=1:3,∴(24﹣3t):×12×8=1:3,解得t=.∴满足条件的t的值为.(4)由题意点P在线段AB的垂直平分线上,∴PA=PB,在Rt△PBD中,∵PB2=PD2+BD2,∴t2=(8﹣t)2+62,解得t=.∴满足条件的t的值为.6.如图1,△ABC是边长为8的等边三角形,AD⊥BC下点D,DE⊥AB于点E (1)求证:AE=3EB;(2)若点F是AD的中点,点P是BC边上的动点,连接PE,PF,如图2所示,求PE+PF 的最小值及此时BP的长;(3)在(2)的条件下,连接EF,若AD=,当PE+PF取最小值时,△PEF的面积是2.(1)证明:如图1中,∵△ABC是等边三角形,∴AB=BC=AC=8,∠B=∠BAC=60°∵AD⊥BC,∴BD=DC=4,∵DE⊥AB,∴∠DEB=90°,∠BDE=30°,∴BE=BD=2,∴AE=AB﹣BE=8﹣2=6,∴AE=3BE.(2)解:如图2中,延长DF到H,使得DH=DF,连接EF,连接EH交BC于点P,此时PE+PF的值最小.∵∠AED=90°,AF=FD,∴EF=AF=DF,∵DF=DH,∴DE=DF=DH,∴∠FEH=90°,∵在Rt△ABD中,∠ADB=90°,BD=4,∠B=60°,∴AD=BD•tan60°=4,∵∠BAD=∠BAC=30°,FE=FA,∴∠FEA=∠FAE=30°,∴∠EFH=60°,∠H=30°,∵FH=AD=4,∴EH=FH•cos30°=6,∴PE+PF的最小值=PE+PH=EH=6,∵PD=DH•sin30°=2,∴BP=BD﹣PD=2.(3)解:如图2中,∵BE=BP=2,∠B=60°,∴△BPE是等边三角形,∴PE=2,∵∠PEF=90°,EF=AF=DF=2,∴S=•PE•EF=×2×2=2.△PEF7.在△ABC中,∠ABC=60°(1)AB=AC,PA=5,PB=3①如图1,若点P是△ABC内一点,且PC=4,求∠BPC的度数.②如图2,若点P是△ABC外一点,且∠APB=60°,求PC的长.(2)如图3,AB<AC,点P是△ABC内一点,AB=6,BC=8,则PA+PB+PC的最小值是2.解:(1)在△ABC中,∠ABC=60°,AB=AC,∴△ABC是等边三角形,①如图1,将△ABP绕点B顺时针旋转60°得到△CBP′,连接PP′,∴BP=BP′,∠PBP′=∠ABC=60°,∴△BPP′是等边三角形;∴PP′=PB,∠BPP′=60°,由旋转的性质得,P′C=PA=5,∵PP′2+PC2=32+42=25=P′C2,∴△CPP′是直角三角形,∠CPP′=90°,∴∠BPC=∠BPP′+∠CPP′=60°+90°=150°;②如图2中,以AP为边向上作等边△PAE,作EF⊥BP交BP的延长线于F.∵∠EAP=∠BAC=60°,∴∠EAB=∠PAC,∵AE=AP,AB=AC,∴△EAB≌△PAC(SAS),∴BE=PC,∵∠APE=∠APB=60°,∴∠EPF=180°﹣60°﹣60°=120°,∵PE=PA=5,∴PF=PE•cos60°=,EF=PE•sin60°=,∴BF=BP+PF=3+=,∴BE===7,∴PC=PE=7.(2)如图3中,将△PBF绕点B逆时针旋转60°得到△BFE,作EH⊥CB交CB的延长线于H.∵∠ABC=60°,∠PBF=60°,∵∠ABP=∠EBF,∴∠EBF+∠BC=60°,∴∠EBC=120°,∵PB=BF,∠PBF=60°,∴△PBF是等边三角形,∴PB=PF,∵PA=EF,∴PA+PB+PC=CP+PF+EF,根据两点之间线段最短可知,当E,F,P,C共线时,PA+PB+PC的值最小,最小值=EC的长,在Rt△EBH中,∵∠EBH=60°,EB=6,∴BH=BE•cos60°=3,EH=EB•sin60°=3,∴CH=BH+CB=3+8=11,∴EC===2.8.