《因式分解》教案

合集下载

因式分解数学教案优秀5篇

因式分解数学教案优秀5篇

因式分解数学教案优秀5篇更多因式分解数学教案资料,在搜索框搜索因式分解数学教案(篇1)教学目标1.学问与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,把握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探究因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养乐观的进取意识,体会数学学问的内在含义与价值.重、难点与关键:1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法:采用“激趣导学”的教学方法.教学过程:一、创设情境,激趣导入【问题牵引】请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探究:你会做下面的填空吗?1.ma+mb+mc=()();2.x2-4=()();3.x2-2xy+y2=()2.【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①(x+1)(x-1)=x2-1;②a2-1+b2=(a+1)(a-1)+b2;③7x-7=7(x-1).(2)在下列括号里,填上适当的项,使等式成立.①9x2(______)+y2=(3x+y)(_______);②x2-4xy+(_______)=(x-_______)2.四、随堂练习,巩固深化课本练习.【探研时空】计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,老师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业。

因式分解数学教案(篇2)【教学目标】1、了解因式分解的概念和意义;2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

因式分解教案四篇

因式分解教案四篇

因式分解教案四篇因式分解教案篇1一、运用平方差公式分解因式教学目标1、使学生了解运用公式来分解因式的意义。

2、使学生理解平方差公式的意义,弄清平方差公式的形式和特点;使学生知道把乘法公式反过来就可以得到相应的因式分解。

3、掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式(直接用公式不超过两次)重点运用平方差公式分解因式难点灵活运用平方差公式分解因式教学方法比照发现法课型新授课教具投影仪教师活动学生活动情景设置:同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?(学生或许还有其他不同的解决方法,教师要给予充分的肯定) 新课讲解:从上面992-1=(99+1)(99-1),我们容易看出,这种方法利用了我们刚学过的哪一个乘法公式?首先我们来做下面两题:(投影)1.计算以下各式:(1)(a+2)(a-2)=;(2)(a+b)(a-b)=;(3)(3a+2b)(3a-2b)=.2.下面请你根据上面的算式填空:(1)a2-4=;(2)a2-b2=;(3)9a2-4b2=;请同学们比照以上两题,你发现什么呢?事实上,像上面第2题那样,把一个多项式写成几个整式积的形式叫做多项式的因式分解。

(投影)比方:a2–16=a2–42=(a+4)(a–4)例题1:把以下各式分解因式;(投影)(1)36–25x2;(2)16a2–9b2;(3)9(a+b)2–4(a–b)2.(让学生弄清平方差公式的形式和特点并会运用)例题2:如图,求圆环形绿化区的面积练习:第87页练一练第1、2、3题小结:这节课你学到了什么知识,掌握什么方法?教学素材:A组题:1.填空:81x2-=(9x+y)(9x-y);=利用因式分解计算:=。

2、以下多项式中能用平方差公式分解因式的是()(A)(B)(C)(D)3.把以下各式分解因式(1)1-16a2(2)9a2x2-b2y2(3).49(a-b)2-16(a+b)2B组题:1分解因式81a4-b4=2假设a+b=1,a2+b2=1,那么ab=;3假设26+28+2n是一个完全平方数,那么n=.由学生自己先做(或互相讨论),然后答复,假设有答不全的,教师(或其他学生)补充.学生答复1:992-1=99某99-1=9801-1=9800学生答复2:992-1就是(99+1)(99-1)即100某98学生答复:平方差公式学生答复:(1):a2-4(2):a2-b2(3):9a2-4b2学生轻松口答(a+2)(a-2)(a+b)(a-b)(3a+2b)(3a-2b)学生答复:把乘法公式(a+b)(a-b)=a2-b2反过来就得到a2-b2=(a+b)(a-b)学生上台板演:36–25x2=62–(5x)2=(6+5x)(6–5x)16a2–9b2=(4a)2–(3b)2=(4a+3b)(4a–3b)9(a+b)2–4(a–b)2=[3(a+b)]2–[2(a–b)]2=[3(a+b)+2(a–b)][3(a+b)–2(a–b)]=(5a+b)(a+5b)解:352π–152π=π(352–152)=(35+15)(35–15)π=50某20π=1000π(m2)这个绿化区的面积是1000πm2学生归纳总结因式分解教案篇2教学目标1、会运用因式分解进行简单的多项式除法。

