(完整word版)Logistic回归分析报告结果解读分析
图文举例详细讲解Logistic曲线的回归分析

Logistic 曲线的回归分析例 某一品种玉米高度与时间(生长周期,每个生长周期为2-3天,与气温有关)的数据如表1.所示。
用转化为线性方程的方法估计其logistic 曲线预测模型。
设最大值k 为300(cm )。
表1. 玉米高度与时间(生长周期)的关系时间(生长周期)高度/cm时间(生长周期)高度/cm时间(生长周期)高度/cm12 3 4 5 6 7 8 9 10 11 0.67 0.85 1.28 1.75 2.27 2.75 3.69 4.71 6.36 7.73 9.9112 13 14 15 16 17 18 19 20 21 12.75 16.55 20.1 27.35 32.55 37.55 44.75 53.38 71.61 83.89 22 23 24 25 26 27 28 29 30 31 97.46 112.7 135.1 153.6 160.3 167.1 174.9 177.9 180.2 180.83.1 基本绘图操作 在Excel 中输入时间x 与高度y 的数据。
选择插入->图表图87点击图表,选择“标准类型”中的xy 散点图,并点击子图表类型的第一个。
图88点击下一步,得到如图89。
图 89点击下一步。
图90分别点击标题、网格线、图例进行修改,然后点击下一步。
图91点击完成。
图92右击绘图区,修改绘图区格式,双击做表格,修改坐标轴刻度,最后的散点图。
图93观察散点图,其呈S 型曲线,符合logistic 曲线。
采用转化为线性方程的方法求解模型。
3.2 Logistic 曲线方程及线性化Logistic 曲线方程为:1atk y me-=+ (12)(1) 将数据线性化及成图转化为线性方程为:01'y a a t =+ (13)其中,'ln(/1)y k y =-,0ln a m =,1a a =-具体操作为:向excel 表格中输入y ’数据。
逻辑回归系数结果解读

逻辑回归系数结果解读【原创版】目录1.引言:逻辑回归模型概述2.逻辑回归系数的含义3.逻辑回归系数的解读方法4.逻辑回归系数的应用实例5.总结正文1.引言:逻辑回归模型概述逻辑回归(Logistic Regression)是一种广泛应用于分类领域的统计学习方法。
它的原理是利用 sigmoid 函数将线性模型的输出映射到 0 到 1 之间,表示为某一类的概率。
逻辑回归模型的核心是系数,它们决定了特征与目标变量之间的关联程度。
本文将介绍如何解读逻辑回归系数的结果。
2.逻辑回归系数的含义在逻辑回归模型中,每个自变量对应一个系数。
系数表示当其他变量保持不变时,该自变量每变动一个单位,目标变量的对数几率发生的变化。
具体来说,如果一个特征的系数为正,那么该特征与目标变量正相关;如果系数为负,那么该特征与目标变量负相关。
3.逻辑回归系数的解读方法逻辑回归系数的绝对值大小可以衡量特征与目标变量的关联强度。
绝对值越大,表示特征与目标变量的关联程度越高。
此外,我们还可以通过比较不同特征的系数大小,确定各个特征对目标变量的相对重要性。
4.逻辑回归系数的应用实例假设我们有一个逻辑回归模型,用于预测某人是否患有心脏病。
模型中有以下三个特征:年龄、胆固醇水平和血压。
对应的系数分别为:年龄系数为 0.1,胆固醇水平系数为 0.2,血压系数为 0.3。
根据系数,我们可以得出以下结论:- 年龄对心脏病发病率的影响相对较小。
- 胆固醇水平对心脏病发病率的影响较大。
- 血压对心脏病发病率的影响最大。
根据这些结论,我们可以为医生提供有针对性的建议,帮助他们更好地诊断病情。
5.总结逻辑回归模型的系数对于理解特征与目标变量之间的关系具有重要意义。
logistic回归分析

2.模型中参数的意义
P ln = 0 1 X 1 1 P
Β0(常数项):暴露因素Xi=0时,个体发病 概率与不发病概率之比的自然对数比值。
P( y 1 / x 0) = 0 ln 1 P( y 0 / x 0)
i
事件发生率很小,OR≈RR。
二、logistic回归模型的参数估计
1. 模型中的参数(βi)估计
,
P ln = 0 1 X 1 2 X 2 m X m 1 P
通常用最大似然函数 (maximum likelihood estimate, MLE)估计β, 由统计软件包完成。(讲义259页)
研究问题可否用多元线性回归方法?
