保险精算期末复习试题

保险精算期末复习试题
保险精算期末复习试题

1 假设某人群的生存函数为()1,0100100

x S x x =-≤≤ 求:

一个刚出生的婴儿活不到50岁的概率;

一个刚出生的婴儿寿命超过80岁的概率;

一个刚出生的婴儿会在60~70岁之间死亡的概率;

一个活到30岁的人活不到60岁的概率。

2

已知给出生存函数()20S x =

,0100x ≤≤,计算(75),(75)F f ,()75μ

3、已知 10000(1)100

x x l =- 计算下面各值:

(1)30203030303010,,,d p q q

(2)20岁的人在50~55岁死亡的概率。

(3)该人群平均寿命(假定极限年龄为100)。

4、设

()1 , 0100100

0.1x S x x i =-

≤≤= 求:第一问:

130:101 (2)()t A Var z () 第二问:

30:101 (2)()t A Var z ()

5、设(x)投保终身寿险,保险金额为1元,保险金在死亡即刻赔付,签单时,(x)的剩余寿命的密度函数为

1 , 060(t)60

0 , T t f ?<≤?=???其它

计算

0.90.91(2)()

(3)Pr()0.9.

x

t A Var z z ξξ≤=()的

6、假设(x )投保延期10年的终身寿险,保额1元。保险金在死亡即刻赔付。已知0.040.06(),0x S x e x δ-==≥, 求:10t (1) (2)Var(z )x A

,

7、90岁的人生存情况如下表。求

1、死亡年末给付1000元的趸缴浄保费

8、现年30岁的人购买了一份递减的5年定期寿险保单。保险金于死亡年末给付,第一个保单年度内死亡,则给付5万元;第二个保单年度内死亡,则给付4万元——;第5个保单年度内死亡,则给付1万元,设年利率为6%,用中国人寿保险业经验生命表非养老金业务男表计算其趸缴纯保费。

9、假设有100个相互独立的年龄为x 岁的被保险人都投保了保险金额10元的终身寿险,随机变量T 的概率密度是()()0.04,0t T f t e t μμμ-==≥.保险金于被保险人死亡时给付,保险金给付是从某项基金中按利息强度0.06δ=计息支付.试计算这项基金在最初()0t =时的数额至少为多少时,才能保证从这项基金中足以支付每个被保险人的死亡给付的概率达到95%

10、

假定寿命服从[0,110]上的均匀分布,且0.05δ=,计算(30)所购买的终身连续生存年金。用三种方法计算。

11、有一种终身年金产品,每年连续给付生存年金1000元。

现在开发一种新产品,在原来年金给付的基础上增加死亡即刻给付X 万元。

假定利息力为5%,求:当死亡赔付定为多大时,该产品赔付现值的方差最小?

12、

在死亡力为常数0.04,利息力为常数0.06的假定下,求

(1)x a (2)T a 的标准差

(3) T a 超过x a 的概率。

13、

8x a =,25x a =,0.05δ=

14、

设一现值变量为,0(),()n T

a T x n Y a T x n ≤≤??=?>?? 计算()x n E Y a -

15—20题

课本45页课后习题。

完整word版,保险精算学公式

《精算技术》公式 第一章 利息理论 1n n v a i -=; ()11n n n v a a i d -=+=&&; () ()11 1n n n n i s a i i +-=+= ; ?? ? ?? -=11511000x l x ; 1a i ∞=; 1a d ∞ =&&; 1n n v a δ -= ; ()11 n n i s δ +-= ; ()n n n a nv Ia i -= &&; ()()()1n n n n s n Is Ia i i -=+=&&; ()n n n a Da i -=; ()()1n n n n i s Ds i +-= ; ()211 Ia i i ∞ =+。

第二章 生命表 22x x x m q m = +; 1x x x l l d +=-; x x x d q l =; ()11 2 x x x L l l += +; 1 x x x t t T L ?--+== ∑ ; x x x T e l = 。 第三章 生存年金 生存年金的概念及其种类。 生存年金现值计算公式

各种年金之间的关系式: x a =:x n a +|n x a | n x a =n x E x n a + x a &&=1+x a :x n a &&=1+:1x n a - | n x a &&=1|n x a - |n m x a &&=1|n m x a - :x n s =:x n a 1 n x E :x n s &&=:x n a &&1n x E ()m x a &&=()m x a + 1 m ()m x a =():m x n a +()|m n x a () | m n x a =n x E ()m x n a + 转换函数的定义