高中数学因式分解教案

高中数学因式分解教案

高中数学因式分解教案教学内容:因式分解教学目标:1. 了解因式分解的概念和基本规则。

2. 能够独立完成简单的因式分解计算。

3. 能够灵活运用因式分解方法解决实际问题。

教学重点:1. 因式分解的概念和基本规则。

2. 利用因式分解简化复杂的代数式。

教学难点:1. 理解因式分解的思想和方法。

2. 灵活应用因式分解解决实际问题。

教学过程:一、导入1. 老师向学生介绍因式分解的概念,并通过一个简单的例子引出因式分解的重要性和应用价值。

2. 老师引导学生思考什么是因式分解,以及为什么要进行因式分解。

二、讲解1. 老师讲解因式分解的基本规则和方法,包括提取公因式、分解整数、分解二次三角形式等。

2. 老师通过几个简单的例题演示因式分解的过程和步骤。

三、练习1. 学生完成一些基础的因式分解练习,巩固所学的知识和技能。

2. 学生在小组合作中解决一些实际问题,灵活运用因式分解方法解决复杂的代数式。

四、作业1. 布置一些因式分解的作业,让学生在家继续练习和巩固所学的知识。

2. 提醒学生将因式分解与实际问题相结合,在实际生活中灵活运用所学的方法和技能。

五、总结1. 教师总结本节课的内容,并强调因式分解在解决实际问题中的重要性和应用价值。

2. 学生可以提出问题或建议,以便教师更好地指导学生掌握因式分解的方法和技巧。

教学反思:1. 本节课采用了什么样的教学方法和手段?2. 学生对因式分解的理解和掌握情况如何?3. 学生在课后作业和实际问题解决中表现如何?4. 下节课如何更好地引导学生掌握因式分解的方法和技巧?教学反馈:1. 教师对学生在课堂上的表现进行评价和反馈。

2. 学生可以提出问题或建议,帮助教师改进教学方法和内容。

3. 教师可以对学生的学习情况进行跟踪和评估,及时调整教学策略。

初中数学因式分解教案

初中数学因式分解教案

初中数学因式分解教案一、教学目标:1. 知识与技能:学生能够理解因式分解的概念,掌握提公因式法、公式法等基本的因式分解方法,并能够运用这些方法解决实际问题。

2. 过程与方法:通过观察、分析、归纳等数学活动,培养学生的逻辑思维能力和数学表达能力,提高学生解决数学问题的能力。

3. 情感态度价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学的价值和魅力。

二、教学重难点:1. 教学重点:掌握因式分解的基本方法,能够运用提公因式法、公式法等进行因式分解。

2. 教学难点:如何正确找出多项式各项的公因式,以及如何确定提公因式后的另外一个因式。

三、教学过程:1. 引入新课:通过复习多项式乘法,引导学生思考:如何将一个多项式化为几个整式的积的形式?从而引出因式分解的概念。

2. 探索新知:(1) 提公因式法:引导学生观察两个多项式的乘积,找出它们之间的公因式,并将公因式提出来。

例如,分解因式:x^2 - 4x + 4,我们可以先提出公因式x,得到x(x - 4),然后再利用平方差公式进行进一步分解。

(2) 公式法:引导学生掌握平方差公式和完全平方公式,并能够运用这两个公式进行因式分解。

例如,分解因式:x^2 - 9,我们可以利用平方差公式a^2 - b^2 = (a + b)(a - b)进行分解,得到(x + 3)(x - 3)。

3. 巩固练习:提供一些练习题,让学生运用所学的因式分解方法进行解答,巩固所学知识。

4. 课堂小结:总结本节课所学的因式分解方法,强调提公因式法和公式法在因式分解中的应用,以及正确找出多项式各项的公因式和确定提公因式后的另外一个因式的方法。

四、课后作业:1. 完成教材后的相关练习题。

2. 总结因式分解的方法和技巧,写一篇关于因式分解的心得体会。

通过以上教学设计,希望能够帮助学生掌握因式分解的基本方法,提高学生解决数学问题的能力,激发学生学习数学的兴趣。

因式分解教案6篇

因式分解教案6篇

因式分解教案6篇在教学工作者开展教学活动前,时常要开展教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。

