苏教版 七年级上 解一元一次方程练习(精选)
七年级数学一元一次方程练习题(含答案)

七年级解一元一次方程专题训练一、解下列一元一次方程:1、2+(x+1)=42、2(2-x )+(x+1)=03、(3-x )+2(x+1)=04、0.2x-3(x+1)=255、3+x+4-6=2x+106、4x+3(x-3)=57、0.9(x-3)+0.8(2+x )=10 8、x 23x2=+-9、5(0.3x+0.6)-2(0.8-x )=0.6 10、3(2x+7)=5+2(x-4) 11、x 23x6726x +=-++ 12、2(3x+1)-2=4x13、2[2(7-21)+4x]=5 14、4x 6.04x32=++15、7{2-5[3-4(x-2)+2]-6}=116、61}1]2)62(3)5[(21{31=-+--+x x17、1x 232-x 15+=+-)( 18、1524213-+=-x x19、2233554--+=+-+x x x x20、6.12.045.03=+--x x二、一元一次方程与实际问题21、甲一班有学生84人,乙班有学生66人,如果要求甲班人数是乙班的32,应从甲班调多少人到乙班去?22、某服装商城进了一款衣服,进价为400元/件,又以某一销售价卖出,结果商城盈利25%,问这款衣服的销售价是多少元?23、一轮船往返甲、乙两城之间,从下游往上游逆水航行需14时,从上游往下游顺水航行需7时,水流速度是3.5千米/时,求轮船在静水中的速度。
24、甲、乙两人完成一件工作,甲单独做需要8小时才能完成,乙单独做只需2小时就能完成。
如果甲加先做3小时,剩下的工作两个人共同完成,问还需几小时完成?参考答案一、解下列一元一次方程:1、【答案】x=1解:2+(x+1)=42+x+1=4x+3=4x=4-3x=12、【答案】x=5解;2(2-x)+(x+1)=04-2x+x+1=0(-2+1)x+(4+1)=0-x+5=03、【答案】 x=-5解:(3-x)+2(x+1)=03-x+2x+2=0x+5=0x=-54、【答案】x =-10解:0.2x-3(x+1)=250.2x-3x-3=25-2.8x=28x =-105、【答案】x=-9解:3+x+4-6=2x+10 1+x=2x+10 x-2x=10-1 - x=9 x=-96、【答案】x=2 解:4x+3(x-3)=5 4x+3x-9=5 7x-9=57x=14 x=27、【答案】x=17109解:0.9(x-3)+0.8(2+x )=10 0.9x-2.7+1.6+0.8x=10(0.9x+0.8x )+(-2.7+1.6)=10 1.7x-1.1=10 1.7x=111 x=171118、【答案】x=2解:x 23x 2=+-x 36x 2=+-2x 8x 48x 3x x 3x -8x 36x 2=-=--=--==+-9、【答案】358x -=解:5(0.3x+0.6)-2(0.8-x )=0.61.5x+3-1.6+2x=0.6(1.5+2)x+(3-1.6)=0.6 3.5x+1.4=0.6 3.5x=0.6-1.4 3.5x=-0.8358x -=10、【答案】x= -6解:3(2x+7)=5+2(x-4)6x+21=5+2x-8 6x-2x=5-8-21 4x=-24 x= -611、【答案】34x =解:34x -2015x -14-18-126x -12x -3x 6x 1212x -14183x x 266x -726)x 3x 23x6726x ===+=+++=+++=-++)()((12、【答案】解:2(3x+1)-2=4x 6x+2-2=4x 6x-4x=0 x=013、【答案】x=821-解:2[2(7-21)+4x]=52[14-1+4x]=5 2(13+4x )=5 26+8x=5 8x=-21x=821-14、【答案】2770解;2770x 14x 4.5216x 4.516x 4.2x 324x 6.04x32==-==++=++15、【答案】35121x =解; 7{2-5[3-4(x-2)+2]-6}=17[2-5(3-4x+8+2)-6]=1 7(2-15+20x-50-6)=1 7(20x-69)=1 140x-483=1140x=48435121x =16、【答案】解:61}1]2)62(3)5[(21{31=-+--+x x 两边同时乘以3得; 211]2)62(3)5[(21=-+--+x x 两边同时乘以2得;12]2)62(3)5[(=-+--+x x去掉中括号,(x+5)-3(2-6x )+2-2=1 去小括号, x+5-6+18x=1 19x=2192x =17、【答案】27x =解:27x 288x -10183x -x 518x 3105x -6x 310-x 51x 2310x 551x 232-x 15=-=--=--=+-=-+=+--+=+-)(18、 【答案】71x -= 解:71x 17x 5104x 815104x 85x 15102x 421x 351524213-=-=+-=--+=--+=--+=-)()()(x x19、【答案】x=6解:2233554--+=+-+x x x x6(x+4)-30x+150=10(x+3)-15(x-2)6x+24-30x+150=10x+30-15x+30(6-30-10+15)x=30+30-24-150 -19x=-114x=620、【答案】x=-9.2 解:2.9276302006016)5020(1620050602016)4(50)3-x 20106.124)x 1053)-x 10106.12.045.03-==-++=-=---=+-=+-=+--x x x x x x x x (两边同时乘以((,母同时乘以左边,每个分式分子分二、一元一次方程与实际问题21、【答案】应从甲班24人到乙班去解:设应从甲班调x 人到乙班去 此时:甲班人数=84-x 乙班人数=66+x因为甲班人数是乙班的32,则有(84-x )=32(66+x )3(84-x )=2(66+x )252-3x=132+2x (-3x+2x )=132-252-5x=-120 x=24检验:甲班人数=84-24=60 乙班人数=66+24=90329060= 符合题意。