保险精算学试题

A 卷 保险精算学试题 (2004级统计学专业) 一、 名词解释(20分,每小题1分) 1、 生存函数 2、生存年金 3、取整余命 4、n 年定期生存年金 5、趸缴纯保费 6、附加保费 7、精算现值 8、亏损随机变量 9、n 年期两全保险 10、利力 二、 已知:,6435,62,01.0575556===l d q 求5511 q (20分) 三、 计算保险金额为15000元的下列保单,在30岁签发时的趸缴 纯保费。设死亡给付发生在保单年度未,利率为6%。 1、 终身寿险 2、30年定期寿险 3、30年期储蓄保险。已知:02.26606,66.9301,78.170037,19.1473060603030====D M D M (20分) 四、 分别计算一现年50岁者购买期未及期初付金额1500元的终身 生存年金的精算现值。已知:.52.51090,27.6953865050==D N (20分) 五、 用换算函数计算(写出公式)30岁的人购买如下终身寿险的 初始年保费。若被保险人在前10年内死亡,则可得到死亡保险金为15000元。若被保险人在10年后死亡,则可得到死亡保险金为30000元。已知保险费按年交纳至被保险人60岁时。且前10年每年交纳的保费为10年后每年交纳的保费的一半,且死亡保险金于死亡年未给付。(20分)

B 卷 保险精算学试题 (2004级统计学专业) 一、 名词解释(20分,每小题1分) 1、 剩余寿命 2、终身生存年金 3、死力 4、纯保费 5、终身寿险 6、精算现值 7、n 年期生存保险 8、全期缴费 9、趸缴纯保费 10、保险金 二、 假设74岁和75岁的死亡率分别为0.06和0.07。设年龄内均匀 分布,求4个月前满74岁者在77岁前死亡的概率。(20分) 三、 已知现年36岁的人购买了一张终身寿险保单。保单规定被保险 人在10年内死亡,则给付金额为20000元,10年后死亡则给付数额为30000元,设死亡给付发生在保单未。试求其趸缴纯保费。利率为6%,.91.12492,5.119226,97.139********===M D M (20分) 四、 分别计算一现年55岁者购买期未及期初付金额1500元的终身 生存年金的精算现值。已知:.27.37176,42.4693045555==D N (20分) 五、 用换算函数计算(写出公式)25岁的人购买如下终身寿险的初 始年保费。若被保险人在前10年内死亡,则可得到死亡保险金为15000元。若被保险人在10年后死亡,则可得到死亡保险金为30000元。已知保险费按年交纳至被保险人60岁时。且前10年每年交纳的保费为10年后每年交纳的保费的一半,且死亡保险金于死亡年未给付。(20分)

保险精算试题

共 4 页 第 1 页 保险精算复习自测题(90分钟) 选择题(20分) 1.(20)购买了一种终身生存年金,该年金规定第一年初给付500元,以后只要生存每年初增加100元,该生存年金的精算现值为( )。 A... .. 2020400100()a I a + B.2020400100()a I a + C... .. 2020500100()a I a + D.2020500100()a I a + 2. UDD 假设 若q 50=0.004,在UDD 假设下0.5p 50等于( )。 3. 每次期初支付10000元,一年支付m 次,共支付n 年的生存年金的精算现值表示为( )。 A.() ..:10000m x n m a B.() :10000m x n ma C.() ..:10000m x n nm a D.() :10000m x n nm a 4.关于(x )的一份2年定期保险,有如下条件:(1)0.02(1)x k q k +=+ 0,1k =(2)0.06i =(3)在死亡年末支付额如下: k 1k b + b1 1 b2 若 z 是死亡给付现值的随机变量则()E Z 等于( )。

共 4 页 第 2 页 填空题(20分) 1.按缴费方式和保险金的给付方式,把寿险分为 、 、 。 2.若一个人在x 岁时死亡,此时随机变量T (30)= ,K(50)= 。 3. = ,35:]1000n n V 。 4.日本采用的计算最低现金价值的方法是 。 5.专业英语:Nominal interest 中文意思是 。 6.生存年金精算现值的计算方法 和 。 7.假设i=5%,现向银行存入1万元,在以后的每年末可取出 元。 8.假设40l =A ,50l =B ,则1040q = 。 9.责任准备金的两种计算方法为 、 。 1 20:] 1000t t V

保险精算习题及答案

保险精算习题及答案 第一章:利息的基本概念 练习题 21(已知,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,atatb,,,, 在时刻8的积累值。 2((1)假设A(t)=100+10t, 试确定。 iii,,135 n(2)假设,试确定。 An,,1001.1iii,,,,,,135 3(已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 4(已知某笔投资在3年后的积累值为1000元,第1年的利率为,第2年的利率为,i,10%i,8%12第3年的利率为,求该笔投资的原始金额。 i,6%3 5(确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。 2226(设m,1,按从大到小的次序排列与δ。 vbqep,,,xx 7(如果,求10 000元在第12年年末的积累值。 ,,0.01tt 8(已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。 t9(基金A以每月计息一次的年名义利率12%积累,基金B以利息强度积累,在时刻t (t=0),两笔,,t6 基金存入的款项相同,试确定两基金金额相等的下一时刻。