ˆ y a b1 x1 b2 x2 bm xm
1.多元线性回归方法要求 Y 的取值为计量 的连续性随机变量。 2.多元线性回归方程要求Y与X间关系为线 性关系。 ˆ 3.多元线性回归结果 Y 不能回答“发生 与否” logistic回归方法补充多元线性回归的不足
OR e
如X=1,0两分类,则OR的1-α可信区间 估计公式
e
( b j u / 2 Sb j )
Sb j
为回归系数 的标准误
(公式16-10)
例:讲义表16-1资料
一个研究吸烟、饮酒与食道癌关系的病例-对 照资料(886例),试作logistic回归分析。 变量的赋值
1 Y 0
0
0 x
logistic回归模型方程的线性表达
对logistic回归模型的概率(p)做logit变 换,
p log it ( p) ln( ) 1 p
方程如下:
Logistic 回归分析

10
分层分析的局限性
只能控制少数因素(分层因素过多, 每个格子中的样本例数太少) 定量资料需要分组,信息丢失 不能对因素作用大小进行定量分析 (交互作用)
11
y = log2x y
二、Logistic 回归原理
0
1
经过数理统计学家证明:把疾病概率 P 转换成
p ln 1 − p ,会使该回归方程的统计性能更好一些。而且,
≈
当发病率低的时候ac所占的比例非常小, 当发病率低的时候 所占的比例非常小, 所占的比例非常小 公式中忽略ac后对 在RR公式中忽略 后对 值的影响非常小 公式中忽略 后对RR值的影响非常小 则有: 则有: RR
≈
(ad)/(bc) = OR
5
举例1 举例 口服避孕药与心肌梗塞的流行病学研究
(病例对照,曾光《现代流行病学方法与应用》,P90) 病例对照,曾光《现代流行病学方法与应用》 P90)
β1
ORX1 =
p X1 =1 q X1 =1 p X 1 =0 q X 1 =0
=
...... ...... 1 − p x1 =1 p x1 =0 1 − p x1 =0
e
14
假设建立了如下的logistic回归方程: 回归方程: 假设建立了如下的 回归方程 Logit P = α + βx x 为二分变量,当暴露时,取值为1; 为二分变量,当暴露时,取值为1 不暴露时,取值为0 不暴露时,取值为0。 暴露时 Logit(P1) = α + β, 所以暴露 , 所以暴露时, 比值(odds) = exp(α + β ) 比值 所以不暴露时 所以不暴露时, 不暴露 Logit(P0) = α , 比值(odds) = exp(α) 比值
多分类无序logistic回归 结果解读

多分类无序logistic回归的结果解读涉及多个步骤。
首先,你需要对模型的整体情况进行描述,例如R方值。
然后,逐一分析X对于Y(相对于的对比项)的影响情况。
如果X对应的P值小于0.05,则说明X 会对Y(相对于的对比项)产生影响关系,此时可结合OR值进一步分析影响幅度。
以一个具体的例子来说明:你正在研究影响总统候选人民主党支持度的因素,包括年龄、学历和性别。
你使用多分类无序logistic回归进行数据分析。
1. 模型整体情况:首先,你描述了模型的R方值。
例如,模型伪R 平方值(McFadden R平方)为0.025,意味着年龄、学历、性别可以解释总统候选人民主党支持率的
2.45%变化原因。
2. 影响因素分析:接下来,你逐一分析了年龄、学历和性别对民主党支持率的影响。
年龄:P值大于0.05,说明年龄对民主党支持率没有显著影响。
学历:P值小于0.05,说明学历对民主党支持率有显著影响。
进一步分析OR值,如果OR值大于1,说明高学历更有可能支持民主党;如果OR值小于1,则说明低学历更有可能支持民主党。
性别:P值小于0.05,说明性别对民主党支持率有显著影响。
进一步分析OR值,如果OR值大于1,说明女性更有可能支持民主党;如果OR值小于1,则说明男性更有可能支持民主党。
3. 总结:基于以上分析,你得出结论:学历和性别对总统候选人民主党支持率有显著影响,而年龄没有明显影响。
同时,你也给出了具
体的影响幅度。
以上是一个基本的多分类无序logistic回归结果解读示例。
具体解读可能因数据和研究目的而有所不同。
多元logistics回归结果解读

多元logistic回归是一种用于研究多个自变量对因变量影响的统计方法。