2020学苏教版初一数学第四章《一元一次方程》综合提优练习(含答案)

1第四章《一元一次方程》综合提优练习第四章《一元一次方程》综合提优练习一.选择题一.选择题1.书架上,第一层的数量是第二层书的数量x 的2倍,从第一层抽8本到第二层,这时第一层剩下的数量恰比第二层的一半多3本.依上述情形,所列关系式成立的是(本.依上述情形,所列关系式成立的是( )A .2x x+3B .2x (x+8)+3C .2x ﹣8x+3D .2x ﹣8(x+8)+32.小明和小亮两人在长为50m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若小明跑步的速度为5m/s ,小亮跑步的速度为4m/s ,则起跑后60s 内,两人相遇的次数为(次数为( ) A .3B .4C .5D .63.小石家的脐橙成熟了!小石家的脐橙成熟了!今年甲脐橙园有脐橙今年甲脐橙园有脐橙7000千克,乙脐橙园有脐橙5000千克,因客户订单要求,需要从乙脐橙园运部分脐橙到甲脐橙园,使甲脐橙园脐橙数量刚好是乙脐橙园的2倍.设从乙脐橙园运脐橙x 千克到甲脐橙园,则可列方程为(千克到甲脐橙园,则可列方程为( )A .7000=2(5000+x )B .7000﹣x =2×5000C .7000﹣x =2(5000+x )D .7000+x =2(5000﹣x )4.一家商店将某种服装按照成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?设这种服装每件的成本是x 元,则根据题意列出方程正确的是(方程正确的是( ) A .0.8×(1+40%)x =15 B .0.8×(1+40%)x ﹣x =15 C .0.8×40%x =15D .0.8×40%x ﹣x =155.一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x 天完成这项工程,则可以列的方程是(天完成这项工程,则可以列的方程是( )A .B .C .D .6.某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个,若3个甲种零件和2个乙种零件配成一套,应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的甲种零件和乙种零件刚好配套?设应分配x 人生产甲种零件,则根据题意可得的方程为(零件,则根据题意可得的方程为( ) A .12x =62(23﹣x )B .3×12x =2×23(62﹣x )C .2×12x =3×23(62﹣x )D .23(62﹣x )=12x7.将连续的奇数1、3、5、7、9、,按一定规律排成如图:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数.若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是(则框住的四个数的和不可能得到的数是( )A .22B .70C .182D .2068.某超市在“元旦”活动期间,推出如下购物优惠方案:某超市在“元旦”活动期间,推出如下购物优惠方案: ①一次性购物在100元(不含100元)以内,不享受优惠;元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)元)以内,一律享受九折优惠;以内,一律享受九折优惠; ③一次性购物在350元(含350元)以上,一律享受八折优惠;元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款(则小敏至少需付款( )元)元 A .288B .296C .312D .3209.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少公分?(高度变为多少公分?( )底面积(平方公分)底面积(平方公分) 甲杯甲杯 60 乙杯乙杯80丙杯丙杯 100A .5.4B .5.7C .7.2D .7.510.如图,将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形之长与宽的比为5:3,则AD :AB =(=( )A .5:3B .7:5C .23:14D .47:2911.小李年初向建设银行贷款5万元用于购房,年利率为5%,按复利计算,若这笔借款分15次等额归还,每年1次,15年还清,并从借后次年年初开始归还,问每年应还大约( ) A .4819元B .4818元C .4817元D .4816元12.某企业接到为地震灾区生产活动房的任务,某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,此企业拥有九个生产车间,此企业拥有九个生产车间,现在每个车间原现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A 、B 两组检验员,其中A 组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B 组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B 组检验员人数为( ) A .8人B .10人C .12人D .14人二.填空题二.填空题13.某商品在进价的基础上加价80%再打八折销售,可获利润44元,则该商品的进价为元,则该商品的进价为 元.元.14.甲乙两车分别从A ,B 两地同时相向匀速行驶,甲车每小时比乙车快20千米,行驶3小时两车相遇,乙车到达A 地后未作停留,继续保持原速向远离B 地的方向行驶,而甲车在相遇后又行驶了2小时到达B 地后休整了半小时,然后调头并保持原速与乙车同向行驶,经过一段时间后两车同时到达C 地.