保险精算期末复习试题
保险精算学期末复习题目

1.李华1990年1月1日在银行帐户上有5000元存款,(1)在每年10%的单利下,求1994年1月1日的存款额。
(2)在年利率8%的复利下,求1994年5月1日的存款额。
解:(1)5000×(1+4×10%)=7000(元)(2)5000×(1+10%)4.33=7556.8(元)2.把5000元存入银行,前5年的银行利率为8%,后5年年利率为11%,求10年末的存款累计额。
解:5000(1+8%)5×(1+11%)5=12385(元)3.李美1994年1月1日在银行帐户上有10000元存款。
(1)求在复利11%下1990年1月1日的现值。
(2)在11%的折现率下计算1990年1月1日的现值。
解:(1)10000×(1+11%)-4=5934.51(元)(2)10000×(1-11%)4=6274.22(元)4.假设1000元在半年后成为1200元,求⑴ )2(i ,⑵ i, ⑶ )3(d 。
解:⑴ 1200)21(1000)2(=+⨯i ;所以4.0)2(==i ⑵2)2()21(1i i +=+;所以44.0=i ⑶n n m m nd d i m i ---=-=+=+)1()1(1)1()(1)(;所以, 13)3()1()31(-+=-i d ;34335.0)3(=d5.当1>n 时,证明:i idd n n <<<<)()(δ。
证明:①)(n d d <因为,+⋅-⋅+⋅-⋅=-=-3)(32)(2)(10)()()(1)1(1nd C n d C n d C C n d d n n n n n n n n n)(1n d->所以得到,)(n dd <;②δ<)(n d)1()(mn em dδ--=;mm C m C m C m ennnmδδδδδδ->-⋅+⋅-⋅+-=-1)()()(1443322所以,δδ=--<)]1(1[)(mm dn③)(n i <δi n in n +=+1]1[)(, 即,δ=+=+⋅)1ln()1ln()(i nin n所以,)1()(-⋅=n n e n i δm m C m C m C m e nnnnδδδδδδ+>+⋅+⋅+⋅++=1)()()(1443322δδ=-+>]1)1[()(nn in④i in <)(i ni nn +=+1]1[)(,)(2)(2)(10)(1)(1]1[n n n n n n n n i n i C n i C C n i +>+⋅+⋅+⋅=+所以,i in <)(6.证明下列等式成立,并进行直观解释:⑴nmm n m a v a a +=+;解:iv a nm n m ++-=1,iv a mm -=1,ivv i v v a v nm m n mn m +-=-=1所以,n m nm m m n mma iv v v a v a ++=-+-=+1⑵n mm n m s v a a -=-;解:iva nm nm ---=1,iv a mm-=1,iv v s v n m m n m--=-所以,n m nm m m n mma iv v v s v a --=-+-=-1⑶nmm n m a i s s )1(++=+;解:i i s m m 1)1(-+=,ii i i i i s i m n m n mnm )1()1(1)1()1()1(+-+=-++=++所以,n m mnm m nmm s ii i i a i s ++=+-++-+=++)1()1(1)1()1(⑷nmm n m a i s s )1(+-=-。
保险精算试题

保险精算试题共 4 页第 1 页保险精算复习自测题(90分钟)选择题(20分)1.(20)购买了一种终身生存年金,该年金规定第一年初给付500元,以后只要生存每年初增加100元,该生存年金的精算现值为()。
A.....2020400100()a I a + B.2020400100()a I a + C.....2020500100()a I a + D.2020500100()a I a +2. UDD 假设若q 50=0.004,在UDD 假设下0.5p 50等于()。
3. 每次期初支付10000元,一年支付m 次,共支付n 年的生存年金的精算现值表示为()。