通过多元logistic回归分析,我们可以了解自变量对因变量的贡献程度,并确定哪些自变量对因变量有显著影响。
在解读多元logistic回归结果时,需要注意以下几点:
系数解读:在多元logistic回归模型中,每个自变量的系数表示该变量对因变量的贡献程度。
系数的符号表示了影响的方向,正号表示正相关,负号表示负相关。
系数的绝对值表示影响的大小,绝对值越大,影响越大。
OR值解读:在多元logistic回归模型中,每个自变量的OR值表示该变量对因变量发生概率的影响程度。
OR值的范围在0到无穷大之间,值越大表示该自变量对因变量的影响越大。
显著性检验:在多元logistic回归模型中,每个自变量都需要进行显著性检验。
如果某个自变量的p值小于预设的显著性水平(如0.05),则认为该自变量对因变量有显著影响。
模型评估:在多元logistic回归分析结束后,需要对模型进行评估。
常用的评价指标包括模型的拟合优度、预测准确率等。
如果模型的评估结果良好,则认为模型可用于预测或解释实际问题。
总之,多元logistic回归结果解读需要综合考虑系数的符号、绝对值、OR值、显著性检验和模型评估等多个方面。
通过深入了解自变量对因变量的贡献程度和影响方式,可以帮助我们更好地理解数据,并进行科学决策。
Logistic回归模型分析下大学生就业影响因素研究word精品文档4页
Logistic回归模型分析下大学生就业影响因素研究一、大学生就业在知识经济时代背景下,我国大学毕业生人数呈现出逐年增长的趋势,但不同行业、领域工作岗位并没有大幅度的增加,大学生就业形势日渐严峻,毕业之后无法顺利走上工作岗位,“毕业即失业”已成为一种普遍现象,大学生就业已成为社会大众关注的焦点。
同时,在不同行业、领域发展过程中,社会市场竞争日渐激烈,社会经济结构大幅度调整,下岗与失业人员持续增加,社会对高校毕业生并没有过多的需求,加上大量农村剩余劳动力不断涌向城市,尤其是大城市,每年新增设的就业岗位数量远远少于社会中待业人数,处于不均衡状态,二者间的矛盾日渐激烈,出现了“就业难”这一现象,在就业道路上,大学生面临着巨大的挑战。
针对这种情况,我国必须全方位立足基本国情,全方位客观分析影响大学生就业的一系列因素,根据不同行业、领域发展情况,采取针对性措施有效解决大学生就业问题,确保各专业大学生毕业后顺利就业,更好地融入到社会这个大集体中,在平凡的工作岗位上充分展现自身各方面价值,促进不同领域、行业发展的同时,加快和谐社会构建步伐。
二、Logistic回归模型分析下大学生就业影响因素1.数据分析在知识经济时代背景下,各类技术持续发展,Logistic回归模型也应运而生,被应用到不同方面数据分析中,发挥着关键性作用,利于相关人员更好地了解各方面情况,制定合理化方案。
在分析影响大学生就业因素方面,Logistic回归模型也被应用其中。
相关人员以某地区高校毕业生为例,借助Logistic回归模型,全面、客观分析了毕业班学生各方面情况,比如,思想、学习、就业,获取的信息数据具有较高的准确率,准确把握影响大学生就业的各类因素。
在学习方面,专业学生大学四年平均绩点、等级等级:英语、计算机,在思想方面,毕业班学生政治面貌、担任职务等。
在此基础上,毕业班学生基本情况也包含其中,比如,姓名、学好、性别、户籍,户籍方面,将其划分为农村户籍、城市户籍,英语方面,以是否过六级为基点,借助Logistic回归模型,科学分析各方面信息数据,对院校毕业班学生有大致了解。
logistic回归分析及其应用-41页文档资料
21.03.2020
2
F(y) :因变量的logit值
1.00
0.75
0.50
0.25
0.00 -4.00 -2.00 0.00 2.00 4.00
X:自变量
21.03.2020
如果一定要进 行直线回归也 可以做出结果, 但此时效果不 佳。当自变量 取一定值时, 因变量的预测 值可能为负数。
21.03.2020
14
2.哑变量的设置和引入
哑变量,又称指示变量或设计矩阵。 有利于检验等级变量各个等级间的变 化是否相同,但主要适合于无序分类变 量。 一个k分类的分类变量,可以用k-1个 哑变量来表示。
21.03.2020
15
哑变量的设置
教育程度:文盲,小学,初中,高中以上
