直流无刷电机转速控制电路设计
基于IR2136的无刷直流电机驱动电路的设计

基于IR2136的无刷直流电机驱动电路的设计无刷直流电机是一种广泛应用于工业和家用设备中的驱动器件。
与传统的有刷直流电机相比,无刷直流电机具有更高的效率、更长的寿命和更低的噪音水平。
为了实现无刷直流电机的控制和驱动,需要设计相应的驱动电路。
IR2136是一种常用的无刷直流电机驱动器件。
它具有多种保护和控制功能,可以用于控制无刷直流电机的转速、方向和制动等。
下面是基于IR2136的无刷直流电机驱动电路设计的详细介绍。
首先,设计一个适合的电源电路来为驱动器件和无刷直流电机提供电源。
电源电路应具有稳定的输出电压和电流能力。
通常,使用电池或稳压电源作为驱动电路的电源。
其次,设计一个合适的电机驱动电路。
IR2136包括三个半桥驱动器,每个半桥驱动器都包括一个高侧和低侧开关管。
通过控制这三个半桥驱动器的开关管的导通和截止状态,可以实现对无刷直流电机的控制。
此外,IR2136还具有保护电路,如过温保护、过电压保护、低电压保护和短路保护等。
这些保护功能可以保证电机和驱动器的安全运行。
在设计过程中,需要根据无刷直流电机的参数和工作要求选择合适的电源电压、电流和功率。
还需要选择合适的IR2136驱动芯片和外围电路元件,如电感、电容等。
此外,还需要设计驱动器和电机之间的连接线路,保证信号传输的可靠性。
最后,进行电路的调试和测试。
通过对电路进行测试和调试,可以确保电机能够正常工作,并且具有所需的转速和扭矩。
在调试过程中,可以调整驱动器的参数和工作模式,如占空比、频率等,来优化电机的性能。
总结起来,基于IR2136的无刷直流电机驱动电路设计需要考虑电源电路、驱动器电路和保护电路等方面的设计。
通过合理选择电路元件和参数,并进行适当的调试和测试,可以实现无刷直流电机的稳定驱动和控制。
这样的电路设计可以用于各种需要无刷直流电机的应用中,如工业自动化、机器人和电动车等。
无刷直流电动机控制系统

目录简介错误!未定义书签。
第一章直流无刷电机的工作原理71.根本工作原理72.无刷直流电动机的组成10第二章无刷直流电机的控制121.无刷直流电机的控制原理122.转子的控制143.速度的控制15第三章电机的反应151.电流测量152. RPM转速测量16第四章硬件设计161. LPC2141的使用方法16小结17电气与信息工程系课程设计评分表错误!未定义书签。
简介直流无刷电机:又称"无换向器电机交一直一交系统〞或"直交系统〞。
是将交流电源整流后变成直流,再由逆变器转换成频率可调的交流电,但是,注意此处逆变器是工作在直流斩波方式。
无刷直流电动机Brushless Direct CurrentMotor ,BLDC,采用方波自控式永磁同步电机,以霍尔传感器取代碳刷换向器,以钕铁硼作为转子的永磁材料;产品性能超越传统直流电机的所有优点,同时又解决了直流电机碳刷滑环的缺点,数字式控制,是当今最理想的调速电机。
无刷直流电动机具有上述的三高特性,非常适合使用在24小时连续运转的产业机械及空调冷冻主机、风机水泵、空气压缩机负载;低速高转矩及高频繁正反转不发热的特性,更适合应用于机床工作母机及牵引电机的驱动;其稳速运转精度比直流有刷电机更高,比矢量控制或直接转矩控制速度闭环的变频驱动还要高,性能价格比更好,是现代化调速驱动的最正确选择。
目前,在微小功率畴直流无刷电动机是开展较快的新型电机。
由于各个应用领域需要各自独特的直流无刷电动机,所以直流无刷电动机的类型较多。
大体上有计算机外存储器以及VCD、DVD、CD主轴驱动用扁平式无铁心电机构造,小型通风机用外转子电机构造,家电用多极磁场构造及装式构造,电动自行车用多极、外转子构造等等。
上述直流无刷电动机的电机本身和电路均成一体,使用十分方便,它的产量也非常大。