全等三角形是研究图形性质的主要工具,以此为基础,我们又探索出一些轴对称图形的性质与判定.通过寻找或构造轴对称图形,能运用其性质及判定为解题服务.(1)如图①,BE⊥AC,CD⊥AB,BD=CE,BE与CD相交于点F.①求证:BE=CD;②连接AF,求证:AF平分∠BAC.(2)如图②,在△ABC中,AB=AC,点D、E分别在AB、AC上,且BD=CE.请你只用无刻度的直尺画出∠BAC的平分线.(不写画法,保留画图痕迹).(3)如图③,在△ABC中,仍然有条件“AB=AC,点D,E分别在AB和AC上”.若∠ADC+∠AEB=180°,则CD与BE是否仍相等?为什么?(1)①证明:∵BE⊥AC,CD⊥AB,∴∠BDF=∠CEF=90°,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD;②证明:由①得:DF=EF,∵BE⊥AC,CD⊥AB,∴AF平分∠BAC.(2)解:连接BE、CD交于点O,作射线AO交BC于F,如图②所示:AF即为所求;理由如下:∵AB=AC,∴∠DBC=∠ECB,在△BDC和△CEB中,,∴△BDC≌△CEB(SAS),∴∠BCD=∠CBE,∴∠ABO=∠ACO,OB=OC,同理:△ABO≌△ACO(SAS),∴∠OAB=∠OAC,∴AF是∠BAC的平分线;(3)解:CD=BE,理由如下:分别作CF⊥AB于F,BG⊥AC于G,如图③所示:∴∠CFB=90°,∠BGC=90°,∵AB=AC,∴∠ABC=∠ACB,在△FBC和△GCB中,,∴△FBC≌△GCB(AAS).∴CF=BG,∵∠ADC+∠AEB=180°,又∵∠BEG+∠AEB=180°,∴∠ADC=∠BEG,在△CFD和△BGE中,,∴△CFD≌△BGE(AAS),∴CD=BE.9.如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒lcm 的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)当点P在AC上,且满足PA=PB时,求出此时t的值;(2)当点P在∠BAC的角平分线上时,求出此时t的值;(3)当P在运动过程中,求出t为何值时,△BCP为等腰三角形.(直接写出结果)(4)若M为AC上一动点,N为AB上一动点,是否存在M、N使得BM+MN的值最小?如果有请求出最小值,如果没有请说明理由.解:(1)∵△ABC中,∠ACB=90°,AB=10,BC=6,∴由勾股定理得AC==8,连接BP,如图所示:当PA=PB时,PA=PB=t,PC=8﹣t,在Rt△PCB中,PC2+CB2=PB2,即(8﹣t)2+62=t2,解得:t=,∴当t=秒时,PA=PB;(2)如图1,过P作PE⊥AB,又∵点P恰好在∠BAC的角平分线上,且∠C=90°,AB=10,BC=6,∴CP=EP,在Rt△ACP和Rt△AEP中,,∴Rt△ACP≌Rt△AEP(HL),∴AC=AE=8,∴BE=2,设CP=EP=x,则BP=6﹣x,在Rt△BEP中,BE2+PE2=BP2,即22+x2=(6﹣x)2,解得x=,∴CP=,∴CA+CP=8+=,∴t=;当点P沿折线A﹣C﹣B﹣A运动到点A时,点P也在∠BAC的角平分线上,此时,t=10+8+6=24;综上,若点P恰好在∠BAC的角平分线上,t的值为秒或24秒;(3)①如图2,点P在CA上,当CP=CB=6时,△BCP为等腰三角形,则t=8﹣6=2;②如图3,当BP=BC=6时,△BCP为等腰三角形,∴AC+CB+BP=8+6+6=20,∴t=20;③如图4,若点P在AB上,当CP=CB=6时,△BCP为等腰三角形;作CD⊥AB于D,则根据面积法求得:CD==4.8,在Rt△BCD中,由勾股定理得,BD==3.6,∴PB=2BD=7.2,∴CA+CB+BP=8+6+7.2=21.2,此时t=21.2;④如图5,当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,则D为BC的中点,∴PD为△ABC的中位线,∴AP=BP=AB=5,∴AC+CB+BP=8+6+5=19,∴t=19;综上所述,t为2s或20s或21.2s或19s时,△BCP为等腰三角形.