则A ,C 两地相距两地相距 千米.千米.15.某学校需要购买一批电脑,有两种方案如下:方案1:到商家直接购买,每台需要7000元;方案2:学校买零部件组装,每台需要6000元,另外需要支付安装费等其它费用合计3000元.学校添置元.学校添置台电脑时,两种方案的费用相同.台电脑时,两种方案的费用相同. 16.A 、B 、C 三地依次在同一直线上,B ,C 两地相距560千米,甲、乙两车分别从B ,C 两地同时出发,相向匀速行驶.行驶4小时两车相遇,再经过3小时,甲车到达C 地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达A 地,则A ,B 两地相距两地相距 千米.千米.17.某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元,若设前年的产值为x 万元,由题意可列方程万元,由题意可列方程. 18.“十一”“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.若两人同时出发,小张车速为20千米/小时,小李车速为15千米/小时,经过小时,经过 小时能相遇.小时能相遇.19.九江市城区的出租车收费标准如下:2公里内起步价为7元,超过2公里以后按每公里1.4元计价.若某人坐出租车行驶x 公里,应付给司机21元,则x = .20.如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD 的顶点A 、C 同时沿正方形的边开始移动,正方形的边开始移动,甲点依顺时针方向环行,甲点依顺时针方向环行,甲点依顺时针方向环行,乙点依逆时针方向环行,乙点依逆时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的若乙的速度是甲的速度的3倍,则它们第2018次相遇在边次相遇在边 .21.科学考察队的一辆越野车需要穿越650千米的沙漠,但这辆车每次装满汽油最多只能驶600千米,队长想出一个方法,在沙漠中设一个储油点P ,越野车装满油从起点A 出发,到储油点P 时从车中取出部分油放进P 储油点,然后返回出发点A ,加满油后再开往P ,到P 储油点时取出储存的所有油放在车上,储油点时取出储存的所有油放在车上,再到达终点.再到达终点.用队长想出的方法,这辆越野车穿越这片沙漠的最大距离是片沙漠的最大距离是 千米.千米.22.已知a ,b 为定值,关于x 的方程1,无论k 为何值,它的解总是1,则a+b= . 三.解答题三.解答题23.某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?元,那么这两种奖品分别购买了多少件? (2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?总花费最少?24.中国古代算书《算法统宗》中有这样一道题:甲赶群羊逐草茂,乙拽肥羊随其后,戏问甲及一百否?甲云所说无差谬,若得这般一群凑,再添半群小半(注:四分之一的意思)群,得你一只来方凑.玄机奥妙谁参透?大意是说:牧羊人赶着一群羊去寻找草长得茂盛的地方放牧,有一个过路人牵着1只肥羊从后面跟了上来,他对牧羊人说你赶的这群羊大概有100只吧?牧羊人答道:如果这一群羊加上1倍,再加上原来羊群的一半,再加上原来羊群的一半,又加上原来这群羊的又加上原来这群羊的四分之一,连你牵着的这只肥羊也算进去,连你牵着的这只肥羊也算进去,才刚好满才刚好满100只.你知道牧羊人放牧的这群羊一共有多少只吗?共有多少只吗?25.在“节能减排,做环保小卫士”活动中,小明对两种照明灯的使用情况进行了调查,得出如表所示的数据:出如表所示的数据:功率功率使用寿命使用寿命 价格价格 普通白炽灯普通白炽灯 100瓦(即0.1千瓦)千瓦) 2000小时小时 3元/盏 优质节能灯优质节能灯20瓦(即0.02千瓦)千瓦)4000小时小时35元/盏已知这两种灯的照明效果一样,小明家所在地的电价是每度0.5元.元. (注:用电度数=功率(千瓦)×时间(小时),费用=灯的售价+电费)电费)如:若选用一盏普通白炽灯照明1000小时,那么它的费用为1000×0.1×0.5+3=53(元),请解决以下问题:请解决以下问题:(1)在白炽灯的使用寿命内,设照明时间为x 小时,请用含x 的代数式分别表示用一盘白炽灯的费用y1(元)和一盏节能灯的费用y2(元):(2)在白炽灯的使用寿命内,照明多少小时时,使用这两种灯的费用相等?)在白炽灯的使用寿命内,照明多少小时时,使用这两种灯的费用相等? (3)如果计划照明4000小时,购买哪一种灯更省钱?请你通过计算说明理由.小时,购买哪一种灯更省钱?请你通过计算说明理由.26.巴南区认真落实“精准扶贫”.某“建卡贫困户”在党和政府的关怀和帮助下投资了一个鱼塘,经过一年多的精心养殖,经过一年多的精心养殖,今年今年10月份从鱼塘里捕捞了草鱼和花鲢共2500千克,在市场上草鱼以每千克16元的价格出售,花鲢以每千克24元的价格出售,这样该贫困户10月份收入52000元,元,(1)今年10月份从鱼塘里捕捞草鱼和花鲢各多少千克?月份从鱼塘里捕捞草鱼和花鲢各多少千克?(2)该贫困户今年12月份再次从鱼塘里捕捞.捕捞数量和销售价格上,草鱼数量比10月份减少了2a 千克,销售价格不变;花鲢数量比10月份减少了a%,销售价格比10月份减少了,该贫困户在10月份和12月份两次捕捞中共收入了94040元,真正达到了脱贫致富,求a 的值.的值.27.王老师想为梦想班的同学们购买学习用品,了解到某商店每个书包价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.本词典. (1)每个书包和每本词典的价格各是多少元?)每个书包和每本词典的价格各是多少元?(2)王老师计划用900元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后,余下的钱最少为多少元?此时购买书包和词典的方案是什么?后,余下的钱最少为多少元?