A.()..:10000m x nm aB.():10000m x nmaC.()..:10000m x nnm a D.():10000m x nnm a4.关于(x )的一份2年定期保险,有如下条件:(1)0.02(1)x k q k +=+ 0,1k =(2)0.06i =(3)在死亡年末支付额如下:k 1k b +b1 1b2若z 是死亡给付现值的随机变量则()E Z 等于()。
共 4 页第 2 页填空题(20分)1.按缴费方式和保险金的给付方式,把寿险分为、、。
2.若一个人在x 岁时死亡,此时随机变量T (30)= ,K(50)= 。
3. = ,35:]1000n n V 。
4.日本采用的计算最低现金价值的方法是。
5.专业英语:Nominal interest 中文意思是。
6.生存年金精算现值的计算方法和。
7.假设i=5%,现向银行存入1万元,在以后的每年末可取出元。
8.假设40l =A ,50l =B ,则1040q = 。
9.责任准备金的两种计算方法为、。
120:]1000t t V共 4 页第 3 页计算题(50分) 1.假设生存函数()1(0100)100xs x x =-≤<求:①202p②一个20岁的人在活过60岁后,在60岁到70岁之间死亡的概率。
保险精算试卷一

海南医学院试题(A)(2009-2010 学年第一学期期末)考试课程:保险精算考试年级:2006医保本考试日期: 2009年11月24日考试时间:120分钟卷面总分:100分A. 7.19B. 4.04C. 3.31D.5.212.关于单利与复利的比较,下列说法错误的是(D)A.单个度量期(t=1):1+it=(1+i)t,结果相同B.较长时期(t>1):(1+i)t>1+it ,复利产生更大积累值C.较短时期(t<1):(1+i)t<1+it ,单利产生更大积累值D.单利同样长时间积累值增长的相对比率保持为常数。
而复利同样长时间积累值增长的绝对金额为常数。
3. 某人寿保险的死亡给付受益人为三个子女,给付形式为永续年金,前两个孩子第1到n年每年末平分所领取的年金,n年后所有的年金只支付给第三个孩子,若三个孩子所领取的年金现值相等,那么13n⎛⎫⎪⎝⎭)A、新契约费,维持费,营业费用,理赔费用B、投资费用,维持费,营业费用,理赔费用C、投资费用,新契约费,维持费,营业费用D、新契约费,维持费,投资费用,理赔费用8.下列哪项不是计算保单红利的方法(B)A、经验调整法B 、保费和损失结合法C 、三元素法D 、经验保费法9. 表示的是(A ) A 、死亡年年末赔付寿险精算现值两全保险 B 、死亡年年末赔付寿险精算现值定期保险 C 、死亡年年末赔付寿险精算现值延期保险 D 、死亡年年末赔付生存保险10.下列哪项不属于非年金保险(A ) A 、定期保险 B 、定期死亡保险(×)8、寿险费率一般是指每万元保额的保费(×) 9、UDD 假设下死亡即刻赔付净趸缴纯保费是死亡年末赔付净趸缴纯保费的 倍。
(√)三、名词解释:(每题4分,共20分)1、贴现率——单位货币在单位时间内的贴现额,单位时间以年度衡量时,成为实际贴现率。
2、年金——在一定时期内,按一定时间间隔所产生的现金流3、生命表——反映在封闭人口的条件下,一批人从出生后陆续死亡的全部过程的一种统计表。
精算数学练习题

精算数学练习题1. 计算以下年金的现值:- 年金每年末支付1000元,连续支付10年,年利率为5%。
- 年金每年末支付1200元,连续支付15年,年利率为4%。
2. 假设一个保险公司签发一份保额为100万元的定期寿险保单,保险期限为5年,年利率为3%,求该保单的精算现值。
3. 计算以下生存年金的精算现值:- 年金每年初支付1500元,连续支付20年,生存者的年龄为30岁,年利率为6%。
- 年金每年末支付2000元,连续支付25年,生存者的年龄为45岁,年利率为5%。
4. 某保险公司提供一种终身年金,每年初支付1000元,购买者年龄为50岁,年利率为4%,求该年金的精算现值。
5. 计算以下联合生存年金的精算现值:- 年金每年末支付1500元,只要两个生存者中至少有一个存活,连续支付20年,两个生存者的年龄分别为60岁和55岁,年利率为5%。
- 年金每年初支付2000元,只要两个生存者都存活,连续支付25年,两个生存者的年龄分别为40岁和35岁,年利率为4%。
6. 假设一个保险公司签发一份保额为50万元的终身寿险保单,购买者年龄为40岁,年利率为3%,求该保单的精算现值。
7. 计算以下递增年金的精算现值:- 年金每年末支付1000元,连续支付10年,每年支付额递增5%,年利率为6%。
