初三数学教学课件
人教版九年级上册数学精品教学课件 第22章 二次函数 第3课时 抛物线形实物及运动轨迹问题

1 令 x=0 得 y=− 45 ×(0 − 15)2 + 45=40,
∴ 点 B 的坐标为 (0,40).
∴ 这名运动员起跳时的竖直高度为 40 米.
能力提升 悬索桥两端主塔塔顶之间的主悬钢索,其形状 可近似地看作抛物线,水平桥面与主悬钢索之间用垂直 钢索连接. 已知两端主塔之间的水平距离为 900 m,两主 塔塔顶距桥面的高度为 81.5 m,主悬钢索最低点离桥面 的高度为 0.5 m.
当 y = 0 时,可求得点 C 的坐标为 (2.5,0);
同理,可求得点 D 的坐标为 (-2.5,0). y 根据对称性,如果不计其它因素,
●B (1,2.25)
A●(0,1.25)
那么水池的半径至少要 2.5 m,才
能使喷出的水流不致落到池外.
●
D
O
●
C
x
例3 如图,一名运动员在距离篮球框中心 4 m (水平距 离) 远处跳起投篮,篮球准确落入篮框,已知篮球运行 的路线为抛物线,当篮球运行的水平距离为 2.5 m 时, 篮球达到最大高度,且最大高度为 3.5 m.如果篮框中 心距离地面 3.05 m,那么篮球在该运动员出手时的高度 是多少?
OABC 的长是 12 m,宽是 4 m,按照图中所示的平面
直角坐标系,抛物线可以用 y= − 1 x2 + 2x + c 表示. (1)请写出该抛物线的函数解析式;6
解:根据题意,得 C (0,4). 将其代入
抛物线 y=− 1 x2 + 2x + c 中,得 c=4,
∴
6
抛物线解析式为
y=−
1
x2
例2 某广场喷泉的喷嘴安装在平地上.有一喷嘴喷出
九年级数学上册教学课件-圆锥的侧面积和全面积

)n
l
h
n r 360 l
O
r
当圆锥的轴截面是等边三角形时,圆锥的侧面展开图是一个半圆
探究新知
根据下列条件求圆锥侧面积展开图的圆心角(r、h、 分别是圆锥的底面 半径、高线、母线长) (1 h= 2,r = 1 则 =___1_8_0_°__
(2) h=3, r=4 则 =___2_8_8_°____
1 (3)
3.圆锥的侧面积为 8cm2 ,其轴截面是一个等边三角形,则该轴
截面的面积( A )
A. 4 3cm2
B 8. 3cm2
C. 4 3cm2
D.8 3cm2
勇攀高峰
(09年湖北)如图,已知RtΔABC中,∠ACB=90°,AC= 4,BC=3,以AB边所在的 直线为轴,将ΔABC旋转一周,则所得几何体的表面积是( ).
_3_8_4___c_m__2 ,全面积为_2_4_0___c_m_2__
2.一个圆锥形的冰淇淋纸筒,其底面直径为6cm, 高为4cm,围成这样的冰淇淋
纸筒所需纸片的面积为( )
A.
B.
C.
D.