为了满足大批量、低本钱的市场需要,直流无刷电动机的生产必须要形成规模经济。
因此,直流无刷电动机是一种高投入、高产出的行业。
基于c8051的直流无刷电机控制系统的设计

基于c8051的直流无刷电机控制系统的设计
设计一个基于c8051的直流无刷电机控制系统,可以按照以下步骤进行:
1. 选择合适的c8051单片机芯片,建议选择具备PWM输出和
高速计数器功能的型号。
2. 设计电机驱动电路,包括功率电路和驱动电路。
功率电路通常由MOSFET H桥组成,负责将电机驱动电压转换为驱动电流。
驱动电路负责根据单片机控制信号控制MOSFET开关,
控制电机的起停和运动方向。
3. 编写单片机的控制程序。
需要实现以下功能:
- 设定电机转速或转矩的目标值;
- 读取电机的实际转速或转矩;
- 根据目标值和实际值进行比较,计算出控制电压;
- 生成PWM信号,控制电机驱动电路。
4. 调试和测试控制系统。
连接电机和单片机,进行测试和调试,确保系统正常工作。
5. 优化系统性能。
可以根据需要进行性能优化,例如增加闭环控制、采用磁编码器等。
以上步骤仅供参考,根据实际需求和资源可以进行适当调整和修改。
希望能对你有所帮助!。
无刷直流电机的驱动电路

无刷直流电机的驱动电路一、无刷直流电机简介无刷直流电机是一种通过电子方式实现电机转子磁场与定子磁场的同步旋转,无需刷子与换向器来调整磁场方向的电机。
它具有高效率、高转矩密度、长寿命等优点,被广泛应用于工业、航空航天、交通工具等领域。
二、无刷直流电机的基本原理无刷直流电机的驱动主要是通过电子器件来控制电机的磁场和转子的位置。
基本原理如下: 1. 无刷直流电机的转子上安装有磁体,称为永磁体,用来产生转子磁场。
2. 定子上绕有若干个线圈,通过电流激励产生定子磁场。
3. 当定子磁场与转子磁场交叉时,产生转矩,使电机转动。
三、无刷直流电机的驱动电路设计要求设计无刷直流电机的驱动电路时,需要满足以下要求: 1. 高效率:电路应尽可能减少能量的损耗,以提高电机的效率。
2. 稳定性:电路应具有良好的稳定性,能够在各种工作条件下保持电机的正常运行。
3. 可调性:电路应具备可调节转速和转向的功能,以满足不同应用场景的需求。
4. 保护功能:电路应具备过流、过温等保护功能,以确保电机和电路的安全运行。
四、无刷直流电机的驱动电路设计方案4.1 无刷直流电机驱动电路的基本组成无刷直流电机的驱动电路通常由以下几部分组成: 1. 电源模块:提供电机驱动所需的电压和电流。
2. 电流检测模块:用于检测电机驱动电路中的电流情况,保护电机和电路的安全。
3. 电压转换模块:用于将电源提供的电压转换为电机所需的工作电压。
4. 逻辑控制模块:根据输入信号控制电机的转速和转向。
5. 保护模块:监测电机驱动电路的工作状态,当出现异常情况时进行相应的保护。
4.2 无刷直流电机驱动电路的工作原理无刷直流电机的驱动电路工作原理如下: 1. 逻辑控制模块接收输入信号,根据信号产生驱动电流的时序。
2. 驱动电流经过电流检测模块后,进入电机的定子线圈。
3. 电机定子线圈中的电流产生定子磁场,与转子磁场交叉产生转矩。
4. 电压转换模块将电源提供的电压转换为电机所需的工作电压。
基于场效应管的直流电机驱动控制电路设计

基于场效应管的直流电机驱动控制电路设计一、本文概述随着现代电子技术的飞速发展,直流电机因其优良的控制性能和简单的结构设计,在工业自动化、精密仪器和消费电子等领域得到了广泛应用。
传统的直流电机驱动控制电路存在功耗大、效率低、响应速度慢等问题,难以满足当前对高性能电机控制系统的需求。
研究新型的直流电机驱动控制电路具有重要意义。
本文主要聚焦于基于场效应管的直流电机驱动控制电路设计。