(4)存在M、N使得BM+MN的值最小,理由如下:作点B关于AC的对称点B',过B'作AB的垂线交AC于M,交AB于N,连接BM,如图6所示:则B'C=BC=6,B'M=BM,∠B'NB=90°,BM+MN=B'M+MN=B'N,∴BB'=2BC=12,∵∠ACB=∠B'NB=90°,∠B'BN=∠ABC,∴△B'BN∽△ABC,∴===,∴B'N=AC=×8=9.6,综上所述,存在M、N使得BM+MN的值最小,BM+MN的最小值为9.6.10.如图1,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO 上一动点,过点H作直线l⊥AO于H,分别交直线AB、AC、BC、于点N、E、M.(1)当直线l经过点C时(如图2),求证:BN=CD;(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;(3)请直接写出BN、CE、CD之间的等量关系.(1)证明:连接ND,如图2所示:∵AO平分∠BAC,∴∠BAD=∠CAD,∵直线l⊥AO于H,∴∠AHN=∠AHE=90°,∴∠ANH=∠AEH,∴AN=AC,∴NH=CH,∴AH是线段NC的中垂线,∴DN=DC,∴∠DNH=∠DCH,∴∠AND=∠ACB,∵∠AND=∠B+∠BDN,∠ACB=2∠B,∴∠B=∠BDN,∴BN=DN,∴BN=DC;(2)解:当M是BC中点时,CE和CD之间的等量关系为CD=2CE,理由如下:过点C作CN'⊥AO交AB于N',过点C作CG∥AB交直线l于点G,如图3所示:由(1)得:BN'=CD,AN'=AC,AN=AE,∴∠ANE=∠AEN,NN'=CE,∴∠ANE=∠CGE,∠B=∠BCG,∴∠CGE=∠AEN,∴CG=CE,∵M是BC中点,∴BM=CM,在△BNM和△CGM中,,∴△BNM≌△CGM(ASA),∴BN=CG,∴BN=CE,∴CD=BN'=NN'+BN=2CE;(3)解:BN、CE、CD之间的等量关系:当点M在线段BC上时,CD=BN+CE;理由如下:过点C作CN'⊥AO交AB于N',如图3所示:由(2)得:NN'=CE,CD=BN'=BN+CE;当点M在BC的延长线上时,CD=BN﹣CE;理由如下:过点C作CN'⊥AO交AB于N',如图4所示:同(2)得:NN'=CE,CD=BN'=BN﹣CE;当点M在CB的延长线上时,CD=CE﹣BN;理由如下:过点C作CN'⊥AO交AB于N',如图5所示:同(2)得:NN'=CE,CD=BN'=CE﹣BN.11.在平面直角坐标系中,直线AB交y轴于A(0,a),交x轴于B(b,0),且a,b满足(a﹣b)2+|3a+5b﹣88|=0.(1)求点A,B的坐标;(2)如图1,已知点D(2,5),求点D关于直线AB对称的点C的坐标.(3)如图2,若P是∠OBA的角平分线上的一点,∠APO=67.5°,求的值.解:(1)由题意得解得∴A(0,11),B(11,0)(2)如图一,延长FD交AB于点E,连结CE 因为OB=OA=11所以三角形OAB是等腰直角三角形易得△DEC,△AFE都是等腰直角三角形所以FE=AF=OA﹣OF=11﹣5=6∴CE=DE=EF﹣FD=6﹣2=4所以C的横坐标为6.,纵坐标为5+4=9 故C的坐标为(6,9)(3)如上图,作PM垂直AB于点M,作PM垂直OB于点L,在L的左侧取一点N,使得NL =AM∵PB是∠ABO的平分线所以PM=PL∴△AMP≌△NLP∴∠NLP=∠APM∴∠APN=∠MPL∵∠ABO=45°∴∠MPL=135°∴∠APN=135°又∠APO=67.5°∴∠NPO=∠APO=67.5°∵PN=PA,PO=PO∴△OPN≌OPA∴∠PON=∠POA=45°,NO=AO=11设NL=a,则MA=a,∴BL=BM=a+11∵BL=22﹣a∴22﹣a=a+11∴a=11﹣∴LO=11﹣(11﹣)=∴PO=LO=11所以=312.