D
66cm2
30cm2
28cm2
15cm2
随堂练习
例3.蒙古包可以近似地看成由圆锥和圆柱组成的.如果想用毛毡搭建20个底面积为35 m2,
′D爬圆=D23.=rl行锥×36的沿03°6A.最在0B°短展R=t1Δ路开2A0线成B∴∴°∠答垂解C是扇∠BB::足B中A3D形B它将为B,=AA′D爬3圆=D∠23B..=Brl行锥B×′36,AA的沿03D°6则A.最在0=B°点短展6R=0Ct1Δ路开°∴ ∴∠C答 垂2解是,A0A线成∠BB°B::足BBCA是DB扇B=它将中为B′的=A23形3′,D爬圆=D.23中A.3∠=rBl行锥.点B×36B的沿′0,,3A°垂答 解6∴ ∴A∠D.∴ ∴最答 垂解∠∴ ∴答 垂解 则∠过在将答 垂0解BBB::=足°∠∠BBB∠::::短足足A圆点B展BD点R:=:足B6AA它 将 BD为 DABDBtA01它将锥BC为它将BΔ路为B它开B将为B°=A2=DAD=爬 圆 A′是,作A′沿D′爬圆=230DD爬圆AD线=爬圆D成23=.DB23°23.Br行 锥 lB=AB.r.l行锥==Crrl行B锥 l行6B锥是扇3×D=36展的 沿中0××′的沿36363的03⊥23的3沿的沿形00°3636开A.最 A.,在.最°°6中在060AA.B最A.最BA在成°0在03短∠R展 B展BR=°B点C°.短展扇短R=t展BtR=1,Δ路1B开 开,垂 答 解 t21′t形AΔ路21,开Δ路A开02线线 B成0过成 2BBA::°足AAD0线0则成AD线CBBB成°是扇是 点B扇 °=它 将 BB为中CA是扇点’C23是扇形B23中6形D,爬 圆 中,23作230D形CA23A形,°3r∠l3行 锥 ,.是B,BA.B6.3AAB3∠BDBB30.的 沿 ∠B′3BB,B.A⊥BB6,B.A=′D在 B最,0则A′′的B,则AA=3DR短则展点.CD6中则点 =t6,10C路 点开 =0°26A点C点是,006,C线 AB成是°A,0BC是B,C°B是 BA扇 B是中 ,=过B′BBA的233形BB,B=点.的3中′B的A.=33B′中B的点..中3B作B.,点A中点,B
《数学教学》课件

介绍小数的概念,包括有限小数、 无限循环小数和无限不循环小数, 以及小数的性质和运算规则。
数的四则运算
加法
介绍加法的概念和运算 规则,包括加法的交换
律和结合律。
减法
介绍减法的概念和运算 规则,包括减法的性质
和运算技巧。
乘法
介绍乘法的概念和运算 规则,包括乘法的交换 律、结合律和分配律。
除法
介绍除法的概念和运算 规则,包括除法的性质
解释空间思维在数学中的重要性,如 何通过空间想象力来理解和解决几何 问题。
二维与三维图形
介绍二维和三维图形的基本概念,以 及如何在空间思维中应用这些概念。
转换与变换
阐述如何在空间思维中应用转换和变 换的概念,如平移、旋转和对称。
应用实例
提供一些几何问题,让学生实践空间 思维的应用,如解决立体几何问题、 解析几何问题等。
比例函数和三角函数等。
03
数学应用
生活中的数学
总结词
生活中的数学无处不在,与我们的日常生活紧密相连。
详细描述
从购物时计算找零到规划家庭预算,再到理解各种图表和统计数据,数学在日 常生活中起着至关重要的作用。通过学习数学,我们可以更好地理解这些日常 生活中的数学问题,并解决它们。
数学在科学中的应用
总结词
数学在科学领域中扮演着至关重要的角色,是科学研究和技 术发展的基础。
详细描述
从物理学到化学,再到生物学和地球科学,数学模型和理论 在解释自然现象、预测未来趋势和推动科技进步方面发挥着 关键作用。通过学习数学,我们可以更好地理解科学原理, 并运用这些原理解决实际问题。
数学在工程中的应用
总结词
数学在工程设计和制造过程中发挥着核心作用,是实现创新和优化的关键。
九年级数学上册教学课件《圆周角》

证明:∵ ∠ACB= ∠AOB,∠BAC= ∠BOC,∠AOB=2∠BOC, ∴ ∠ACB =2∠BAC.
4. 如图,你能用三角尺确定一张圆形纸片的圆心吗?有 几种方法?与同学交流一下.
【教材P88练习 第4题】
解:根据90º的圆周角所对的弦是直径,两直径的交点即是圆心.
⌒
(2)如何证明一条弧所对的圆周角等于它所对的圆心角的一半?
第一种情况:
证明:如图,连接 AO 并延长交⊙O 于点 D.∵OA=OB,∴∠BAD=∠B.又∵∠BOD=∠BAD+∠B,
第二种情况:
D
请同学们自己完成证明.
第三种情况:
一条弧所对的圆周角等于它所对的圆心角的一半.
圆周角定理:
拓展延伸
⌒
⌒
解:(1)连接OA,交BF于点M.∵A是BF上的中点,∴OA垂直平分BF.∴∠BOM=90°-∠B=90°-α=40°.∴∠C= ∠AOB= ×40°=20°,即β=20°.(2)β=45°- α.证明:由(1)知∠BOM=90°-α.又∠C=β= ∠AOB,∴β= (90°-α)=45°- α.