- 年金每年初支付1200元,连续支付15年,每年支付额递增3%,年利率为5%。
8. 某保险公司提供一种递减定期寿险,保险期限为10年,每年初支付保费1000元,购买者年龄为30岁,年利率为4%,求该保单的精算现值。
9. 计算以下年金的精算现值,其中包含一个保证期:- 年金每年末支付1000元,连续支付10年,保证期为5年,年利率为5%。
- 年金每年初支付1200元,连续支付15年,保证期为8年,年利率为4%。
10. 假设一个保险公司签发一份保额为200万元的终身寿险保单,购买者年龄为50岁,年利率为3%,求该保单的精算现值。
山财保险精算期末考试卷子

山财保险精算期末考试卷子1. 某人A在2019年9月1日时加入山财保险公司,到2020年8月31日为止共有一年的保险历史记录。
请根据给定的信息,计算A在山财保险公司的保险历史累计天数。
答案:365天2. 在2021年的精算期末考试中,某人B的得分为85分,而得分最高的同学得分为92分。
请计算某人B在该次考试中的排名。
答案:第二名3. 设立一个简单的年金方案,每年投入5000元,年利率为5%,投资期限为10年。
请计算10年后该年金方案的总价值。
答案:64403.38元4. 如果某人C购买了一份人寿保险,每月需要缴纳100元,保险期限为20年,受益人为其子女。
在该人寿保险的第5年,某人C因意外离世。
请问其子女可以获得多少保险金?答案:每月缴纳100元,20年后可以获得15万元的保险金5. 在某次意外事故中,某人D因车祸导致重伤,需要进行长期治疗。
该人D购买了山财保险公司的医疗保险。
请问在发生事故后,山财保险公司是否会承担该人D的治疗费用?答案:是,山财保险公司将承担该人D的医疗费用6. 某人E在山财保险公司购买了一份房屋保险,保险金额为50万元,保险期限为10年。
若在第8年发生火灾,导致房屋全损,山财保险公司将会承担多少赔偿金额?答案:50万元7. 在某次精算期末考试中,山财保险公司的员工平均得分为75分。
员工A得分为85分,员工B得分为60分。
请问员工A和员工B的得分相比于公司平均得分而言是高还是低?答案:员工A的得分高于平均分,员工B的得分低于平均分8. 某人F购买了山财保险公司的车辆保险,保费为每年1000元。
若在第3年车辆被盗,山财保险公司将会进行全额赔偿。
请问该人F在第3年索赔后,是否需要再次支付保费?答案:是,该人F需要在第4年再次支付保费9. 在山财保险公司的精算期末考试中,共有100名考生参加。
其中60名考生的得分高于70分。
请问通过考试的考生比例是多少?答案:60%10. 如果某人G购买了山财保险公司提供的养老金计划,每月缴纳500元,计划领取期为20年。
最新寿险精算期末试题

寿险精算一、填空题1、生命表依据编制对象的不同,可以分为:________和________。
2、根据保险标的的属性不同,保险可分为:________和______________。
3、寿险精算中的基本参数主要有:_________、_______________、_______________。
4、生命表的创始人是___________。
5、生命表方法的实质是_________________________________________________。
6、投保保额为1单位元数的终身寿险,按年度实质贴现率v 复利计息,赔付现值变量为:_____________________。
7、n 年定期两全险是___________和_____________的组合。
8、终身寿险死亡即刻赔付趸缴净保费公式为______________________________。
9、已知05.0,5a ,8a 2===δx x ,则=)(a |T a r V __________.10、1—_______|:n x ad =二、选择题1、世界上第一张简略生命表是( )A.1662年约翰•格兰编制的生命表 B .1693年埃德蒙•哈雷编制的生命表; C .詹姆斯•道森编制的生命表 D .1724年亚伯拉罕•棣模佛编制的生命表2、保险精算遵循的最重要原则是()A .补偿性原则B .资产负债匹配原则C .收支平衡原则D .均衡保费原则3、某10年期确定年金,每4月末给付800元,月利率为2%,则该年金的现值为( )。
4、 已知死力µ=0.045,利息力δ=0.055,则每年支付金额1,连续支付的终身生存年金的精算现值为( )。
A .9; B.10; C.11; D.12。