10. 基金X中的投资以利息强度(0?t?20), 基金Y中的投资以年实际利率积累;现分别,,,0.010.1tit 投资1元,则基金X和基金Y在第20年年末的积累值相等,求第3年年末基 金Y的积累值。 11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。 A. 7.19 B. 4.04 C. 3.31 D. 5.21 12.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。 A.7 225 B.7 213 C.7 136 D.6 987 第二章:年金 练习题 nmvviaa,,,1(证明。,,mn 1 2(某人购买一处住宅,价值16万元,首期付款额为A,余下的部分自下月起每月月初付1000元,共付10年。年计息12次的年名义利率为8.7% 。计算购房首 期付款额A。 3. 已知 , , , 计算。 a,5.153a,7.036a,9.180i71118 4(某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。年利率为10%,计算其 每年生活费用。 5(年金A的给付情况是:1,10年,每年年末给付1000元;11,20年,每年年末 给付2000元;21,30年,每年年末给付1000元。年金B在1,10年,每年给付额为K元;11,20年给付额为0;21,30年,每年

最新保险精算第二版习题及答案

保险精算(第二版) 第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 (0)1 (5)25 1.8 0.8 ,1 25300*100 (5)300180300*100300*100(8)(64)508 180180 a b a a b a b a a a b ===+=?===?=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.0833,0.0714(0)(2)(4) A A A A A A i i i A A A ---= ===== (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.1,0.1(0)(2)(4) A A A A A A i i i A A A ---= ===== 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5 年后的积累值。 11132153500(3)500(13)6200.08800(5)800(15)1120 500(3)500(1)6200.0743363800(5)800(1)1144.97 a i i a i a i i a i =+=?=∴=+==+=?=∴=+= 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 123(3)1000(0)(1)(1)(1)(0)794.1 A A i i i A ==+++?= 5.确定10000元在第3年年末的积累值:

人民大学保险精算学》

第一章:利息理论基础 第一节:利息的度量 一、利息的定义 利息产生在资金的所有者和使用者不统一的场合,它的实质是资金的使用者付给资金所有者的租金,用以补偿所有者在资金租借期内不能支配该笔资金而蒙受的损失。 二、利息的度量 利息可以按照不同的标准来度量,主要的度量方式有 1、按照计息时刻划分: 期末计息:利率 期初计息:贴现率 2、按照积累方式划分:

(1)线性积累: 单利计息 单贴现计息 (2)指数积累: 复利计息 复贴现计息 (3)单复利/贴现计息之间的相关关系 ? 单利的实质利率逐期递减,复利的实质利率保持恒定。 单贴现的实质利率逐期递增,复贴现的实质利率保持恒定。 时,相同单复利场合,复利计息比单利计息产生更大的积累值。所以长期业务一般复利计息。 时,相同单复利场合,单利计息比复利计息产生更大的积累值。所以短期业务一般单利计息。3、按照利息转换频率划分: (1)一年转换一次:实质利率(实质贴现率)

(2)一年转换次:名义利率(名义贴现率) (3)连续计息(一年转换无穷次):利息效力 特别,恒定利息效力场合有 三、变利息 1、什么是变利息 2、常见的变利息情况 (1)连续变化场合 (2)离散变化场合

第二节:利息问题求解原则 一、利息问题求解四要素 1、原始投资本金 2、投资时期的长度 3、利率及计息方式 4、本金在投资期末的积累值 二、利息问题求解的原则 1、本质 任何一个有关利息问题的求解本质都是对四要素知三求一的问题。 2、工具 现金流图:一维坐标图,记录资金按时间顺序投入或抽出的示意图。 3、方法 建立现金流分析方程(求值方程) 4、原则 在任意时间参照点,求值方程等号两边现时值相等。 第三节:年金 一、年金的定义与分类 1、年金的定义:按一定的时间间隔支付的一系列付款称为年金。原始含义是限于一年支付一次的付款,现已推广到任意间隔长度的系列付款。 2、年金的分类: (1)基本年金 约束条件:等时间间隔付款