场效应管(FET)作为一种高效、快速的电子器件,在电机驱动领域具有独特的优势。
本文将首先介绍场效应管的基本原理和特性,以及其在直流电机驱动控制中的应用优势。
接着,本文将详细阐述一种基于场效应管的直流电机驱动控制电路的设计方法,包括电路的拓扑结构、工作原理以及关键参数的设计与优化。
本文的研究重点在于如何通过优化电路设计,提高直流电机驱动控制系统的性能,包括降低功耗、提高效率、加快响应速度等。
本文还将探讨电路设计中可能遇到的问题和挑战,并提出相应的解决策略。
总体而言,本文旨在为直流电机驱动控制电路的设计提供一种新的思路和方法,以推动电机控制技术在现代工业和电子领域的应用与发展。
二、场效应管基础知识场效应管(FieldEffect Transistor,简称FET)是一种利用电场效应来控制电流流动的半导体器件。
它具有三个引脚:源极(Source)、栅极(Gate)和漏极(Drain)。
场效应管的主要类型包括结型场效应管(JFET)和金属氧化物半导体场效应管(MOSFET)。
在直流电机驱动控制电路中,MOSFET因其高输入阻抗、低导通电阻和高开关速度等特点而得到广泛应用。
场效应管的工作原理基于电场效应。
在MOSFET中,当在栅极和源极之间施加一个电压时,会在栅极和硅基片之间形成一个电场。
这个电场会影响硅基片中的电荷分布,从而控制源极和漏极之间的电流流动。
当栅极电压达到一定阈值时,MOSFET开始导通,电流可以在源极和漏极之间流动。
场效应管的特性参数对其在电路中的应用至关重要。
BLDC电动机本体设计及控制原理(详细版)

BLDC电动机本体设计及控制原理(详细版)一、引言直流无刷电动机(Brushless DC Motor,BLDC)是近年来研究与应用领域日益扩大的电机类型。
它具有高效率、高转矩、低噪音、长使用寿命等优点,广泛应用于电动汽车、航空航天、家用电器、微型机器人等领域。
本文主要论述BLDC电动机本体设计及控制原理。
二、BLDC电动机结构及工作原理BLDC电动机主要由转子、定子、传感器、电路控制系统等部分组成。
1. 转子转子是BLDC电动机的核心部分,主要由磁铁和轴组成。
磁铁通常采用强磁性永磁体,由于磁阻较小、磁延迟性小,因此稳定性好,容易控制。
轴材料通常为钢铁材料,既满足强度要求,又具备较高的刚度。
转子采用永磁体的励磁方式,可以降低电机的故障率。
2. 定子定子是BLDC电动机的外部部分,主要由铁芯和绕组组成。
定子铁芯通常由硅钢片穿插叠压而成,目的是避免铁芯中涡流的损耗。
绕组则由若干个线圈组成,其数量与定子极数有关。
3. 传感器传感器主要包括霍尔元件和编码器。
霍尔元件主要用于检测转子磁极位置,编码器用于检测转子具体位置。
这些传感器输出的信号可以通过控制器计算得到电机的精确位置和转速。
4. 电路控制系统电路控制系统主要由驱动电路和控制器组成。
由于BLDC电机是三相交流电机,因此需要采用三相桥式电路进行驱动。
这种电路可以通过PWM技术实现精确的电机控制。
BLDC电动机的工作原理是依靠磁场作用产生电动力矩,具体而言,是依靠定子电流的旋转磁场作用与永磁体产生相互作用力而产生电动力矩的。
BLDC电机通过不断改变定子电流方向和大小来控制电机的转速和方向。
三、BLDC电动机控制原理1. 电机转速控制为了实现BLDC电动机的精确控制,需要对电机的转速进行控制。
一般采用PID控制算法对电机进行控制。
PID算法通过将实际转速与设定值进行比较,计算出误差,然后根据误差大小来调整控制电压的大小和方向。
这种方法可以有效地降低电机的振动和噪声,提高电机的精度和稳定性。
基于MC33035+MC33039的直流无刷电机速度闭环控制系统设计