5、下列错误的公式是 ()A.()()x s x s ,x =μB.()()dtP d t x t T =f C.()()()x s t x s x s q x +-=t D.()x s x =p 0 6、设某地新生婴儿未来寿命随机变量X在区间[0,100]上服从均匀分布,x ∈(0,100) 则( )A.s(x)=x/100B.s(x)=1/100C.s(x)=1-x/100D.s(x)=100x7、8、9、下列不是有关分数年龄的假设常用的插值方法的是()A.线性插值B.调和插值C.几何插值D.牛顿插值10.下列关系不正确的是()A.x t x t x p l l ∙=+B.x x x q l d ∙=C.x x x L d m =D.tx x x l l p +=t 三、简答题1.你认为保险精算对保险经营有何重要意义?2.生存年金的定义及分类。
保险精算考试题及答案

保险精算考试题及答案1. 保险精算中,用于计算未来现金流的现值的公式是:A. 未来值 = 现值× (1 + 利率)^期数B. 现值 = 未来值÷ (1 + 利率)^期数C. 未来值 = 现值× (1 - 利率)^期数D. 现值 = 未来值× (1 - 利率)^期数答案:B2. 在非寿险精算中,用于计算纯保费的公式是:A. 纯保费 = 预期损失 + 预期费用B. 纯保费 = 预期损失 - 预期费用C. 纯保费 = 预期损失× 预期费用D. 纯保费 = 预期损失÷ 预期费用答案:A3. 以下哪项是寿险精算中的生命表的主要组成部分?A. 死亡率表B. 疾病率表C. 残疾率表D. 以上都是答案:A4. 寿险精算中,计算年金现值的公式是:A. 年金现值 = 年金支付额× 利率× (1 - 1/(1 + 利率)^期数)B. 年金现值 = 年金支付额÷ 利率× (1 - 1/(1 + 利率)^期数)C. 年金现值 = 年金支付额× 利率÷ (1 - 1/(1 + 利率)^期数)D. 年金现值 = 年金支付额÷ 利率÷ (1 - 1/(1 + 利率)^期数) 答案:A5. 保险精算中,用于评估保险公司财务稳定性的指标是:A. 偿付能力比率B. 资产负债比率C. 投资回报率D. 以上都是答案:A6. 在精算评估中,用于计算保单持有人未来利益的现值的贴现率是:A. 预定利率B. 市场利率C. 法定利率D. 以上都不是答案:A7. 以下哪项是精算师在评估寿险保单的死亡率风险时常用的方法?A. 蒙特卡洛模拟B. 敏感性分析C. 精算表分析D. 以上都是答案:C8. 保险精算中,用于计算保单持有人未来利益的现值的公式是:A. 未来利益现值 = 未来利益× 利率× (1 - 1/(1 + 利率)^期数)B. 未来利益现值 = 未来利益÷ 利率× (1 - 1/(1 + 利率)^期数)C. 未来利益现值 = 未来利益× 利率÷ (1 - 1/(1 + 利率)^期数)D. 未来利益现值 = 未来利益÷ 利率÷ (1 - 1/(1 + 利率)^期数) 答案:B9. 在保险精算中,用于计算保单的准备金的公式是:A. 准备金 = 未来利益现值 - 已收保费B. 准备金 = 未来利益现值 + 已收保费C. 准备金 = 未来利益现值× 已收保费D. 准备金 = 未来利益现值÷ 已收保费答案:A10. 以下哪项是保险精算中用于评估保单持有人未来利益的不确定性的方法?A. 精算评估B. 风险评估C. 敏感性分析D. 以上都是答案:C。
保险精算试卷二

海南医学院试题(A)(2009-2010 学年第一学期期末)考试课程:保险精算考试年级:2006医保本考试日期:2009年11月24日考试时间:120分钟卷面总分:100分一、选择题(每题2分,共20分)—————————————————————————————————A1 型题每一道题有A,B,C,D四个备选答案,在答题时只需从5个备选答案中选择一个最合适的作为正确答案,并在答卷上将相应题号的相应字母填写在括号内。
—————————————————————————————————1、下列哪项不属于人寿保险(C)A、生存保险B、死亡保险C、人身意外伤害保险D、生死合险2、某人到银行存入1000元,第一年年末的存款余额为1020元,问第1年的实际利率分别是多少?(B)A、1%B、2%C、3%D、4%3、如果221100x x xμ=++-,0≤x≤100, 求l=10 000时,在该生命表中1岁到4岁之间的死亡人数为(B)。