保险精算第1章习题答案

第1章 习题答案 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 解: 100)0(100)0(.k )0(2=+?==b a a A 或者由1)0(=a 得1=b 180)15(100)5(100)5(2=+?=?=a a A 得032.0=a 以第5期为初始期,则第8期相当于第三期,则对应的积累值为: 4.386)13032.0(300)3(2=+??=A 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 解:(1)A(0)=100;A(1)=100+10×1=110;A(2)=120;A(3)=130;A(4)=140;A(5)=150 ; ; 。 (2)A(0)=100;;;;; 。 ; ; 。 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 解:单利条件下: 得; 则投资800元在5年后的积累值:; 在复利条件下: 得 则投资800元在5年后的积累值:。 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率

为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 解: 得元。 5.确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。 解:(1) 元 (2) 得 10000元在第3年年末的积累值为: 元 6.设m >1,按从大到小的次序排列,,,与。 解:,所以,。 ,在的条件下可得。 ,在的条件下可得 。 对其求一阶导数得得 对其求一阶导数,同理得。 由于,所以,同理可得。 综上得: 7.如果0.01t t δ=,求10 000元在第12年年末的积累值。 解:元 8.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。 解:注意利用如下关系:则 则根据上述关系可得:

保险精算学期末复习题目

1.李华1990年1月1日在银行帐户上有5000元存款,(1)在每年10%的单利下,求1994年1月1日的存款额。(2)在年利率8%的复利下,求1994年5月1日的存款额。 解:(1)5000×(1+4×10%)=7000(元) (2)5000×(1+10%)4.33=7556.8(元) 2.把5000元存入银行,前5年的银行利率为8%,后5年年利率为11%,求10年末的存款累计额。 解:5000(1+8%) 5 ×(1+11%)5=12385(元) 3.李美1994年1月1日在银行帐户上有10000元存款。(1)求在复利11%下1990年1月1日的现值。(2)在11%的折现率下计算1990年1月1日的现值。 解:(1)10000×(1+11%) -4 =5934.51(元) (2)10000×(1-11%)4=6274.22(元) 4.假设1000元在半年后成为1200元,求 ⑴ )2(i ,⑵ i, ⑶ ) 3(d 。 解:⑴ 1200)2 1(1000) 2(=+?i ;所以4.0)2(==i ⑵2 )2()2 1(1i i +=+;所以44.0=i ⑶n n m m n d d i m i ---=-=+=+)1()1(1)1() (1)(; 所以, 13)3()1()3 1(-+=-i d ;34335.0)3(=d 5.当1>n 时,证明:i i d d n n <<<<) ()(δ。 证明:①) (n d d < 因 为 , +?-?+?-?=-=-3) (3 2)(2)(10)()()(1)1(1n d C n d C n d C C n d d n n n n n n n n n ) (1n d -> 所以得到,) (n d d <;

保险精算李秀芳1-5章习题答案

第一章 生命表 1.给出生存函数()22500 x s x e -=,求: (1)人在50岁~60岁之间死亡的概率。 (2)50岁的人在60岁以前死亡的概率。 (3)人能活到70岁的概率。(4)50岁的人能活到70岁的概率。 ()()()10502050(5060)50(60) 50(60) (50) (70)(70) 70(50) P X s s s s q s P X s s p s <<=--= >== 2.已知生存函数S(x)=1000-x 3/2 ,0≤x ≤100,求(1)F (x )(2)f(x)(3)F T (t)(4)f T (f)(5)E(x) 3. 已知Pr [5<T(60)≤6]=0.1895,Pr [T(60)>5]=0.92094,求q 65。 ()() ()5|605606565(66)650.1895,0.92094(60)(60)65(66) 0.2058 (65) s s s q p s s s s q s -= ===-∴= = 4. 已知Pr [T(30)>40]=0.70740,Pr [T(30)≤30]=0.13214,求10p 60 Pr [T(30)>40]=40P30=S(70)/S (30)=0.7074 S (70)=0.70740×S(30) Pr [T(30)≤30]=S(30)-S(60)/S(30)=0.13214 S(60)=0.86786×S(30) ∴10p 60= S(70)/S (60) =0.70740/0.86786=0.81511

5.给出45岁人的取整余命分布如下表: 求:1)45岁的人在5年内死亡的概率;2)48岁的人在3年内死亡的概率;3)50岁的人在52岁至55岁之间死亡的概率。 (1)5q 45=(0.0050+0.0060+0.0075+0.0095+0.120)=0.04 6.这题so easy 就自己算吧 7.设一个人数为1000的现年36岁的群体,根据本章中的生命表计算(取整) (1)3年后群体中的预期生存人数(2)在40岁以前死亡的人数(3)在45-50之间挂的人 (1)l 39=l 36×3P 36=l 36(1-3q 36)=1500×(1-0.0055)≈1492 (2)4d 36=l 36×4q 36=1500×(0.005+0.00213)≈11 (3)l 36×9|5q 36=l 36×9P 35×5q 45=1500×(1-0.02169)×0.02235=1500×0.021865≈33 8. 已知800.07q =,803129d =,求81l 。 808081 8080800.07d l l q l l -= == 808081 808080 0.07d l l q l l -= == 9. 015.060=q ,017.061=q ,020.062=q , 计算概率612P ,60|2q .