以△ABC的边AB,AC为直角边向外作等腰直角三角形ABE和等腰直角三角形ACD,AB=AE,AC=AD,∠BAE=∠CAD=90°,M是BC中点,连接AM,DE.(1)如图1,在△ABC中,当∠BAC=90°时,求AM与DE的数量和位置关系.(2)如图2,当△ABC为一般三角形时,(1)中的结论是否依然成立?说明理由.(3)如图3,若以△ABC的边AB,AC为直角边向内作等腰直角三角形ABE和等腰直角三角形ACD,其他条件不变(1)中的结论是否依然成立,并说明理由.解:(1)AM=DE,AM⊥DE,理由如下:延长MA交DE于F,如图1所示:∵∠BAC=90°,M是BC中点,∴AM=BC,∵∠BAE=∠CAD=90°,∠BAC=90°,∴∠EAD=90°,在△ABC和△AED中,,∴△ABC≌△AED(SAS),∴DE=BC,∠ABC=∠AED,∴AM=DE,∵∠BAE=90°,∴∠BAM+∠EAF=90°,∴∠AED+∠EAF=90°,∴∠AFE=90°,∴AM⊥DE;(2)(1)中的结论成立,AM=DE,AM⊥DE,理由如下:延长AM至N,使MN=AM,连接BN、CN,延长MA交DE于F,如图2所示:∵M是BC中点,∴BM=CM,∴四边形ABNC是平行四边形,∴BN=AC=AD,BN∥AC,∴∠NBA+∠BAC=180°,∵∠BAE=∠CAD=90°,∴∠DAE+∠BAC=180°,∴∠NBA=∠DAE,在△ABN和△EAD中,,∴△ABN≌△EAD(SAS),∴AN=DE=2AM,∠BAN=∠AED,∴AM=DE,∵∠BAE=90°,∴∠BAN+∠EAF=90°,∴∠AED+∠EAF=90°,∴∠AFE=90°,∴AM⊥DE;(3)(1)中的结论成立,理由如下:由(1)的结论,当∠BAC=90°,可得AM=DE,AM⊥DE,当∠BAC≠90°时,延长CA到F,使AF=AC,连接BF,延长AM交DE于G,如图3所示:则AF=AX=AD,∵M是BC中点,∴AM是△BCF的中位线,∴AM=BF,AM∥BF,∴∠MAC=∠F,∵∠BAE=∠DAC=90°,∴∠DAF=90°,∴∠BAE=∠DAF,∴∠BAF=∠EAD,在△ABF和△AED中,,∴△ABF≌△AED(SAS),∴BF=DE,∠F=∠ADE,∴AM=DE,∴∠BAC=∠ADE,∵∠MAC+∠DAM=∠DAC=90°,∴∠ADE+∠DAM=90°,∴∠AGD=90°,∴AM⊥DE;综上所述,(1)中的结论成立.13.在平面直角坐标系中,点A的坐标为(0,4)(1)如图1,若点B的坐标为(3,0),△ABC是等腰直角三角形,BA=BC,∠ABC =90°,求C点坐标.(2)如图2,若点E是AB的中点,求证:AB=2OE;(3)如图3,△ABC是等腰直角三角形,BA=BC,∠ABC=90°,△ACD是等边三角形,连接OD,若∠AOD=30°,求B点坐标.(1)解:过点C作CD⊥x轴于D,如图1所示:∵∠ABC=90°,∴∠ABO+∠CBD=90°,∵∠AOB=90°,∴∠ABO+∠BAO=90°,∴∠CBD=∠BAO,∵CD⊥x轴,∴∠BDC=90°=∠AOB,在△BDC和△AOB中,,∴△AOB≌△BDC(AAS),∴OA=DB,OB=DC,∵点A(0,4),点B(3,0),∴DB=4,DC=3,∴OD=4+3=7,∴C点坐标为(7,3);(2)证明:延长OE至F点,使得EO=EF,连接FB,如图2所示:∵点E为AB的中点,∴EA=EB,在△AOE和△BFE中,,∴△AOE≌△BFE(SAS),∴OA=FB,∠AOE=∠F,∴OA∥BF,∴∠AOB+∠FBO=180°,∵∠AOB=90°,∴∠FBO=90°,∴∠AOB=∠FBO,在△AOB和△FBO中,,∴△AOB≌△FBO(SAS),∴AB=OF,∵EA=EB,EO=EF,∴OE=AE=EB,∴AB=2OE;(3)解:过点D作DM⊥y轴于M,CN⊥OD于N,CH⊥y轴于H,CG⊥x轴于G,如图3所示:则四边形OHCG是矩形,∴OH=CG,∵∠AOD=30°,∴∠ODM=90°﹣30°=60°,OD=2DM,∵△ADC为等边三角形,∴AD=CD=AC,∠ADC=60°,∵∠ADM+∠ADO=60°,∠CDN+∠ADO=60°,∴∠ADM=∠CDN,在△DMA和△DNC中,,∴△DMA≌△DNC(AAS),∴DM=DN,∴OD=2MD=2DN,∴DN=ON,∴CD=CO=AC,∴HA=HO=CG=2,由(1)得CG=OB∴OB=2,∴B点坐标为(2,0).14.已知,△ABC,AD⊥BD于点D,AE⊥CE于点E,连接DE.(1)如图1,若BD,CE分别为△ABC的外角平分线,求证:DE=(AB+BC+AC);(2)如图2,若BD,CE分别为△ABC的内角平分线,(1)中的结论成立吗?若成立请说明理由;若不成立,请猜想出新的结论并证明;(3)如图3,若BD,CE分别为△ABC的一个内角和一个外角的平分线,AB=8,BC=10,AC=7,请直接写出DE的长为 4.5.(1)证明:如图1,分别延长AE、AD交BC于H、K,在△BAD和△BKD中,∵,∴△BAD≌△BKD(ASA),∴AD=KD,AB=KB,同理可证,AE=HE,AC=HC,∴DE=HK,又∵HK=BK+BC+CH=AB+BC+AC,∴DE=(AB+AC+BC);(2)解:结论不成立.DE=(AB+AC﹣BC).理由:如图2,分别延长AE、AD交BC于H、K,在△BAD和△BKD中,∵,∴△BAD≌△BKD(ASA),∴AD=KD,AB=KB,同理可证,AE=HE,AC=HC,∴DE=HK,又∵HK=BK﹣BH=AB+AC﹣BC,∴DE=(AB+AC﹣BC);(3)解:分别延长AE、AD交BC或延长线于H、K,在△BAD和△BKD中,∵,∴△BAD≌△BKD(ASA),∴AD=KD,AB=KB同理可证,AE=HE,AC=HC,∴DE=KH又∵KH=BC﹣BK+HC=BC+AC﹣AB.∴DE=(BC+AC﹣AB),∵AB=8,BC=10,AC=7,∴DE=(10+7﹣8)=4.5,故答案为4.5.15.在平面直角坐标系中,点A(a,0)、C(b,0)、B(0,),a、b满足:a2+2ab+2b2﹣4b+4=0,且AB=AC.(1)判断△ABC的形状并证明;(2)如图1,点D为BA延长线上一点,AD=AB,E为x轴负半轴上一点,F为DE上一点,连接CF交AD于点G,∠EFC=120°,求的值;(3)如图2,R(3a,0)点P为线段BR上一动点,以AP为边作等腰△APQ,PA=PQ,且∠APQ=∠RAB,连接AQ.当点P运动时,△ABQ的面积是否变化?若不变,求其值;若变化,求其变化范围.解:(1)结论:△ABC是等边三角形.理由:∵a2+2ab+2b2﹣4b+4=0,∴(a+b)2+(b﹣2)2=0,∵(a+b)2≥0,(b﹣2)2≥0,∴a=﹣2,b=2,∴A(﹣2,0),C(2,0),∴OA=OC,∵BO⊥AC,∴BA=BC,∵AB=AC,∴AB=AC=BC,∴△ABC是等边三角形.(2)如图1中,作BH∥DE交x轴于H.∵∠DEA=∠BHA,∠DAE=∠BAH,AD=AB,∴△DAE≌△BAH(AAS),∴AE=AH,∵∠D+∠DGF=∠EFH=120°,∠D+∠DEA=∠DAC=120°,∴∠DEA=∠DGF=∠AGH,∴∠AGH=∠BHC,∵∠GAH=∠BCH=120°,AH=BC,∴△AHG≌△CBH(AAS),∴AG=CH,∴===2.