等弧所对的圆周角相等.
∴
等弧:
∠BDC=∠CAE
同弧或等弧所对的圆周角相等.
推论1:
显然,在同圆或等圆中,相等的圆周角所对应的弧相等,所对应的弦也相等.
下列说法是否正确,为什么?“在同圆或等圆中,同弦或等弦所对的圆周角相等”.
D
B
C
O
E
.
一条弦所对应的圆周角有两个.
这两个角有什么关系吗?
9.如图,已知EF是⊙O的直径,把∠A为60°的直角三角板ABC的一条直角边BC放在直线EF上,斜边AB与⊙O交于点P,点B与点O重合;将三角形ABC沿OE方向平移,使得点B与点E重合为止.设∠POF=x°,则x的取值范围是 .
九年级数学上册教学课件《弧、弦、圆心角》

九年级上册
问题1:圆是中心对称图形吗?它的对称中心在哪里?问题2:把圆绕着圆心旋转一个任意角度,旋转之后的图形还能与原图形重合吗?
这节课我们利用圆的任意旋转不变性来探究圆的另一个重要定理.
(1)知道圆是中心对称图形,并且具有任意旋转不变性.(2)知道什么样的角是圆心角,探究并得出弧、弦、圆心角的关系定理.(3)初步学会运用弧、弦、圆心角定理解决一些简单的问题.
1.从课后习题中选取;2.完成练习册本课时的习题.
A
60°
⌒
⌒
⌒
3.如图,在⊙O中,点C是AB的中点,∠A=50°,则∠BOC= .
40°
⌒
4.如图,在⊙O中,AB=AC,∠C=75°,求∠A的度数.解:∵AB=AC,∴AB=AC.∴∠B=∠C=75°,∴∠A=180°-∠B -∠C=30°.
⌒
⌒
⌒
⌒
5.如图,在⊙O中,AD=BC,求证:AB=CD.证明:∵AD=BC.∴AD=BC.∴AD+AC=BC+AC,即CD=AB.∴AB=CD.
【教材P85练习 第2题】
解:∵ ,
∴∠BOC=∠COD=∠DOE.又=∠COD=35°,∴∠BOE=∠BOC+∠COD+ ∠DOE=105°,则∴∠AOE=180°-∠BOE=75°
1.四个元素: 圆心角、弦、弧、弦心距
2.四个相等关系:
① 圆心角② 弧 弦④ 弦心距
⌒
⌒
⌒
7.如图,在⊙O中,弦AB与CD相交于点E,AB=CD.(1)求证:△AEC≌△DEB;(2)点B与点C关于直线OE对称吗?试说明理由.
拓展延伸
(1)证明:连接AD.∵AB=CD, ∴AB=CD. ∴AB-AD=CD-AD.即BD=AC. ∴BD=AC.在△ADB和△DAC中,∴△ADB≌△DAC(SSS).
初中九年级(初三)数学课件 射影定理

所以:AC2 AB DA
A
DB
同理,得:CDB ∽ ACB CD DB CB CB2 AB DB
AC CB AB
ACD ∽ CBD AC CD AD CD2 BD AD
CB BD CD
直角三角形中的成比例线段
在RtABC中,CD是高,则有
C
AC是AD,AB的比例中项。
BC是BD,AB的比例中项。
原来学好数学,一点 都不难!
教 学
复
新
例
练
小
目 标
习
课
题
习
结
你知道吗?
直角三角形中的成比例线段
使学生了解射影的概念,掌握射影定理及其应用。
直角三角形中的比例线段定理在证题和实际计算中有较
多的应用。
例2证法有一定的技巧性。
直角三角形中的成比例线段
1.
已学习了相似三角形的判定及直角三角形相似的判定方 法。今天我们进一步学习直角三角形的特性。
CD是BD,AD的比例中项。
A
DB
那么AD与AC,BD与BC是什么关系呢? 这节课,我们先来学习射影的概念。
直角三角形中的成比例线段
1.射影:
(1)太阳光垂直照在A点,留在直线MN
上的影子应是什么?