基于MC33035+MC33039的直流无刷电机速度闭环控制系统设计作者:应弋翔何嘉冰李沈崇史亦飞许宇翔来源:《科技创新与应用》2019年第24期摘; 要:文章详细介绍了Motorola公司的第二代直流无刷电机控制器专用芯片MC33035的基本原理,在分析了直流无刷电机的结构特点及应用现状后,设计了基于MC33035和MC33039及一些集成电路构成的小功率直流无刷电机的速度闭环控制系统,并进行了调试及试验,确认了其简单和优越的控制性能。
在设计的过程中加入了电机的过温保护,使无刷电机在实际工作环境中无故障安全运行。
关键词:MC33035;MC33039;直流无刷电机;闭环控制中图分类号:TM359.9 文献标识码:A 文章编号:2095-2945(2019)24-0049-04Abstract: In this paper, the basic principle of MC33035, a special chip for the second generation brushless DC motor controller made by Motorola Company, is introduced in detail. After analyzing the structure characteristics and application status of the brushless DC motor, the speed closed loop control system of low power brushless DC motor based on MC33035, MC33039 andsome integrated circuits is designed, debugged and tested, and its simple and superior control performance is confirmed. In the process of design, the overtemperature protection of the motor is added, so as to make the brushless motor operate safely without fault in the actual working environment.Keywords: MC33035; MC33039; brushless DC motor; closed-loop control 引言近年來,我国中小型电机和特微电机行业迅速发展,其中直流无刷电机以其高效低噪等特点逐渐取代有刷电机,成为行业的一颗新星。
直流无刷电机的控制系统设计方案
直流无刷电机的控制系统设计方案1 引言1.1 题目综述直流无刷电机是在有刷直流电机的基础上发展起来的,它不仅保留了有刷直流电机良好的调试性能,而且还克服了有刷直流电机机械换相带来的火花、噪声、无线电干扰、寿命短及制造成本高和维修困难等等的缺点。
与其它种类的电机相比它具有鲜明的特征:低噪声、体积小、散热性能好、调试性能好、控制灵活、高效率、长寿命等一系列优点。
基于这么多的优点无刷直流电机有了广泛的应用。
比如电动汽车的核心驱动部件、电动车门、汽车空调、雨刮刷、安全气囊;家用电器中的DVD、VCD、空调和冰箱的压缩机、洗衣机;办公领域的传真机、复印机、碎纸机等;工业领域的纺织机械、医疗、印刷机和数控机床等行业;水下机器人等等诸多应用[1]。
1.2 国内外研究状况目前,国内无刷直流电机的控制技术已经比较成熟,我国已经制定了GJB1863无刷直流电机通用规范。
外国的一些技术和中国的一些技术大体相当,美国和日本的相对比较先进。
当新型功率半导体器件:GTR、MOSFET、IGBT等的出现,以及钕铁硼、钐鈷等高性能永磁材料的出现,都为直流电机的应用奠定了坚实的基础。
近些年来,计算机和控制技术快速发展。