此时购买书包和词典的方案是什么?28.育才中学组织七年级师生去春游,如果单租45座客车若干辆,则刚好坐满;如果单租60座的客车,则少租一辆,且余15个座位.个座位. (1)求参加春游的师生总人数;)求参加春游的师生总人数;(2)已知一辆45座客车的租金每天250元,一辆60座客车的租金每天300元,问单租哪种客车省钱?种客车省钱?(3)如果同时租用这两种客车,那么两种客车分别租多少辆最省钱?(只写出租车方案即可)可)一.选择题一.选择题1.书架上,第一层的数量是第二层书的数量x 的2倍,从第一层抽8本到第二层,这时第一层剩下的数量恰比第二层的一半多3本.依上述情形,所列关系式成立的是(本.依上述情形,所列关系式成立的是( )A .2x x+3B .2x (x+8)+3C .2x ﹣8x+3D .2x ﹣8(x+8)+3【解答】D【解析】由题意知,第一层书的数量为2x 本,则可得到方程2x ﹣8(x+8)+3.故选D .2.小明和小亮两人在长为50m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若小明跑步的速度为5m/s ,小亮跑步的速度为4m/s ,则起跑后60s 内,两人相遇的次数为(次数为( ) A .3 B .4C .5D .6【解答】C【解析】设两人起跑后60s 内,两人相遇的次数为x 次,依题意得;次,依题意得;每次相遇间隔时间t ,A 、B 两地相距为S ,V 甲、V 乙分别表示小明和小亮两人的速度,则有:有:(V 甲+V 乙)t =2S ,则t ,则x =60,解得:x =5.4,∵x 是正整数,且只能取整,是正整数,且只能取整, ∴x =5. 故选C .3.小石家的脐橙成熟了!小石家的脐橙成熟了!今年甲脐橙园有脐橙今年甲脐橙园有脐橙7000千克,乙脐橙园有脐橙5000千克,因客户订单要求,需要从乙脐橙园运部分脐橙到甲脐橙园,使甲脐橙园脐橙数量刚好是乙脐橙园的2倍.设从乙脐橙园运脐橙x 千克到甲脐橙园,则可列方程为(千克到甲脐橙园,则可列方程为( ) A .7000=2(5000+x ) B .7000﹣x =2×5000C .7000﹣x =2(5000+x )D .7000+x =2(5000﹣x )【解答】D【解析】设从乙脐橙园运脐橙x 千克到甲脐橙园,千克到甲脐橙园, 则7000+x =2(5000﹣x ). 故选D .4.一家商店将某种服装按照成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?设这种服装每件的成本是x 元,则根据题意列出方程正确的是(方程正确的是( ) A .0.8×(1+40%)x =15 B .0.8×(1+40%)x ﹣x =15 C .0.8×40%x =15 D .0.8×40%x ﹣x =15 【解答】B【解析】设这种服装每件的成本价是x 元,由题意得:元,由题意得: 0.8×(1+40%)x ﹣x =15 故选B .5.一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x 天完成这项工程,则可以列的方程是(天完成这项工程,则可以列的方程是( )A .B .C .D .【解答】C【解析】设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:为:.故选C .6.某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个,若3个甲种零件和2个乙种零件配成一套,应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的甲种零件和乙种零件刚好配套?设应分配x 人生产甲种零件,则根据题意可得的方程为(零件,则根据题意可得的方程为( ) A .12x =62(23﹣x )B .3×12x =2×23(62﹣x )C .2×12x =3×23(62﹣x )D .23(62﹣x )=12x【解答】C【解析】设应分配x 人生产甲种零件,人生产甲种零件, 12x ×2=23(62﹣x )×3, 故选C .7.将连续的奇数1、3、5、7、9、,按一定规律排成如图:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数.若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是(则框住的四个数的和不可能得到的数是( )A .22B .70C .182D .206【解答】D【解析】由题意,设T 字框内处于中间且靠上方的数为2n ﹣1, 则框内该数左边的数为2n ﹣3,右边的为2n+1,下面的数为2n ﹣1+10, ∴T 字框内四个数的和为:字框内四个数的和为:2n ﹣3+2n ﹣1+2n+1+2n ﹣1+10=8n+6. 故T 字框内四个数的和为:8n+6.A 、由题意,令框住的四个数的和为22,则有:,则有: 8n+6=22,解得n =2.符合题意..符合题意. 故本选项不符合题意;故本选项不符合题意;B 、由题意,令框住的四个数的和为70,则有:,则有: 8n+6=70,解得n =8.符合题意..符合题意. 故本选项不符合题意;故本选项不符合题意;C 、由题意,令框住的四个数的和为182,则有:,则有: 8n+6=182,解得n =22.符合题意..符合题意. 故本选项不符合题意;故本选项不符合题意;D 、由题意,令框住的四个数的和为206,则有:,则有: 8n+6=206,解得n =25.由于数2n ﹣1=49,排在数表的第5行的最右边,它不能处于T 字框内中间且靠上方的数,所以不符合题意.所以不符合题意.故框住的四个数的和不能等于206. 故本选项符合题意;故本选项符合题意; 故选D .8. 