教育程度 X1
X2
X3
文盲:0 0
0
0
小学:1 1
0
0
初中:2 0
1
0
高中:3 0
0
1
以文盲作为参考组
21.03.2020
16
以高中作为参照
教育程度
X1
X2
X3
文盲:010 Nhomakorabea0
小学:1
0
1
0
初中:2
0
0
1
高中:3
0
0
0
21.03.2020
17
SPSS提供的方法
Indicator: 默认。以第1 或最后1类作对照,其他每类 与对照比较; Sample: 以第1 或最后1类作对照,其他每类与对照比 较,但反映平均效应。 Difference: 除第1类外各分类与其前各类平均效应比较; Helmert: 除最后1类外各分类与其前各类平均效应比较; Repeated: 除第1类外各分类与其前一类比较; Polynomial: 假设类间距相等,用于数值型变量。 Deviation: 以第1 或最后1类作对照,其余每类与总效 应比较。
Logistic回归分析报告结果解读分析【范本模板】
Logistic回归分析报告结果解读分析Logistic回归常用于分析二分类因变量(如存活和死亡、患病和未患病等)与多个自变量的关系。
比较常用的情形是分析危险因素与是否发生某疾病相关联。
例如,若探讨胃癌的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群有不同的临床表现和生活方式等,因变量就为有或无胃癌,即“是"或“否”,为二分类变量,自变量包括年龄、性别、饮食习惯、是否幽门螺杆菌感染等。
自变量既可以是连续变量,也可以为分类变量.通过Logistic 回归分析,就可以大致了解胃癌的危险因素。
Logistic回归与多元线性回归有很多相同之处,但最大的区别就在于他们的因变量不同.多元线性回归的因变量为连续变量;Logistic回归的因变量为二分类变量或多分类变量,但二分类变量更常用,也更加容易解释.1.Logistic回归的用法一般而言,Logistic回归有两大用途,首先是寻找危险因素,如上文的例子,找出与胃癌相关的危险因素;其次是用于预测,我们可以根据建立的Logistic回归模型,预测在不同的自变量情况下,发生某病或某种情况的概率(包括风险评分的建立)。
2.用Logistic回归估计危险度所谓相对危险度(risk ratio,RR)是用来描述某一因素不同状态发生疾病(或其它结局)危险程度的比值。
Logistic回归给出的OR(odds ratio)值与相对危险度类似,常用来表示相对于某一人群,另一人群发生终点事件的风险超出或减少的程度。
如不同性别的胃癌发生危险不同,通过Logistic回归可以求出危险度的具体数值,例如1。
7,这样就表示,男性发生胃癌的风险是女性的1.7倍。
这里要注意估计的方向问题,以女性作为参照,男性患胃癌的OR是1。
7。
如果以男性作为参照,算出的OR将会是0。
588(1/1。
7),表示女性发生胃癌的风险是男性的0.588倍,或者说,是男性的58.8%。
stata多元logistic回归结果解读
stata多元logistic回归结果解读【原创版】目录一、什么是多元 logistic 回归二、多元 logistic 回归的结果解读1.Odds ratio(风险比)2.显著性水平(sig.)3.系数估计4.模型整体检验三、实例分析四、总结正文一、什么是多元 logistic 回归多元 logistic 回归是一种用于分析多自变量与二分类因变量之间关系的统计模型。
它可以帮助我们了解各个自变量对因变量的影响程度以及预测概率。
在 Stata 中,我们可以使用 logistic 回归命令进行分析,例如:logit depvar indepvar1 indepvar2...,其中 depvar 表示因变量,indepvar1、indepvar2 等表示自变量。
二、多元 logistic 回归的结果解读1.Odds ratio(风险比)Odds ratio(风险比)是一种衡量自变量对因变量影响程度的指标。
它表示当某个自变量取某一值时,事件发生的概率与该自变量取另一值时事件发生概率的比值。
在 Stata 结果中,我们可以看到每个自变量的 OR 值,正值表示该自变量与因变量正相关,负值表示负相关,接近 1 表示关系较弱。