单片机、DSP、FPGA、CPLD等控制器被应用到了直流电机控制系统中,一些先进控制技术也同时被应用了到无刷直流电机控制系统中,这些发展都为直流电机的发展奠定了坚实的基础。
经过这么多年的发展,我国对无刷电机的控制已经有了很大的提高,但是与国外的技术相比还是相差很远,需要继续努力。
所以对无刷直流电机控制系统的研究学习仍是国内的重要研究内容[2]。
1.3 课题设计的主要内容本文以永磁方波无刷直流电机为控制对象,主要学习了电机的位置检测技术、电机的启动方法、调速控制策略等。
选定合适的方案,设计硬件电路并编写程序调试,最终设计了一套无位置传感器的无刷直流电机调速系统。
本课题涉及的技术概括如下:(1)学习直流无刷电机的基本结构、工作原理、数学模型等是学习电机的前提和首要内容。
永磁无刷直流电机控制系统设计
永磁无刷直流电机控制系统设计1.电机模型的建立:建立电机的数学模型是进行控制系统设计的第一步。
永磁无刷直流电机可以使用动态数学模型来描述其动态特性,常用的模型包括简化的转子动态模型和电动机状态空间模型。
简化的转子动态模型以电机的电磁转矩方程为基础,通过建立电机的电流-转速模型来描述电机的动态响应。
这个模型通常用于低频控制和电机启动阶段的设计。
电动机状态空间模型则是通过将电机的状态变量表示为电流和转速变量,用微分方程的形式描述电机的动态特性。
这个模型适用于高频控制和电机稳态响应分析。
2.控制器设计:经典的控制方法包括比例积分控制器(PI)和比例积分微分控制器(PID)。
比例积分控制器是最简单的控制器,通过调节电流的比例增益和积分时间来控制电机的速度。
这种控制器适用于低精度控制和对动态响应要求不高的应用。
比例积分微分控制器在比例积分控制器的基础上增加了微分项,通过调节微分时间来控制系统的阻尼比,提高系统的稳定性和动态响应。
3.参数调节:在控制器设计中,参数调节和整定是非常重要的环节,主要包括根据系统的要求选择合适的控制器参数,并进行优化。
参数调节可以通过试探法、经验法和优化算法等方法进行。
其中,试探法和经验法是相对简单的方法,通过调整控制器的参数值来达到稳定运行或者较好的控制性能。
优化算法可以通过数学模型和计算机仿真的方式进行,通过优化目标函数和约束条件,得到最合适的控制器参数。
总结起来,永磁无刷直流电机控制系统设计主要包括电机模型的建立、控制器设计和参数调节。
在设计过程中,需要根据系统的要求选择合适的控制器,通过参数调节和优化算法来提高系统的稳定性和动态性能。
无刷直流电动机控制系统设计
无刷直流电动机控制系统设计方案第1章概述 (1)1.1 无刷直流电动机的发展概况 (1)1.2 无刷直流永磁电动机和有刷直流永磁电动机的比较 (2)1.3 无刷直流电动机的结构及基本工作原理 (3)1.4 无刷直流电动机的运行特性 (6)1.4.1 机械特性 (6)1.4.2 调节特性 (6)1.4.3 工作特性 (7)1.5 无刷直流电动机的使用和研究动向 (8)第2章无刷直流电动机控制系统设计方案 (10)2.1 无刷直流电动机系统的组成 (10)2.2 无刷直流电动机控制系统设计方案 (12)2.2.1 设计方案比较 (12)2.2.2 无刷直流电动机控制系统组成框图 (13)第3章无刷直流电动机硬件设计 (15)3.1 逆变主电路设计 (15)3.1.1 功率开关主电路图 (15)3.1.2 逆变开关元件选择和计算 (15)3.2 逆变开关管驱动电路设计 (17)3.2.1 IR2110功能介绍 (17)3.2.2 自举电路原理 (19)3.3 单片机的选择 (20)3.3.1 PIC单片机特点 (20)3.3.2 PIC16F72单片机管脚排列及功能定义 (22)3.3.3 PIC16F72单片机的功能特性 (22)3.3.4 PWM信号在PIC单片机中的处理 (23)3.3.5 时钟电路 (23)3.3.6 复位电路 (24)3.4 人机接口电路 (24)3.4.1 转把和刹车 (24)3.4.2 显示电路 (25)3.5 门阵列可编程器件GAL16V8 (27)3.5.1 GAL16V8图及引脚功能 (27)3.6 传感器选择 (28)3.7 周边保护电路 (30)3.7.1 电流采样及过电流保护 (30)3.7.2 LM358双运放大电路 (31)3.7.3 欠电压保护 (32)3.8 电源电路 (32)第4章无刷直流电动机软件设计 (33)4.1 直流无刷电机控制器程序的设计概况 (33)4.2 系统各部分功能在软件中的实现 (33)4.3 软件流程图 (34)结束语 (36)致谢 (37)参考文献 (38)附录1 (39)附录2 (51)第1章概述1.1 无刷直流电动机的发展概况无刷直流电动机是在有刷直流电动机的基础上发展起来的,这一渊源关系从其名称中就可以看出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
永磁无刷直流电动机开关管 导通顺序
BLDC反电势过零点检测方法
c ba E EE LLL RRR 2 cbc D V VVV b I2WS a I 1 D V C 1WS D D V N G
本设计采用高压侧功率管调制方 式,而低压侧只是在电机换相时 导通或关断,不导通相得反电动 势可以在PWM高电平和相电流 续流阶段中被检测出来。如图所 示,在一个PWM调制周期中, 当PWM信号为低电平相电流处 于续流状态时,高压侧功率管 SW1关断,相电流经由功率管中 集成的续流二极管VD1,在A相 和B相绕组中续流。在这个续流 阶段中,不导通相端电压同样可 以检测出反电动势的过零点。
DC Motor, BLDC)是一种典型
的机电一体化产品,它是由电
直
动机本体、逆变器、位置检测
流 无
器和控制器组成的自同步电动
刷 电
机系统,其结构原理图如图所
动
示。位置检测器检测转子位置
机
信号,控制器对转子位置信号
进行逻辑处理并产生相应的开
关信号,开关信号以一定的顺
序触发逆变器中的功率开关器
件,将电源功率以一定的逻辑
永磁无刷直流电机最常用的主 电路为星形连接三相桥式主电路, 这种电路主要有两种导通方式:二 二导通方式和三三导通方式。
二二导通方式是指每一瞬间有 两个功率管导通,每隔1/6周期(60° 电角度)换相一次,每次换相一个 功率管,桥臂之间左右互换,每个 功率管导通120°电角度。
三三导通方式是在任一瞬间使 三个开关管同时导通,同样每隔60° 电角度换相一次,每次换相一个功 率管,但换相发生在同一桥臂上下 管之间,因而每个功率管导通180° 电角度。
mounted Permanent Magnet Machine,SMPM)。
永磁体
面贴式
内埋式
永磁无刷直流电动机转 子结构型式
除了上述基本结构外,还有一种外 转子式结构,即带有永磁极的转子 在外面,嵌有绕组的定子在里面。 电机运行时,外转子旋转。这种结 构主要用于电动车的驱动。
无刷直流电动机的基本工作原理
关系分配给定子各相绕组,使
电动机产生持续不断的转矩。
电动机本体
电子开关线路 路
位置传感器
主定子
主转子
功率逻辑开关
传感器定子
位置信号处理
传感器转子
无刷直Байду номын сангаас电机组成框图
电机本体
铁心
永磁无刷直流电动机的转子利 用永磁体形成主磁极,常见的 转子结构如图所示。面贴式结 构是在铁心外面粘贴上瓦片形 永磁体,具有结构简单制造成 本低的特点,但在高速时永磁 体易被离心力甩出,所以多用 于低速电机。具有这种转子的 电机称为面贴式电机(Surface-
无位置传感器控制系统总体结构
系统框图