A.2073.92B.2081.61C.2356.74D.2107.564.下列关系表述错误的是(C)A、111:::xm x n m x m nA A A+=⋅B、1:x xnx nA A A=+C、11:::m x n x m n x mA A A+=-D、1:x x x mm mA A A+=⋅5.下列关于期末付生存年金的精算现值与寿险精算现值之间的关系,表述正确的是(B)A、1xxAad-=B、x x xA va a=-C 、::::1x n x n x n x nA da va a=-=-D、:1:1x n x mxn mA Aad++-=6.下列关于半连续型纯保险,表述错误的是(C)A、()x x h xh x hiP A A pδ==:B 、11()h h xh nx n x n x h x niP A A a p pδ==+:::::C、11:()x nx n x n x n x ni iP A A p pδδ==+::::D、1::()()x x x m x m x m x x mm m x mP a A a a D N N N++++==-7.IBNR赔案的赔款总额取决于(C)个因素A、1B、2C、3D、48.设()50500.014,0.17,P A Aδ==则利息强度=()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 假设某人群的生存函数为()1,0100100
x S x x =-≤≤ 求:
一个刚出生的婴儿活不到50岁的概率;
一个刚出生的婴儿寿命超过80岁的概率;
一个刚出生的婴儿会在60~70岁之间死亡的概率;
一个活到30岁的人活不到60岁的概率。
2
已知给出生存函数()20S x =
,0100x ≤≤,计算(75),(75)F f ,()75μ
3、已知 10000(1)100
x x l =- 计算下面各值:
(1)30203030303010,,,d p q q
(2)20岁的人在50~55岁死亡的概率。
(3)该人群平均寿命(假定极限年龄为100)。
4、设
()1 , 0100100
0.1x S x x i =-
≤≤= 求:第一问:
130:101 (2)()t A Var z () 第二问:
30:101 (2)()t A Var z ()
5、设(x)投保终身寿险,保险金额为1元,保险金在死亡即刻赔付,签单时,(x)的剩余寿命的密度函数为
1 , 060(t)60
0 , T t f ⎧<≤⎪=⎨⎪⎩其它
计算
0.90.91(2)()
(3)Pr()0.9.
x
t A Var z z ξξ≤=()的
6、假设(x )投保延期10年的终身寿险,保额1元。
保险金在死亡即刻赔付。
已知0.040.06(),0x S x e x δ-==≥, 求:10t (1) (2)Var(z )x A
,
7、90岁的人生存情况如下表。
求
1、死亡年末给付1000元的趸缴浄保费
8、现年30岁的人购买了一份递减的5年定期寿险保单。
保险金于死亡年末给付,第一个保单年度内死亡,则给付5万元;第二个保单年度内死亡,则给付4万元——;第5个保单年度内死亡,则给付1万元,设年利率为6%,用中国人寿保险业经验生命表非养老金业务男表计算其趸缴纯保费。
9、假设有100个相互独立的年龄为x 岁的被保险人都投保了保险金额10元的终身寿险,随机变量T 的概率密度是()()0.04,0t T f t e t μμμ-==≥.保险金于被保险人死亡时给付,保险金给付是从某项基金中按利息强度0.06δ=计息支付.试计算这项基金在最初()0t =时的数额至少为多少时,才能保证从这项基金中足以支付每个被保险人的死亡给付的概率达到95%
10、
假定寿命服从[0,110]上的均匀分布,且0.05δ=,计算(30)所购买的终身连续生存年金。
用三种方法计算。
11、有一种终身年金产品,每年连续给付生存年金1000元。
现在开发一种新产品,在原来年金给付的基础上增加死亡即刻给付X 万元。
假定利息力为5%,求:当死亡赔付定为多大时,该产品赔付现值的方差最小?
12、
在死亡力为常数0.04,利息力为常数0.06的假定下,求
(1)x a (2)T a 的标准差
(3) T a 超过x a 的概率。
13、
8x a =,25x a =,0.05δ=
14、
设一现值变量为,0(),()n T
a T x n Y a T x n ≤≤⎧⎪=⎨>⎪⎩ 计算()x n E Y a -
15—20题
课本45页课后习题。