某超市在“元旦”活动期间,推出如下购物优惠方案:某超市在“元旦”活动期间,推出如下购物优惠方案: ①一次性购物在100元(不含100元)以内,不享受优惠;元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)元)以内,一律享受九折优惠;以内,一律享受九折优惠; ③一次性购物在350元(含350元)以上,一律享受八折优惠;元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款(则小敏至少需付款( )元)元 A .288 B .296 C .312 D .320【解答】C【解析】设第一次购物购买商品的价格为x 元,第二次购物购买商品的价格为y 元,元, 当0<x <100时,x =90; 当100≤x <350时,0.9x =90, 解得:x =100; ∵0.9y =270, ∴y =300.∴0.8(x+y )=312或320. 所以至少需要付312元.元. 故选C .9. 桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少公分?(高度变为多少公分?( )底面积(平方公分)底面积(平方公分) 甲杯甲杯 60 乙杯乙杯 80 丙杯丙杯 100A .5.4B .5.7C .7.2D .7.5【解答】C【解析】设后来甲、乙、丙三杯内水的高度为3x 、4x 、5x , 根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x , 解得:x =2.4,则甲杯内水的高度变为3×2.4=7.2(公分). 故选C .10.如图,将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形之长与宽的比为5:3,则AD :AB =(=( )A .5:3B .7:5C .23:14D .47:29【解答】D【解析】设灰色长方形的长上摆5x 个小正方形,宽上摆3x 个小正方形,个小正方形, 2(5x+3x )+4=148 x =95x =45,3x =27, AD =45+2=47, AB =27+2=29,.故选D .11.小李年初向建设银行贷款5万元用于购房,年利率为5%,按复利计算,若这笔借款分15次等额归还,每年1次,15年还清,并从借后次年年初开始归还,问每年应还大约( ) A .4819元 B .4818元C .4817元D .4816元【解答】C【解析】设每年应还x 元,则根据题意可知:元,则根据题意可知:50000×(1+0.05)15=x ×(1+0.05)14+x ×(1+0.05)13+…+x . 用计算器得出:x =4817 故选C .12.某企业接到为地震灾区生产活动房的任务,某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,此企业拥有九个生产车间,此企业拥有九个生产车间,现在每个车间原现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A 、B 两组检验员,其中A 组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B 组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B 组检验员人数为( ) A .8人 B .10人C .12人D .14人【解答】C【解析】设每个车间原有成品a 件,每个车间每天生产b 件产品,根据检验速度相同得:件产品,根据检验速度相同得:,解得a =4b ;则A 组每名检验员每天检验的成品数为:2(a+2b )÷(2×8)=12b ÷16b .那么B 组检验员的人数为:5(a+5b )÷(b )÷5=45b b ÷5=12(人). 故选C . 二.填空题二.填空题13.某商品在进价的基础上加价80%再打八折销售,可获利润44元,则该商品的进价为元,则该商品的进价为 元.元. 【解答】100【解析】设这件商品的进价为x 元,元, x (1+80%)×0.8=x+44,解得,x=100,即这件商品的进价为100元,元,故答案为100.14.甲乙两车分别从A,B两地同时相向匀速行驶,甲车每小时比乙车快20千米,行驶3小时两车相遇,乙车到达A地后未作停留,继续保持原速向远离B地的方向行驶,而甲车在相遇后又行驶了2小时到达B地后休整了半小时,然后调头并保持原速与乙车同向行驶,千米.千米.两地相距经过一段时间后两车同时到达C地.则A,C两地相距【解答】360)千米,【解析】设乙车每小时行驶x千米,则甲车每小时行驶(x+20)千米,由题意得:3x=2(x+20),解得:x=40,则x+20=60,千米,即乙车每小时行驶40千米,则甲车每小时行驶60千米,∴A,B两地的距离为:3×60+3×40=300(千米),设两车相遇后经过y小时到达C地,地,由题意得:60(y﹣2.5)=40(y+3),解得:y=13.5,∴B,C两地的距离为:60(13.5﹣2.5)=660(千米),∴A,C两地的距离为:660﹣300=360(千米);故答案为360.15.某学校需要购买一批电脑,有两种方案如下:方案1:到商家直接购买,每台需要7000元;方案2:学校买零部件组装,每台需要6000元,另外需要支付安装费等其它费用合计3000元.学校添置台电脑时,两种方案的费用相同.元.学校添置 台电脑时,两种方案的费用相同.【解答】3台电脑,【解析】设学校添置x台电脑,由题意,得7000x=6000x+3000,解得x=3,答:当学校添置3台电脑时,两种方案的费用相同;台电脑时,两种方案的费用相同;故答案为3.16.A、B、C三地依次在同一直线上,B,C两地相距560千米,甲、乙两车分别从B,C两地同时出发,相向匀速行驶.行驶4小时两车相遇,再经过3小时,甲车到达C 地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达A 地,则A ,B 两地相距两地相距 千米.千米. 【解答】760【解析】设乙车的平均速度是x 千米/时,则时,则4(x )=560.解得x =60即乙车的平均速度是60千米/时.时.设甲车从C 地到A 地需要t 小时,则乙车从C 地到A 地需要(t+7)小时,则)小时,则 80(1+10%)t =60(7+t ) 解得t =15.