(3)结论:△ABQ的面积不变,S=4.△ABQ理由:如图2中,在x轴的正半轴上取一点M,使得PR=PM,连接PM,QR.由题意R (﹣6,0),A (﹣2,0),B (0,﹣2),∴OR =6,OB =2, ∴tan ∠PQM =,tan ∠OAB =∴∠PRM =∠PMR =30°,∠OAB =60°, ∴∠RPM =120°, ∵∠RPM =∠APQ =120°, ∴∠APM =∠RPQ , ∵PR =PM ,PQ =PQ , ∴△PRQ ≌△PMA (SAS ), ∴∠PRQ =∠AMP =30°, ∴∠ARQ =60°=∠OAB , ∴AB ∥QR ,∴S △ABQ =S △ABR =×4×2=4.16.在平面直角坐标系中,点A (0,m )和点B (n ,0)分别在y 轴和x 轴的正半轴上,满足(m ﹣n )2+|m +n ﹣8|=0,连接线段AB ,点C 为AB 上一动点.(1)填空:m = 4 ,n = 4 ;(2)如图,连接OC并延长至点D,使得DC=OC,连接AD.若△AOC的面积为2,求点D的坐标;(3)如图,BC=OB,∠ABO的平分线交线段AO于点E,交线段OC于点F,连接EC.求证:①△ACE为等腰直角三角形;②BF﹣EF=OC.解:(1)∵(m﹣n)2+|m+n﹣8|=0,∴m=n=4,故答案为:4,4;(2)如图1,过点C作CH⊥OA,CG⊥OB,∵点A(0,4)和点B(4,0),∴OA=OB=4,=×4×4=8,∴S△ABO∵△AOC的面积为2,=6=×OB×CG=×4×CG,∴AO×CH=×4×CH=2,S△BOC∴CH=1,CG=3,∴点C(1,3),∵DC=OC,∴点D(2,6)(3)①∵OA=OB=4,∠AOB=90°,∴∠OAB=∠OBA=45°,∵BE平分∠ABO,∴∠EBO=∠EBC,且BE=BE,OB=OC,∴△OBE≌△CBE(SAS)∴∠EOB=∠ECB=90°,∴∠ACE=90°,且∠OAB=45°,∴∠CAE=∠AEC=45°,∴AC=CE,且∠ACE=90°,∴△ACE是等腰直角三角形;②如图2,作OM平分∠AOB,交BE于点M,∵OM平分∠AOB,∴∠AOM=∠BOM=45°,∴∠AOM=∠BOM=∠OAB=∠OBA,∵OB=OC,BE平分∠ABO,∠ABO=45°,∴∠OBE=22.5°,BE⊥OC,∠COB=∠OCB=67.5°,∴∠AOC=22.5°=∠COM,∴∠AOC=∠BOM,且OB=OA,∠OAB=∠OBM,∴△ACO≌△OMB(ASA)∴BM=OC,∵∠EFO=∠MFO=90°,OF=OF,∠AOC=∠COM,∴△EFO≌△MFO(ASA)∴EF=FM,∴BF﹣EF=BF﹣FM=BM=OC.17.【问题发现】(1)如图①,数学课外资料《全品》P4页有一道题条件为:“D是等边三角形ABC的边BC上的一动点,以AD为边在AB上方作等边△ADE,若AB=10,AD=8……”,小明认为AD有最小值,条件AD=8是错误的,他的想法得到了王老师的肯定,那么AD的最小值是5.王老师又让小明研究了以下两个问题:【问题探究】(2)如图②,在等腰直角△ABC中,∠ACB=90°,AC=BC=2,点D在AB上,且AD=1,以CD为直角边向右作等腰直角△DCE,连接BE,求△BDE的周长;【问题解决】(3)如图③,△ABC中,∠A=45°,∠ABC=60°,AB=3+,点D是边AB上任意一点,以CD为边在AD的右侧作等边△DCE,连接BE,试求△BDE面积的最大值.