保险精算试卷及答案

保险精算试卷 1. A.104 B.105 C.106 D.107 E.108 2. (A) 77,100 (B) 80,700 (C) 82,700 (D) 85,900 (E) 88,000 3.Lucky Tom finds coins on his way to work at a Poisson rate of 0.5 coins per minute. The denominations are randomly distributed: (i) 60% of the coins are worth 1; (ii) 20% of the coins are worth 5; (iii) 20% of the coins are worth 10. Calculate the variance of the value of the coins Tom finds during his one-hour walk to work. (A) 379 (B) 487 (C) 566 (D) 670 (E) 768 game. If 4.A coach can give two ty pes of training, “ light” or “heavy,” to his sports team before a the team wins the prior game, the next training is equally likely to be light or heavy. But, if the team loses the prior game, the next training is always heavy. The probability that the team will win the game is 0.4 after light training and 0.8 after heavy training. Calculate the long run proportion of time that the coach will give heavy training to the team.

【良心出品】保险精算试卷2012A

湖北中医药大学《保险精算学》试卷 姓名 学号 专业 班级 一、单项选择题(每小题2分,共20分) 1、已知q 80=0.07,d 80=3129,则l 81为( )。 A 、41571 B 、41561 C 、41570 D 、41569 2、某人人寿保险的死亡给付受益人为三个子女,给付形式为永续年金,前两个孩子1—n 年每年年末平分所领取的年金,n 年后所有的年金只给付给第三个孩子,若三个孩子所领取的年金现值相等,那么v=( )。 A 、n 1)3 1( B 、n 13 C 、n 31 D 、n 3 3、已知20岁的生存人数为1000人,21岁的生存人数为998人,22 岁的生存人数为992人,则1 q 20为( )。 A 、0.008 B 、0.007 C 、0.006 D 、0.005 4、甲向银行借款1万元,每年计息两次的名义利率为6%,甲第二年末还款4000元,此次还款后所余本金部分为( )元。 A 、7225 B 、7213 C 、7255 D 、7136 5、,,)已知17.0014.0(5050 ==A A P 为则利息强度δ( ) A 、0.070 B 、0.071 C 、0.073 D 、0.076 6、设15P 45=0.038,P 45:15=0.056,A 60=0.625,则P 45:15 =( ) A 、0.050 B 、0.048 C 、0.007 D 、 0.008 7、40岁的死亡率为0.04,41岁的死亡率为0.06,而42岁的人生存至43岁的概率为0.92,40岁生存人数为100人,则43岁时的生存人数为( ) A 、90.24 B 、96 C 、83.02 D 、70 8、P 62=0.0374,q 62=0.0164,i=6%,则P 63为( )

保险精算第二版习题及答案

保险精算(第二版) 第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 800元在28%i =,第3为 t (t=0),i 积累; 11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。 A. 7.19 B. 4.04 C. 3.31 D. 5.21 12.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。 A.7 225 B.7 213 C.7 136 D.6 987 第二章:年金 练习题 1.证明() n m m n v v i a a -=-。

2.某人购买一处住宅,价值16万元,首期付款额为A ,余下的部分自下月起每月月初付1000元,共付10年。年计息12次的年名义利率为8.7% 。计算购房首期付款额A 。 3. 已知7 5.153a = , 117.036a =, 189.180a =, 计算 i 。 4.某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。年利率为10%,计算其每年生活费用。 5.年金A 的给付情况是:1~10年,每年年末给付1000元;11~20年,每年年末给付2000元;21~30年,每年年末给付1000元。年金B 在1~10年,每年给付额为K 元;11~20年给付额为0;21~30年,每年年末给付K 元,若A 与B 的现值相等,已知10 1 2 v = ,计算K 。 6. 化简() 1020101a v v ++ ,并解释该式意义。 5 。 n 年每年,那么v=( 2. 已知Pr [5<T(60)≤6]=0.1895,Pr [T(60)>5]=0.92094,求60q 。 3. 已知800.07q =,803129d =,求81l 。 4. 设某群体的初始人数为3 000人,20年内的预期死亡人数为240人,第21年和第22年的死亡人数分别为15人和18人。求生存函数s(x)在20岁、21岁和22岁的值。 5. 如果221100x x x μ= ++-,0≤x ≤100, 求0l =10 000时,在该生命表中1岁到4岁之间的死亡人数为( )。 A.2073.92 B.2081.61 C.2356.74 D.2107.56