教案要怎么写呢?下面是精心整理的因式分解教案6篇,仅供参考,希望能够帮助到大家。

因式分解教案篇1知识点:因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。

教学目标:理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。

考查重难点与常见题型:考查因式分解能力,在中考试题中,因式分解出现的频率很高。

重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。

习题类型以填空题为多,也有选择题和解答题。

教学过程:因式分解知识点多项式的因式分解,就是把一个多项式化为几个整式的积。

分解因式要进行到每一个因式都不能再分解为止。

分解因式的常用方法有:(1)提公因式法如多项式其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。

(2)运用公式法,即用写出结果。

(3)十字相乘法对于二次项系数为l的二次三项式寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。

分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。

(5)求根公式法:如果有两个根X1,X2,那么2、教学实例:学案示例3、课堂练习:学案作业4、课堂:5、板书:6、课堂作业:学案作业7、教学反思:因式分解教案篇2一、教材分析1、教材的地位与作用“整式的乘法”是整式的加减的后续学习从幂的运算到各种整式的乘法,整章教材都突出了学生的自主探索过程,依据原有的知识基础,或运用乘法的各种运算规律,或借助直观而又形象的图形面积,得到各种运算的基本法则、两个主要的乘法公式及因式分解的基本方法学生自己对知识内容的探索、认识与体验,完全有利于学生形成合理的知识结构,提高数学思维能力.利用公式法进行因式分解时,注意把握多项式的特点,对比乘法公式乘积结果的形式,选择正确的分解方法。

2024年因式分解优秀标准教案通用

2024年因式分解优秀标准教案通用

2024年因式分解优秀标准教案通用一、教学内容1. 因式分解的意义与基本概念2. 提公因式法与十字相乘法3. 完全平方公式与平方差公式4. 应用因式分解解决实际问题二、教学目标1. 理解因式分解的定义,掌握基本的因式分解方法。

2. 能够运用提公因式法、十字相乘法、完全平方公式及平方差公式解决因式分解问题。

3. 培养学生的观察能力、逻辑思维能力和解决问题的能力。

三、教学难点与重点重点:因式分解的基本概念及常用方法。

难点:灵活运用因式分解方法解决实际问题。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:练习本、笔、橡皮。

五、教学过程1. 实践情景引入(5分钟)利用多媒体展示实际生活中的因式分解问题,激发学生的兴趣。

2. 知识讲解(10分钟)详述因式分解的定义、意义,介绍提公因式法、十字相乘法、完全平方公式及平方差公式。

3. 例题讲解(15分钟)通过讲解典型例题,使学生掌握因式分解的基本方法。

4. 随堂练习(10分钟)让学生独立完成练习题,巩固所学知识。

5. 小组讨论(10分钟)将学生分成小组,讨论解决实际问题时的因式分解方法。

6. 答疑解惑(5分钟)针对学生提出的问题,进行解答。

六、板书设计1. 因式分解的定义2. 常用因式分解方法:提公因式法、十字相乘法、完全平方公式、平方差公式3. 例题及解题步骤4. 练习题七、作业设计1. 作业题目:(1)利用提公因式法分解因式:2x^3 + 4x^2 6x(2)利用十字相乘法分解因式:x^2 5x + 6(3)利用完全平方公式分解因式:4x^2 4x + 1(4)利用平方差公式分解因式:9a^2 16b^22. 答案:(1)2x(x^2 + 2x 3)(2)(x 2)(x 3)(3)(2x 1)^2(4)(3a + 4b)(3a 4b)八、课后反思及拓展延伸2. 拓展延伸:布置一道具有挑战性的因式分解题目,鼓励学生思考,提高学生的逻辑思维能力。

因式分解教案(优秀4篇)

因式分解教案(优秀4篇)