【问题发现】解:(1)当AD⊥BC时,AD的值最小,∵△ABC是等边三角形,AD⊥BC,∴BC=AB=10,BD=BC=5,∴AD===5,故答案为:5;【问题探究】解:(2)作CM⊥AB于M,如图②所示:∵∠ACB=90°,AC=BC=2,∴∠A=∠ABC=45°,AB=AC=4,CM=AB=AM=BM=2,∴DM=AM﹣AD=1,∴BD=BM+DM=3,CD===,∵△DCE是等腰直角三角形,∴CD=CE,∠DCE=90°=∠ACB,DE=CD=,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE=1,∴△BDE的周长=BD+BE+DE=3+1+=4+;【问题解决】解:(3)作CM⊥AB于M,作EN⊥AB于N,如图③所示:∵∠A=45°,∠ABC=60°,∴△ACM是等腰直角三角形,∠BCM=30°,∴AM=CM,CM=BM,设BM=x,则AM=CM=x,∴AB=x+x=3+,解得:x=,∴BM=,CM=AM=3,设AD=y,则DM=3﹣y,BD=3+﹣y,∵△CDE是等边三角形,∴∠DCE=60°CD=CE,∴∠DCM+∠BCE=30°=∠BCM,在MB上截取MH=MD=3﹣y,连接CH,则CD=CH=CE,∵CM⊥DH,∴∠DCM=∠HCM,∴∠BCH=∠BCE,在△BCH和△BCE中,,∴△BCH≌△BCE(SAS),∴∠CBH=∠CBE=60°,BH=BE=3+﹣y﹣2(3﹣y)=y+﹣3,∴∠EBN=60°,∵EN⊥AB,∴∠BEN=30°,∴BN=BE,EN=BN=BE=(y+﹣3),∵△BDE的面积=BD×EN=×(3+﹣y)×(y+﹣3)=(﹣y2+6y﹣6)=﹣(y﹣3)2+,∴当y=3,即AD=3时,△BDE面积的最大值为.18.等腰Rt△ABC中,∠ABC=90°,AB=BC,F为AB上的一点,连接CF,过点B作BH⊥CF 交CF于G,交AC于H.(1)如图1,延长BH到点E,连接AE,当∠EAB=90°,AE=3,求BF的长;(2)如图2,若F为AB的中点,连接FH,求证:BH+FH=CF;(3)如图3,在AB上取点K,使AK=BF,连接HK并延长与CF的延长线交于点P,若G为CP的中点,PG=2.求AH+BH的值(直接写出答案)解:(1)∵BH⊥CF,∠ABC=90°,∴∠ABE+∠CFB=∠CFB+∠BCF=90°,∴∠ABE=∠BCF,在△ABE与△BCF中,,∴△ABE≌△BCF(ASA),∴BF=AE=3.(2)证明:如图2中,过点A作AD⊥AB交BH的延长线于点D.∴∠BAD=∠CBF=90°,∴∠D+∠ABD=∠CFB+∠ABD=90°,∴∠ABD=∠BCF,在△ABD与△BCF中,,∴Rt△BAD≌Rt△CBF(AAS),∴AD=BF,BD=CF.∵F为AB的中点,∴AF=BF,∴AD=AF,在△ADH与△AFH中,,∴△AHD≌△AHF(SAS),∴DH=FH.∵BD=BH+DH=BH+FH,∴BH+FH=CF;(3)如图3中,过A作AM⊥AB,交BH延长线于M,由(2)证得△MAB≌△FBC,∴AM=BF=AK,∠AMB=∠CFB,∵△ABC是等腰直角三角形,∴∠CAB=45°,∵∠MAB=90°,∴∠MAH=45°,∴∠MAH=∠CAB,在△MAH与△KAH中,,∴△MAH≌△KAH(SAS),∴∠AMB=∠AKH,∴∠AKH=∠CFB,∵∠AKH=∠PKF,∠CFB=∠PFK,∴∠PKF=∠PFK,∵FC⊥BH,G是PC中点,∴CH=PH,∴∠AHK=2∠P,在△PFK中,∠PKF==90°﹣∠P,则90°﹣∠P+45°+2∠P=180°,解得∠P=30°,在CH上取一点R,使RH=BH,连接BR,∴∠RHB==60°,∴△RHB是等边三角形,∴BH=BR=RH,∵∠CAB=∠ACB=45°,∠AHB=180°﹣60°=120°,∠BRC=180°﹣60°=120°,∴∠ABH=∠RBC,在△ABH与△CBR中,,∴△ABH≌△CBR(ASA),∴AH=CR,∵cos30°=,∴CH==CG=PG,∴RH+RC=BH+AH=PG=,∴BH+AH=.19.如图(1),AB=8cm,AC⊥AB,BD⊥AB,AC=BD=6cm.