寿险精算 学习心得

学习心得 保险精算是以数理统计方法为基础理论,综合运用数学、金融学、经济学及保险理论的交又性、应用性学科。概括而言,它是运用数理模型对未来不确定的事件产生的影响做出评估。由微观经济学的理论可知,大部分的人是风险厌恶的个体,愿意为规避风险付出一定量的风险贴水或者保证金,这正是保险业存在的前提和理论基础。虽然单个风险无规律可言,但是把大量的风险聚集起来,就呈现出了明显的规律性。可以说保险业是建立在对大量风险的统计规律的认识上的,而精算就是要对这些规律进行研究的学科。随着保险业成为独立的金融分支出现,精算学科产生发展已有三百余年的历史。 寿险精算学是以人的寿命为风险标的,主要研究寿命风险评估和厘定的一门专业课程。寿险精算是精算学的核心内容,揭示了对未来的不确定的财务事件提供数量化意见的精算方法。它以概率统计为基础的生命模型研究人的死亡和疾病的不确定性,以复利函数研究资产的时间价值对未来事件进行量化,并将生命模型和复利函数结合,形成了一整套全面量化未来不确定的财务事件的方法。它不仅在保险、金融等领域发挥着巨大的作用,对于可以通过类似方法描述不确定性和时间价值函数的事务,也是一个重要的工具,如可以参考死亡保险的量化模型分析大型设备寿命等。 本书主要包括三部分,利息理论、生命的不确定性以及风险理论。 在资金的使用过程中,资金的周转会带来资金价值的增值,一般来说,资金周转的时间越长,其价值的增值也就越大。等额的货币在不同时间点上,由于受到通货膨胀的影响,其实际价值也不相同。利息理论是进行精算科学研究的基础.利息是货币的时间价值,是资金的拥有人将资金的使用权转让给借款人所获得的租金。在各项金融活动中,资金的提供者的最终目的是获得尽可能多的收益,资金的使用者希望以最低的成本获得资金的使用权,只有二者达成统一,资金才能顺利地融通。所以,对资金的使用成本,.即利息,进行精确的计量,具有十分重要的意义。 利息是指借用某种资本的代价或借出某种资本的报酬,可用利息率或者贴现率来度量。计息期与基本的时间单位一致与否,导致了有效利率与名义利率的不

保险精算习题及答案

第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 (0)1 (5)25 1.8 0.8 ,1 25300*100(5)300 180300*100300*100(8)(64)508 180180 a b a a b a b a a a b ===+=?===?=+=Q 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.0833,0.0714(0)(2)(4) A A A A A A i i i A A A ---= ===== (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.1,0.1(0)(2)(4) A A A A A A i i i A A A ---= ===== 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 11132153500(3)500(13)6200.08800(5)800(15)1120 500(3)500(1)6200.0743363800(5)800(1)1144.97 a i i a i a i i a i =+=?=∴=+==+=?=∴=+= 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 123(3)1000(0)(1)(1)(1)(0)794.1 A A i i i A ==+++?= 5.确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。

【良心出品】保险精算试卷2010B

湖北中医学院《保险精算学》试卷 姓名 学号 专业 班级 一、单项选择题(每小题2分,共20分) 1、某人到银行存入1000元,第1年年末的存款余额为1020元,则第1年的实际利率为( ) A 、1% B 、2% C 、2.5% D 、3% 2、一个度量期的实际贴现率为该度量期内取得的利息金额与( )之比。 A 、期末投资可回收金额 B 、期初投资金额 C 、取得的利息金额 D 、本金 3、已知每年计息12次的年名义利率为8%,则等价的实际利率为( ) A 、8% B 、8.36% C 、8.25% D 、9% 4、某银行客户想通过零存整取方式在1年后得到10000元,在月复利为0.5%的情况下,需要在每月月初存入的钱数为( ) A 、806.63元 B 、800元 C 、820元 D 、850元 5、,,)已知17.0014.0(5050 ==A A P 为则利息强度δ( ) 。 A 、0.070 B 、0.071 C 、0.073 D 、0.076 6、40岁的死亡率为0.04,41岁的死亡率为0.06,而42岁的人生存至43岁的概率为0.92,40岁生存人数为100人,则43岁时的生存人数为( )。 A 、90.24 B 、96 C 、83.02 D 、70 7、P 62=0.0374,q 62=0.0164,i=6%,则P 63为( )。 A 、0.041 B 、0.094 D 、0.0397 D 、0.016 8、已知L 为(x )购买的保额为1元,年保费为P x 的完全离散型终身寿险,在保单签发时保险人的亏损随机变量,2A x =0.1774,5850.0d x =P ,则Var (L )为( )。 A 、0.103 B 、0.115 C 、0.105 D 、0.019