B
(2)线段留在MN上的影子是什么? M B’
.A A’ N
定义:
B
A
过线段AB的两个端点分别作直线l的垂线, 垂足A’,B’之间的线段A’B’叫做线段AB在
C
分析:利用射影定理和勾股定理
CD2 AD DB 2 6 12,
解:
CD
12 2
3cm;
AD
B
AC2 AD AB 2 2 6 16,
人教版九年级上册数学精品教学课件 第21章 一元二次方程 第1课时 传播问题与一元二次方程

x(x 1) 10. 2
解得 x1=5,x2=−4(舍去).∴ x=5.
答:共有 5 个人参加聚会.
归纳 握手问题及球赛单循环问题要注意重复进行了 一次,所以要在总数的基础上除以 2.
【变式题】某中学组织初三学生开展足球比赛,以班为
单位,采用主客场赛制 (即每两个班之间都进行两场比 赛),计划安排 72 场比赛,则共有多少个班级参赛? 解:设共有 x 个班级参赛,则每个班级要进行(x-1)场
第 2 轮传染后人数 x(x + 1) + x + 1
根据示意图,列表如下:
传染源人数 第1轮传染后的人数 第2轮传染后的人数
1
1 + x = (1 + x)1 1 + x + x(1 + x) = (1 + x)2
解:设每轮传染中平均一个人传染了 x 个人.
根据题意,得 (1 + x)2 = 121.
小 分
支
支
x
…… 支干
x2 = −12 (不合题意,舍去).
x
答:每个支干长出 11 个小分支.
主干 1
交流讨论 1. 在分析引例和例 1 中的数量关系时它们有何区别?
每个支干只分裂一次,每名患者每轮都传染.
2. 解决这类传播问题有什么经验和方法? (1)审题,设元,列方程,解方程,检验,作答; (2)可利用表格梳理数量关系; (3)关注起始值、新增数量,找出变化规律.
A. x2 = 1980 C. 1 x(x - 1) = 1980
2
B. x(x + 1) = 1980 D. x(x - 1) = 1980
2. 有一根月季,它的主干长出若干数目的支干,每个支
最新浙教版九年级数学下册教学课件全册

第1章 解直角三角形 1.1 锐角三角函数
1.1 锐角三角函数(1)
锐角三角函数的定义
直角三角形ABC可以简记为Rt△ABC,你能 说出各条边的名称吗?
B
斜边 c
对边 a
┓┓
A
C
邻边 b
实际问题
某商场有一自动扶梯,其倾斜角为30°,高为7m, 扶梯的长度是多少?
作业
1.计算:(1)tan450-sin300; (2)cos600+sin450-tan300;
36 tan2 300 3 sin 600 2 cos 450.
2.如图,河岸AD,BC互相平行,桥AB垂直 于两岸.桥长12m,在C处看桥两端A,B,夹 角∠BCA=600. 求B,C间的距离(结果精确到1m).
提示
1.sinA,cosA,tanA 是在直角三角形中定义的, ∠A是锐角(注意数形结合,构造直角三角形).
2.sinA, cosA,tanA 是一个比值(数值). 3.sinA, cosA, tanA 的大小只与∠A的大小有 关,而与直角三角形的边长无关.
小练习
1、如图1,在Rt△MNP中,∠N=90゜. ∠P的对边是_________,∠P的邻边是___________; ∠M的对边是________,∠M的邻边是___________;
1 2
(C) 小于 3
2
(B)大于
1 2
(D)大于 3
2
☆ 应用练习 1.已知角,求值 2.已知值,求角 3. 确定值的范围 4. 确定角的范围
确定角的范围
3. 当∠A为锐角,且tan A的 值大于 3 时,∠A( B )
3
(A)小于30° (B)大于30°
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学教学课件
第一课时
素养教育目标
(一)学问教学点
1.使同学初步了解统计学问是应用广泛的数学内容.
2.了解平均数的意义,会计算一组数据的平均数.
3.当一组数据的数值较大时,会用简算公式计算一组数据的平均数.
(二)力量训练点
培育同学的观看力量、计算力量.
(三)德育渗透点
1.培育同学仔细、急躁、细致的学习态度和学习习惯.
2.渗透数学来源于实践,反地来又作用于实践的观点.
(四)美育渗透点
通过本课的学习,渗透数学公式的简洁美和结构的严谨美,展现了寓浅显于浅显,寓纷繁于严谨的辩证统一的数学美.
重点·难点·疑点及解决方法
1.教学重点:平均数的概念及其计算.