所以60(7+t )﹣560=760(千米)(千米) 故答案为760.17.某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元,若设前年的产值为x 万元,由题意可列方程万元,由题意可列方程 . 【解答】550【解析】设前年的产值是x 万元,则去年的产值是1.5x 万元,今年的产值是3x 万元,依题意有意有x+1.5x+3x =550.故答案为x+1.5x+3x =550.18.“十一”“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.若两人同时出发,小张车速为20千米/小时,小李车速为15千米/小时,经过小时,经过 小时能相遇.小时能相遇. 【解答】2【解析】设经过t 小时相遇,则小时相遇,则 20t =15t+10, 解方程得:t =2,所以两人经过两个小时后相遇.所以两人经过两个小时后相遇. 故答案为2.19.九江市城区的出租车收费标准如下:2公里内起步价为7元,超过2公里以后按每公里1.4元计价.若某人坐出租车行驶x 公里,应付给司机21元,则x = . 【解答】12【解析】因为21>7, 所以x >2.由题意知,7+1.4(x ﹣2)=21 解得x =12.故答案为12.20.如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD 的顶点A 、C 同时沿正方形的边开始移动,正方形的边开始移动,甲点依顺时针方向环行,甲点依顺时针方向环行,甲点依顺时针方向环行,乙点依逆时针方向环行,乙点依逆时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的若乙的速度是甲的速度的3倍,则它们第2018次相遇在边次相遇在边 .【解答】DC【解析】正方形的边长为4,因为乙的速度是甲的速度的3倍,时间相同,甲乙所行的路程比为1:3,把正方形的每一条边平均分成2份,由题意知:份,由题意知:①第一次相遇甲乙行的路程和为8,甲行的路程为82,乙行的路程为8﹣2=6,在AD 边相遇;边相遇;②第二次相遇甲乙行的路程和为16,甲行的路程为164,乙行的路程为16﹣4=12,在DC 边相遇;边相遇;③第三次相遇甲乙行的路程和为16,甲行的路程为164,乙行的路程为16﹣4=12,在CB 边相遇;边相遇;④第四次相遇甲乙行的路程和为16,甲行的路程为164,乙行的路程为16﹣4=12,。
苏科版初中数学七年级上册《4.3 用一元一次方程解决问题》同步练习卷

苏科新版七年级上学期《4.3 用一元一次方程解决问题》同步练习卷一.解答题(共30小题)1.在暑假期间,小红、小兰等同学随家人一同游玩,看见景区门口有如下票价提示:“成人:35元/张;学生:按成人票5折优惠;团体票(15人以上含15人):按成人票价六折优惠”.在购买门票时,小红与她爸爸有如下对话,爸爸:“大人门票每张35元,学生门票对折优惠,我们共有12人,共需350元”.小红:“爸爸,等一下,让我算一算,换一种方式买票是不是可以更省钱”.问题:(1)小红他们一共去了几个成人,几个学生?(2)请你帮小红算一算,用哪种方式买票更省钱?说明理由.2.小美为书房买灯,现有两种灯可供选购,其中一种是9瓦(即0.009千瓦)的节能灯,售价为49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价为18元/盏.假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,已知小美家所在地的电价是每千瓦时0.5元.(1)设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯的费用和用一盏白炽灯的费用;(注:费用=灯的售价+电费)(2)当照明时间是多少时,使用两种灯的费用一样多;并请直接写出:照明时间在什么范围内,选用白炽灯费用低;照明时间在什么范围内,选用节能灯费用低.(3)小美想在这两种灯中选购两盏:假定照明时间是3000小时,使用寿命都是2800小时,请你帮他设计费用最低的选灯方案,并说明理由.3.为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定a吨以下的收费标准相同;规定a吨以上的超过部分收费标准相同,以下是小明家1﹣4月份用水量和交费情况:根据表格中提供的信息,回答以下问题:(1)求出规定吨数a;(2)若小明家6月份缴水费29元,则6月份用水多少吨?4.“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.(1)若两人同时出发,小张车速为20千米,小李车速为15千米,经过多少小时能相遇?(2)若小李的车速为10千米,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?5.华联超市用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)(1)该商场购进甲、乙两种商品各多少件?(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?6.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15cm,各装10cm高的水,下表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没有溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少cm?7.为发展校园足球运动,某城区四校决定联合购买一批足球运动装备.