点P在线段AB上以2m/s 的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s)(1)若点Q的运动速度与点P的运动速度相等,当t=1时,判断线段PC与PQ满足的关系,并说明理由.(2)如图(2),将图(1)中的AC⊥AB,BD⊥AB为改“∠CAB=∠DBA=a°”,其它条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.解:(1)△ACP≌△BPQ,∵AC⊥AB,BD⊥AB∴∠A=∠B=90°∵AP=BQ=2∴BP=6∴BP=AC,在△ACP和△BPQ中,,∴△ACP≌△BPQ,∴∠C=∠QPB,∵∠APC+∠C=90°,∴∠APC+∠QPB=90°,∴PC⊥PQ;(2)存在x的值,使得△ACP与△BPQ全等,①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:6=8﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:6=xt,2t=8﹣2t解得:x=3,t=2.20.已知△ABC是等边三角形.(1)如图1,点D是BC边的中点,点P在直线AC上,若△PAD是轴对称图形,则∠APD 的度数为120°或75°或30°或15°.(2)如图2,点D在BC边上,∠ADG=60°,DG与∠ACB的外角平分线交于G,GH⊥AC 于H,当点D在BC边上移动时,请判断线段AH,AC,CD之间的数量关系,并说明理由.(3)如图3,点D在BC延长线上,连接AD,E为AD上一点,AE=AC,连接BE交AC于F,若AF=2ED=3,则线段CF的长为.解:(1)如图1中,当△PAD是等腰三角形时,是轴对称图形.当AP=AD时,可得∠AP1D=15°,∠AP3D=75°.当PA=PD时,可得∠AP2D=120°.当DA=DP时,可得∠AP4D=30°,综上所述,满足条件的∠APD的值为120°或75°或30°或15°.故答案为120°或75°或30°或15°.(2)结论:AC+CD=2AH.理由:如图2中,连接AG,作GN⊥CM于N,在BA上截取BQ,使得BQ=BD,∵△ABC是等边三角形,∴AB=BC=AC,∠B=∠BAC=∠ACB=60°,∵BQ=BD,∴△BDQ是等边三角形,AQ=DC,∴∠BQD=60°,∴∠AQD=120°,∵CG是∠ACB的外角平分线,∴∠ACG=60°,∠DCG=120°,∵∠ADG=60°,∴∠ADB+∠GDC=120°,∵∠QAD+∠ADB=120°,∴∠QAD=∠CDG,∴△AQD≌△DCG(ASA),∴AD=DG,∵∠ADG=60°,∴△ADG是等边三角形,∴AG=DG,∵GH⊥C,GN⊥CM,CG平分∠ACM,∴GH=GN,∠GHC=∠GNC=90°,∵CG=CG,∴Rt△CGH≌Rt△CGN(HL),Rt△AGH≌Rt△DGN,∴CH=CN,AH=DN,∴AC+CD=AH+CH+DN﹣CN=2AH.(3)如图3中,在BC上截取BG=CF,则CG=AF=3,过点D作QH∥AB,分别交AC,BE的延长线于Q,H.∵AB=AE,∴∠ABE=∠AEB,∵QH∥AB,∴∠ABE=∠H,∵∠AEB=∠DEH,∴∠H=∠DEH,∴DE=DH=1.5,设AB=BC=AC=m,∵△ABG≌△BCF(SAS),∴∠BAG=∠CBF,设∠BAG=∠CBF=x,∵AB=AE,∴∠ABE=∠AEB=60°﹣x,∴∠BAE=180°﹣2(60°﹣x)=60°+2x,∴∠DAG=∠DGA=60°+x,∴DA=DG=m+1.5,∴CD=m﹣1.5=CQ=DQ,∴QH=QD+DH=m,∴QH=AB,∵∠AFB=∠QFH,∠BAF=∠Q,∴△ABF≌△QHF(AAS),∴AF=FQ,∴3=m﹣2+m﹣1,5,∴m=,∴CF=.故答案为.。

相关文档
最新文档