2.教学难点:平均数的简化计算.
3.教学疑点:平均数简化公式的应用,a如何选择.
4.解决方法:分清两个公式,公式②的运用要选择一个适当
的a.
教学步骤
(一)明确目标
在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报其次天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的'人数等.这些都涉及数据的计算问题.请同学们思索下面问题.(老师出示幻灯片)为了从甲乙两名同学中选拔一人参与射击竞赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:甲7 8 6 8 6 5 9 10 7 4
乙9 5 7 8 7 6 8 6 7 7
1.怎样比较两个人的成果?2.应选哪一个人参与射击竞赛?
老师要引导同学观看,给同学充分的时间去思索,并可以分成小组争论解决方法.
对于这个问题,部分同学可能感到无从下手,部分同学可能想到去比较两组数据的平均,让同学动手详细算一下两组数据的平均数结果它们相等在同学无法解决此问题的状况下,老师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是老师有意创设问题情境、制造悬念,这不仅能激发同学学习的乐观性和自觉性,引起同学对所学课程的留意,还能诱发同学探求新学问的深厚爱好.(二)整体感知
解决类似上述的问题要用到统计学的学问,统计学是一门讨论
如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重讨论如何依据样本的性质去推想总体的性质.在当今的信息时代,统计学的应用特别广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步学问.
(三)教学过程
这节课我们首先来学习平均数.
1.(出示幻灯片)请同学看下面问题:
某班第一小组一次数学测验的成果如下:
86 91 100 72 93 89 90 85 75 95
这个小组的平均成果是多少?
老师引导同学动笔计算,并找一名同学到黑板板演,讲完引例后,引导同学归纳出求平均数方法,这样做使同学对平均数的计算公式能有深刻的熟悉.
2.平均数的概念及计算公式
一般地,假如有n个数
那么
①
叫做这n个数的平均数,
读作“x拨” .
这是在学校数学课本中第一次消失带有省略号的用字母表示的n个数相加的一般写法.同学对此可能会感到比较抽象,不太习惯,要向同学强调,采纳这种写法是简化表示,是为了使问题的争论具有
一般性.老师应通过对公式的剖析,使同学正确理解公式,并把握公式中各元素的意义.
3.平均数计算公式①的应用
例1 一个地区某年1月上旬各天的最低气温依次是(单位:℃):
-6,-5,-7,-6,-4,-5,-7,-8,-7
求它们的平均气温.
让同学动手计算,以巩固平均数计算公式(一名同学板演)
老师应强调:①解题格式.②在统计学里处理的数据包括负数.③在本章中,如无特别说明,平均数计算结果保留的位数与原数据相同.
例2 从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):
210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215
计算它们的平均质量.(用投影仪打出)
引导同学两人一组完成计算,然后一起对答案.由于数据较大,计算较繁,可能会消失不同的答案.正好为下面提出简化计算公式作好铺垫.
老师提出问题:像例2这样,数据较大,计算较繁,因而简单出错,有没有较为简便的算法呢?引导同学观看数据有什么特点?都接近于哪一个数?启发同学争论,查找简便算法.
同学回答:数据都在200左右波动,可将各数据同时减去200,
转而计算一组数值较小的新数据的平均数,至此让同学再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样.
讲完例2后,老师指出几点:常数a的取法不是惟一的;
读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同.
通过同学的动手计算,若产生困难或错误,老师准时点拨,引导同学查找解决问题的方法,这不仅可以激发同学学习的爱好,更培育了同学的发散思维力量,同时也使同学对公式②的推导更简单接受.
3.推导公式②
一般地,当一组数据
的各个数值较大时,可将各数据同时减去一个适当的常数a,得到
那么
因此,
即
②
为了加深同学对公式②的熟悉,再让同学指出例2的
各是什么?(同学回答)
课堂练习:
教材P148中~P149中1,2,3
(四)总结、扩展
学问小结:1.统计学是一门与数据打交道的学问,应用非常广泛.本章将要学习的是统计学的初步学问.
2.求n个数据的平均数的公式① .
3.平均数的简化计算公式② .这个公式很重要,要学会运用.
方法小结:通过本节课我们学到了示一组数据平均数的方法.当数据比较小时,可用公式①直接计算.当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算.
八、布置作业
教材P153中1、2、3、4 .。