市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少元;(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花发费用;(3)在(2)的条件下,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?8.2014年元旦将至,“春风电器”商场一款“格力”电暖器的原价为每件900元,为了参与市场竞争,商场按原价打9折后再让利40元销售,此时仍可获利10%,此商品的进价是多少元?9.某商场将甲种商品降价40%,乙种商品降价20%开展优惠促销活动.已知甲、乙两种商品的原销售单价之和为140元,某顾客参加活动购买甲、乙各一件,共付100元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,那么商场在这次促销活动中销售甲、乙两种商品各一件是盈利还是亏损了?如果是盈利,盈利了多少元;如果是亏损,亏损了多少元.10.为表彰县“著名苏区三好学生”,县中小学统一组织文艺汇演.甲、乙两校共92名学生,(其中甲校人数多于乙校人数,且甲校人数不够90名)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:如果两所学校分别单独购买服装,一共应付5000元.(1)若甲、乙两校联合起来购买服装,则比各自购买服装共可以节省多少元?(2)甲、乙两所学校各有多少名学生准备参加演出?(3)如果甲校有10名同学被调去参加“著名苏区三好学生”书法绘画比赛,不能参加演出,请你为这两所学校设计一种最省钱的购买服装方案.11.某租赁公司拥有100辆轿车,当每辆轿车的月租金为3000元时,可全部租出,当每辆轿车的月租金每增加50元时,未租出的轿车将会增加一辆,租出的轿车每辆每月公司需要保养费150元,未租出的轿车每辆每月公司需要保养费50元.(1)已知10月份每辆轿车的月租金为3600元,该月租出多少辆轿车?(2)已知11月份的保养费总开支为12900元,问该月租出了多少辆轿车?12.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如下.(1)根据题意,填写下列表格;(2)A、B两点如果相遇,则相遇时的时间t=;相遇时在数轴上表示的数为;(3)A、B两点能否相距18个单位长度,如果能,求相距18个单位长度的时间t;如不能,请说明理由.13.“十一”期间人民商场回报顾客,实行“迎国庆,大酬宾”活动,具体要求如下:购物200以下不优惠,购物200~500元按9折优惠;购物500~1000元按8折优惠;1000元以上按7.5折优惠,活动期间某人两次购物分别用去168元和432元,如果改为一次性购物,那么可以比两次购物节省多少钱?14.为了节约用水,某市规定:每户居民每月用水不超过10立方米,按每立方米4元收费;超过10立方米,则超过部分按每立方米8元收费(1)小明家10月用水9立方米应交水费多少元?小强家10月用水11立方米应交水费多少元?(2)如果某户居民十月份缴纳水费72元,则该户居民十月份实际用水为立方米.15.已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品.(1)求每箱装多少个产品.(2)3台A型机器和2台B型机器一天能生产多少个产品?16.随着移动互联网的快速发展,共享单车在余姚的大街小巷随处看见,解决了很多人的交通出行问题,李老师早上骑单车上班,中途因道路施工推车步行了一段路,到学校共用时15分钟,如果他骑单车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,求他推车步行了多少分钟?17.某学校组织安全知识竞赛,共设20道分值相同的选择题,每题必答,下表中记录了5位参赛选手的竞赛得分情况.(1)若一选手答对17题,得分.(2)从表中你发现:得分规则是什么?(3)用方程知识解答:若某位选手F得64分,则他答对了几道题?(4)参赛选手G说他得78分,你认为可能吗?为什么?18.政府准备修建一条公路,若由甲工程队单独修需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.若由甲工程队先做一段时间,剩下的由乙工程队单独完成,一共用了4个月完成修建任务,这样安排共耗资多少万元?(时间按整月计算)19.A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.(1)若两人同时出发,相向而行,则经过几小时两人相遇?(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?(3)若两人同时出发,相向而行,则几小时后两人相距10千米?20.某工程交由甲、乙两个工程队来完成,已知甲工程队单独完成需要60天,乙工程队单独完成需要40天(1)若甲工程队先做30天后,剩余由乙工程队来完成,还需要用时天(2)若甲工程队先做20天,乙工程队再参加,两个工程队一起来完成剩余的工程,求共需多少天完成该工程任务?21.某校组织学生走上街头宜传雾霾的危害,他们要复印一部分宣传资料(不少于20页),校门口有两家复印店甲店收费标准:复印页数不超过20时,每页收费0.2元,超过20时,超过部分每页收费将为0.09元乙店收费标准:不论复印多少页,每页收费01元(1)复印页数为多少时,两家店收费一样;(2)请你帮他们分析去哪家店比较合算.22.列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?23.轮船和汽车都往甲地开往乙地,海路比公路近40千米.轮船上午7点开出,速度是每小时24千米.汽车上午10点开出,速度为每小时40千米,结果同时到达乙地.求甲、乙两地的海路和公路长.24.甲、乙两车同时从A城去B城,甲车每小时行35千米,乙车每小时行40千米,结果乙比甲提前半小时到达B城.问A、B两城间的路程有多少千米?25.在某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天;若由甲队先做20天,剩下的工程由甲、乙两队合做完成.(1)甲、乙两队合作多少天?