一个典型的 DSP 最小系 统如图所示,包括DSP芯 片、 电源电路、 复位电 路、 时钟电路及J TA G 接口电路。考虑到与 PC 通信的需要,最小系统一 般还需增添串口通信电路
。
JATG电路
复位
DSP TMS320F2812
时钟电路
电源电路
串口通信
DSP系统一般都采用多电源系统 ,电源及复 位电路的设计对于系统性能有重要影响。 TMS320F2812 是一个较低功耗芯片 ,核电 压为 1. 8V , IO 电压为 3. 3V。本文采用 TI 公司的 TPS767D318 电源芯片。该芯片属 于线性降压型 DC/ DC 变换芯片 ,可以由 5V 电源同时产生两种不同的电压( 3. 3V、 1. 8V 或 2. 5V ) ,其 最 大 输 出 电 流 为 1000mA ,可以同时满足一片 DSP 芯片和少 量外围电路的供电需要 ,该芯片自带电源监 控及复位管理功能 ,可以方便地实现电源及 复位电路设计。复位电路原理图如图所示 。
BLDC运行时三相端电压 电路
图中所示为所设计的无位置传 感器控制系统总体结构。其中 ,经限幅电路输出的三个反电 动势信号经过过零比较器,输 入到控制器中,由控制器判断 出过零点,进过DSP内部控制算 法后输出6路PWM信号给三相逆 变桥,对无刷直流电机进行换 相和调速,从而可以进行相应 的换相控制。
直流无刷电机转速 控制电路设计
导 师:沈小林 答辩人:崔晓江 学号:0805054119
论文框架
1 研究背景和意义 2 研究内容 3 设计主要内容 4 总结
研究背景和意义
一个多世纪以来,电机作为电能量转换装置,其应用范围已遍及国 民经济的各个领域以及人们的日常生活中。电机的主要类型有同步电机、 异步电机与直流电机三种。直流电机具有运行效率高和调速性能好等诸 多优点,因此被广泛应用于各种调速系统中,但传统的有刷直流电机均 以机械换相方法进行换相,存在相对的机械摩擦,因此带来噪声、火花、 无线电干扰及寿命等致命弱点,从而大大地限制了它的应用范围。而相 比有刷直流电机,无刷直流电机的结构是以电力电子电路取代传统有刷 直流电机的电刷,故其既具有有刷直流电机运行效率高、运行性能好等 优点,又具有交流电机运行结构简单、运行可靠、维护方便等优点。目 前,随着半导体技术的快速进步与永磁材料的新发现,高性能、低成本 的永磁无刷直流电机已成为调速领域的领军力量,它具有巨大的开发潜 质和广阔的应用前景。
永磁无刷直流电动机工作原理 示意图
无刷直流电动机开关管导通顺序
管 Θ Θ Θ 通 导 6,5 c E 5,4 4,3 b E 3,2 c a I 2,1 I a b I E 1,6
通过检测定子绕组未导通相的反电 势过零点来确定转子的位置,以便 发出相应的切换信号。主电路为三 相桥式全控星形连接的无刷直流电 动机的等效电路,在二二导通方式 下,各导通管脚、绕组电流及反电 势波形如图所示。在图中我们看到 ,功率管的切换发生在反电势过零 后延迟30°的地方。因此,只要检测 出了反电势过零点,就能正确进行 功率管的切换。
研究内容
针对小功率直流无刷电机的控制 要求,设计以嵌入式处理器为核心 的驱动控制系统,要求能够对电机 的转速进行控制,并能够将实时转 速通过显示装置显示。
要求充分了解PWM控制电机的原 理、嵌入式处理器原理以及相关接 口及供电技术,掌握数码显示原理 及接口设计。
无刷直流电机的结构和工作原理
永磁无刷直流电动机(Brushless
机 电 刷 CDLB 无 路 电 路 压 流 路 随 电 电 电 直 跟 较 零 幅 压 比 过 限 电 5 2 D D 5 2 TBGIQTBGI Q 3 6 D D 路电离 隔 电光 63 TBGIQTBGIQ 路 1 4 电 D D 关 41 TBGIQTBGIQ 开 子 器 电 制 控 源 电 -+ 流 直