保险精算学公式

保险精算学公式

《精算技术》公式 第一章 利息理论 1n n v a i -= ; ()11n n n v a a i d -=+= ; () ()11 1n n n n i s a i i +-=+= ; ? ? ? ?? -=11511000x l x ; 1a i ∞= ; 1a d ∞= ; 1n n v a δ -= ; ()11 n n i s δ +-= ; ()n n n a nv Ia i -= ; ()()()1n n n n s n Is Ia i i -=+= ; ()n n n a Da i -=; ()()1n n n n i s Ds i +-= ; ()211Ia i i ∞ =+。

终身年 金一年给 付一次 期末付x a1x x N D + 期首付x a x x N D n年定期一年给 付一次 期末付:x n a11 x x n x N N D +++ - 期首付:x n a x x n x N N D + - n年延期一年给 付一次 期末付|n x a1x n x N D ++ 期首付|n x a x n x N D + n年延 期的m年定 期一年给 付一次 期末付|n m x a11 x n x n m x N N D +++++ - 期首付|n m x a x n x n m x N N D +++ - 终身年 金一年给 付m次 期末付()m x a x a+1 2 m m - 期首付()m x a x a-1 2 m m - n年延期一年给 付m次 期末付()|m n x a |n x a+12m m-n x E 期首付()|m n x a |n x a-12m m-n x E n年定期一年给 付m次 期末付():m x n a:x n a+12m m-(1-n x E ) 期首付():m x n a:x n a-1 2 m m -(1- n x E) 终身年 金连续年 金 ——x a x x N D

保险精算练习题

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 4.假设1000元在半年后成为1200元,求 ⑴ )2(i ,⑵ i, ⑶ )3(d 。 解:⑴ 1200)2 1(1000) 2(=+?i ;所以 4.0)2(==i ⑵2 )2()2 1(1i i +=+;所以44.0=i ⑶n n m m n d d i m i ---=-=+=+)1()1(1)1() (1)(; 所以, 13)3()1()3 1(-+=-i d ;34335.0)3(=d 5.当1>n 时,证明: i i d d n n <<<<) () (δ。 证明:①) (n d d < 因为,Λ+?-?+?-?=-=-3)(3 2)(2) (10)()()(1)1(1n d C n d C n d C C n d d n n n n n n n n n ) (1n d ->所以得到, )(n d d <; ② δ<) (n d )1() (m n e m d δ - -=;m m C m C m C m e n n n m δ δ δ δ δ δ - >-?+?-?+- =- 1)()()(14 43 32 2 Λ 所以, δ δ =- -<)]1(1[) (m m d n ③) (n i <δ i n i n n +=+1]1[)(, 即,δ=+=+?)1ln()1ln()(i n i n n 所以, )1()(-?=n n e n i δ m m C m C m C m e n n n n δ δ δ δ δ δ + >+?+?+?++ =1)( )( )( 144 33 22 Λ

δ δ =-+>]1)1[() (n n i n ④ i i n <)( i n i n n +=+1]1[) (,)(2)(2)(10)(1)(1]1[n n n n n n n n i n i C n i C C n i +>+?+?+?=+Λ 所以, i i n <) ( 6.证明下列等式成立,并进行直观解释: ⑴n m m n m a v a a +=+; 解:i v a n m n m ++-= 1, i v a m m -= 1,i v v i v v a v n m m n m n m +-=-=1 所以,n m n m m m n m m a i v v v a v a ++=-+-=+1 ⑵n m m n m s v a a -=-; 解: i v a n m n m ---= 1,i v a m m -= 1,i v v s v n m m n m --= - 所以,n m n m m m n m m a i v v v s v a --=-+-=-1 ⑶ n m m n m a i s s )1(++=+; 解: i i s m m 1)1(-+=,i i i i i i s i m n m n m n m )1()1(1)1() 1()1(+-+=-++=++ 所以,n m m n m m n m m s i i i i a i s ++=+-++-+=++)1()1(1)1()1( ⑷ n m m n m a i s s )1(+-=-。