因式分解教案(优秀4篇)初二数学因式分解教案篇一1、lie动词,意为“躺”,过去式和过去分词分别为lay和lain,现在分词为lying。

I found he was lying on the ground.我发现他躺在地上。

【拓展】(1)lie有“位于”的意思。

A temple lies on the top of the mountain.一座寺庙位于山顶之上。

(2)lie作动词时,也可意为“撒谎”,过去式和过去分词是规则的,均为lied。

lie也可用作名词,意为“谎言”。

Don’t lie to me.不要向我撒谎。

The boy told a lie to me.这个男孩向我撒了谎。

(3)英语中,部分以-ie结尾的动词的-ing形式必须改ie为y再加-ing。

die → dying tie → tying lie → lying2、hopehope意为“希望”,用于表示有可能实现的愿望,其后可接不定式或宾语从句,但表达“希望别人做某事”时,则需用hope that从句。

I hope you can pass the exam.我希望你能通过考试。

【拓展】hope与wish的辨析:so hope+ to do sth.注意:没有hope sb. to do sth.的用法that从句表示很有可能实现的主观愿望for sth.sb. to do sth.能接sb.的复合结构wish+ sb. sth.能接双宾语to do sth.可与hope互换that从句用虚拟语气表示不太可能实现的愿望My mother wishes/hopes to find her lost watch swh..我妈妈希望在什么地方找到她丢失的手表。

I wish you to finish the work in time.我希望你及时完成这项工作。

3、adviceadvice是不可数名词,意为“意见、建议、劝告、忠告”,不能与不定冠词a连用。

因式分解教案模板(10篇)

因式分解教案模板(10篇)

因式分解教案模板(10篇)因式分解教案 1教学目标:1、进一步巩固因式分解的概念;2、巩固因式分解常用的三种方法3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题5、体验应用知识解决问题的乐趣教学重点:灵活运用因式分解解决问题教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3教学过程:一、创设情景:若a=101,b=99,求a2-b2的值利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。

二、知识回顾1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)(1)._2-4y2=(_+2y)(_-2y)因式分解(2).2_(_-3y)=2_2-6_y整式乘法(3).(5a-1)2=25a2-10a+1整式乘法(4)._2+4_+4=(_+2)2因式分解(5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解(7).2πR+2πr=2π(R+r)因式分解2、规律总结(教师讲解):分解因式与整式乘法是互逆过程.分解因式要注意以下几点:(1).分解的对象必须是多项式.(2).分解的结果一定是几个整式的乘积的形式.(3).要分解到不能分解为止.3、因式分解的方法提取公因式法:-6_2+6_y+3_=-3_(2_-2y-1)公因式的概念;公因式的求法公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)24、强化训练教学引入师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。

现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

动画演示:场景一:正方形折叠演示师:这就是我们得到的正方形。

下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解(提取公因式法)
教学目标:
1、会找多项式的公因式。

2、会用提公因式法分解因式。

(重点)
3、确定多项式的公因式。

(难点)
教学过程:
1、导入:因式分解 整式乘法,因式分解定义:把一个多项式分解成几个整式乘积的形式,这种变形叫因式分解。

2、新知探索:37×28+37×43+37×29,有什么简便算法。

ma + m ×b + m ×c=m(a+b+c)
3、提出公因式的概念,公因式:多项式的各项都含有的相同的因式,叫做这个多项式的公因式。

怎样去确定一个多项式的公因式(小组讨论)
策略:先系数:
在底数:
后指数
例1 a ab p b a p p 2223428+-6
解:原式=a p 2
2⎪⎭⎫ ⎝⎛+-1422b p pa b 3
练习:b a b a b 2
43
2221236a --
例2:)()(2
362n m n m m --+
解:原式=()[]
32---n m m n m )(2
= 四、小结:怎样确定公因式的方法
会用提公因式法分解因式
因式分解要彻底
五:作业8-9组,课本 p 45 第一题
作业8-9组,课本p 45 第一题+导学案p 44 (
)3222
)(---mn m n m :
()()()
y x y x y x -+++32
33。

相关文档
最新文档