2.显著性水平(sig.)显著性水平是用来判断自变量对因变量影响是否显著的指标。
在Stata 结果中,我们可以看到每个自变量的 sig.值。
一般而言,sig.值小于 0.05,我们认为该自变量对因变量的影响是显著的;sig.值大于等于 0.05,我们认为该自变量对因变量的影响不显著。
3.系数估计系数估计表示自变量对因变量的影响程度。
在 Stata 结果中,我们可以看到每个自变量的系数估计值。
系数值越大,表示该自变量对因变量的影响越大;系数值越小,表示影响越小。
4.模型整体检验模型整体检验可以帮助我们判断模型是否整体上显著。
在 Stata 中,我们可以使用 logistic 命令进行模型整体检验,例如:logit depvar indepvar1 indepvar2..., test(1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Logistic回归分析报告结果解读分析Logistic回归常用于分析二分类因变量(如存活和死亡、患病和未患病等)与多个自变量的关系。
比较常用的情形是分析危险因素与是否发生某疾病相关联。
例如,若探讨胃癌的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群有不同的临床表现和生活方式等,因变量就为有或无胃癌,即“是”或“否”,为二分类变量,自变量包括年龄、性别、饮食习惯、是否幽门螺杆菌感染等。
自变量既可以是连续变量,也可以为分类变量。
通过Logistic回归分析,就可以大致了解胃癌的危险因素。
Logistic回归与多元线性回归有很多相同之处,但最大的区别就在于他们的因变量不同。
多元线性回归的因变量为连续变量;Logistic回归的因变量为二分类变量或多分类变量,但二分类变量更常用,也更加容易解释。
1.Logistic回归的用法
一般而言,Logistic回归有两大用途,首先是寻找危险因素,如上文的例子,找出与胃癌相关的危险因素;其次是用于预测,我们可以根据建立的Logistic回归模型,预测在不同的自变量情况下,发生某病或某种情况的概率(包括风险评分的建立)。
2.用Logistic回归估计危险度
所谓相对危险度(risk ratio,RR)是用来描述某一因素不同状态发生疾病(或其它结局)危险程度的
比值。
Logistic回归给出的OR(odds ratio)值与相对危险度类似,常用来表示相对于某一人群,另一人群发生终点事件的风险超出或减少的程度。
如不同性别的胃癌发生危险不同,通过Logistic回归可以求出危险度的具体数值,例如1.7,
这样就表示,男性发生胃癌的风险是女性的1.7倍。
这里要注意估计的方向问题,以女性作为参照,男性患胃癌的OR是1.7。
如果以男性作为参照,算出的OR将会是0.588(1/1.7),表示女性发生胃癌的风险是男性的0.588倍,或者说,是男性的58.8%。
撇开了参照组,相对危险度就没有意义了。
Logistic回归在医学研究中广泛使用的原因之一,就是模型直接给出具有临床实际意义的OR值,很大程度上方便了结果的解读与推广。
图1 相对危险度(risk ratio,RR)与OR(odds ratio)的表达
3. Logistic报告OR值或β值
在Logistic回归结果汇报时,往往会遇到这样一个问题:是应该报告OR值,
还是β值,还是两个都要报告?这个决定权最终当然还是作者本人,但有一点需要进一步了解:OR值和β值其实是等价的。
图2 OR值与β值的公式推导
4 Logistic回归结果判读
“EXP(B)”即为相应变量的OR值(又叫优势比,比值比),为在其他条件不变的情况下,自变量每改变1个单位,事件的发生比“Odds”的变化率。
伪决定系数cox & Snell R2和Nagelkerke R2,这两个指标从不同角度反映了当前模型中自变量解释了因变量的变异占因变量总变异的比例。
但对于Logistic回归而言,通常看到的伪决定系数的大小不像线性回归模型中的决定系数那么大。
预测结果列联表解释,看”分类表“中的数据,提供了2类样本的预测正确率和总的正确率。
建立Logistic回归方程
logit(P)=β0+β1*X1+β2*X2+……+βm*Xm 图2 Logistic回归结果报告样例。