寿险精算期末试题

寿险精算 一、填空题 1、生命表依据编制对象的不同,可以分为:________和________。 2、根据保险标的的属性不同,保险可分为:________和______________。 3、寿险精算中的基本参数主要有:_________、_______________、_______________。 4、生命表的创始人是___________。 5、生命表方法的实质是_________________________________________________。 6、投保保额为1单位元数的终身寿险,按年度实质贴现率v 复利计息,赔付现值变量为: _____________________。 7、n 年定期两全险是___________和_____________的组合。 8、终身寿险死亡即刻赔付趸缴净保费公式为______________________________。 9、已知05.0,5a ,8a 2===δx x ,则=)(a |T a r V __________. 10、1—_______|:n x a d = 二、选择题 1、世界上第一张简略生命表是( ) A.1662年约翰?格兰编制的生命表 B .1693年埃德蒙?哈雷编制的生命表; C .詹姆斯?道森编制的生命表 D .1724年亚伯拉罕?棣模佛编制的生命表 2、保险精算遵循的最重要原则是( ) A .补偿性原则 B .资产负债匹配原则 C .收支平衡原则 D .均衡保费原则 3、某10年期确定年金,每4月末给付800元,月利率为2%,则该年金的现值为( )。 4、 已知死力μ=0.045,利息力δ=0.055,则每年支付金额1,连续支付的终身生存年金的精算现值为( )。 A .9; B.10; C.11; D.12。 5、下列错误的公式是 () A.()()x s x s ,x =μ B.()()dt P d t x t T =f C.()()()x s t x s x s q x +-=t D.()x s x =p 0 6、设某地新生婴儿未来寿命随机变量X在区间[0,100]上服从均匀分布,x ∈(0,100) 则( ) A.s(x)=x/100 B.s(x)=1/100 C.s(x)=1-x/100 D.s(x)=100x 7、 8、 9、下列不是有关分数年龄的假设常用的插值方法的是() A.线性插值 B.调和插值 C.几何插值 D.牛顿插值 10.下列关系不正确的是() A.x t x t x p l l ?=+ B.x x x q l d ?= C.x x x L d m = D.t x x x l l p +=t 三、简答题 1.你认为保险精算对保险经营有何重要意义?

保险精算李秀芳章习题答案

第一章生命表 1.给出生存函数() 2 2500 x s x e- =,求: (1)人在50岁~60岁之间死亡的概率。 (2)50岁的人在60岁以前死亡的概率。 (3)人能活到70岁的概率。(4)50岁的人能活到70岁的概率。 2.已知生存函数S(x)=1000-x3/2 ,0≤x≤100,求(1)F(x)(2)f(x)(3)F T (t)(4)f T (f)(5)E(x) 3. 已知Pr[5<T(60)≤6]=0.1895,Pr[T(60)>5]=0.92094,求q 65 。 4.已知Pr[T(30)>40]=0.70740,Pr[T(30)≤30]=0.13214,求 10p 60 Pr[T(30)>40]=40P30=S(70)/S(30)=0.7074 S(70)=0.70740×S(30) Pr[T(30)≤30]=S(30)-S(60)/S(30)=0.13214 S(60)=0.86786×S(30) ∴ 10p 60= S(70)/S(60)=0.70740/0.86786=0.81511 5.给出45岁人的取整余命分布如下表: 求:1)45岁的人在5年内死亡的概率;2)48岁的人在3年内死亡的概率;3)50岁的人在52岁至55岁之间死亡的概率。

(1)5q 45=(0.0050+0.0060+0.0075+0.0095+0.120)=0.04 6.这题so easy 就自己算吧 7.设一个人数为1000的现年36岁的群体,根据本章中的生命表计算(取整) (1)3年后群体中的预期生存人数(2)在40岁以前死亡的人数(3)在45-50之间挂的人 (1)l 39=l 36×3P 36=l 36(1-3q 36)=1500×(1-0.0055)≈1492 (2)4d 36=l 36×4q 36=1500×(0.005+0.00213)≈11 (3)l 36×9|5q 36=l 36×9P 35×5q 45=1500×(1-0.02169)×0.02235=1500×0.021865≈33 8. 已知800.07q =,803129d =,求81l 。 9. 015.060=q ,017.061=q ,020.062=q , 计算概率612P ,60|2q . 612 P =(1-q 61)(1-q 62)=0.96334 60|2q =612P .q 62=0.01937 10. 设某群体的初始人数为3 000人,20年内的预期死亡人数为240人,第21年和第22年的死亡人数分别为15人和18人。求生存函数s(x)在20岁、21岁和22岁的值。 13.设01000l =,1990l =,2980l =,…,9910l =,1000l =,求:1)人在70岁至80岁之间死亡的概率;2)30岁的人在70岁至80岁之间死亡的概率;3)30岁的人的取整平均余命。 18. 19.

相关文档
最新文档