(2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?26.蒙城某中学组织学生去参加体检,队伍以8千米/小时的速度前进,在队尾的校长让一名学生跑步到队伍的最前面找带队老师传达一个通知(通知时间忽略不计),然后立即返回队尾,这位学生的速度是12千米/小时,从队尾赶到排头又回到队尾共用了9分钟,求队伍的长为多少千米?27.周末,小明和父母以每分钟40米的速度步行从家出发去景蓝小区看望外婆,走了5分钟后,忽然发现自己给外婆带的礼物落在家里,父母继续保持原速度行进,小明则立刻以每分钟60米的速度折返,取到礼物后立刻出发追赶父母,恰好在景蓝小区门口追上父母.求小明家到景蓝小区门口的距离.28.如图,A,B两地相距450千米,两地之间有一个加油站O,且AO=270千米,一辆轿车从A地出发,以每小时90千米的速度开往B地,一辆客车从B 地出发,以每小时60千米的速度开往A地,两车同时出发,设出发时间为t 小时.(1)经过几小时两车相遇?(2)当出发2小时时,轿车和客车分别距离加油站O多远?(3)经过几小时,两车相距50千米?29.甲、乙两人相距5千米,分别以2千米/时,4千米/时的速度相向而行,同时一只小狗以12千米/时的速度从甲处奔向乙处,遇到乙后立即掉头奔向甲,遇甲后又奔向乙…直到甲、乙相遇,求小狗所走的路程.(用方程解)30.节约用水保护水资源人人有责,为了节约用水自来水公司对自来水的收费标准作如下规定:每月每户用水不超过8吨的部分,按2.5元/吨收费;超过8吨的部分每吨加收1.5元.(1)若某用户5月份用水12吨,问应交水费多少元?(2)若某用户6月份交水费48元,问该用户6月份用水多少吨?(3)若某用户7月用水a吨,问应交水费多少元(用含a的代数式表示)?苏科新版七年级上学期《4.3 用一元一次方程解决问题》同步练习卷参考答案与试题解析一.解答题(共30小题)1.在暑假期间,小红、小兰等同学随家人一同游玩,看见景区门口有如下票价提示:“成人:35元/张;学生:按成人票5折优惠;团体票(15人以上含15人):按成人票价六折优惠”.在购买门票时,小红与她爸爸有如下对话,爸爸:“大人门票每张35元,学生门票对折优惠,我们共有12人,共需350元”.小红:“爸爸,等一下,让我算一算,换一种方式买票是不是可以更省钱”.问题:(1)小红他们一共去了几个成人,几个学生?(2)请你帮小红算一算,用哪种方式买票更省钱?说明理由.【分析】(1)根据题意分别表示出成人与学生所付金额,进而得出方程求出答案;(2)直接求出购买15张门票所付钱数,进而比较得出答案.【解答】解:(1)设成年人去了x人,则学生去了(12﹣x)人,由题意得:35x+35×50%(12﹣x)=350,解得x=8,因此:成人去了8人,学生去了4人.(2)购买团票更省钱,∵35×60%×15=315<350,∴应采用购买团体票的方式才更省钱.【点评】此题主要考查了一元一次方程的应用,根据题意表示成人与学生购票所要付的钱数是解题关键.2.小美为书房买灯,现有两种灯可供选购,其中一种是9瓦(即0.009千瓦)的节能灯,售价为49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价为18元/盏.假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,已知小美家所在地的电价是每千瓦时0.5元.(1)设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯的费用和用一盏白炽灯的费用;(注:费用=灯的售价+电费)(2)当照明时间是多少时,使用两种灯的费用一样多;并请直接写出:照明时间在什么范围内,选用白炽灯费用低;照明时间在什么范围内,选用节能灯费用低.(3)小美想在这两种灯中选购两盏:假定照明时间是3000小时,使用寿命都是2800小时,请你帮他设计费用最低的选灯方案,并说明理由.【分析】(1)根据“费用=灯的售价+电费”直接列出函数关系式即可;(2)根据“使用两种灯的费用一样多”可列方程49+0.0045x=18+0.02x,求出即可;根据“白炽灯费用低”,“节能灯费用低”列不等式求解即可;(3)分下列三种情况讨论:①如果选用两盏节能灯,则费用是98+0.0045×3000=111.5元;②如果选用两盏白炽灯,则费用是36+0.02×3000=96元;③如果选用一盏节能灯和一盏白炽灯费用是67+0.0045×2800+0.02×200=83.6元.通过比较可得费用最低的方案.【解答】解:(1)∵0.009千瓦×0.5元/千瓦=0.0045元,0.04千瓦×0.5元/千瓦=0.02元,∴用一盏节能灯的费用是(49+0.0045x)元,用一盏白炽灯的费用是(18+0.02x)元;(2)①设照明时间是x小时,由题意,得49+0.0045x=18+0.02x,解得x=2000,所以当照明时间是2000小时时,两种灯的费用一样多.②当节能灯费用>白炽灯费用时,49+0.0045x>18+0.02x,解得:x<2000.所以当照明时间<2000小时时,选用白炽灯费用低.当节能灯费用<白炽灯费用时,49+0.0045x<18+0.02x,解得:x>2000.所以当照明时间>2000小时时,用节能灯比白炽灯费用低,所以节能灯用足2800小时时,费用最低.即照明时间大于2000小时且小于或等于2800小时,选用节能灯费用低.(3)分下列三种情况讨论:①如果选用两盏节能灯,则费用是98+0.0045×3000=111.5元;②如果选用两盏白炽灯,则费用是36+0.02×3000=96元;③如果选用一盏节能灯和一盏白炽灯,由(2)可知,当照明时间>2000小时时,用节能灯比白炽灯费用低,所以节能灯用足2800小时时,费用最低.费用是67+0.0045×2800+0.02×200=83.6元.综上所述,应各选用一盏灯,且节能灯使用2800小时,白炽灯使用200小时时,费用最低.【点评】此题主要考查了一元一次方程的应用以及列代数式,以及考查学生对方案的设计与选择,通过数学计算来研究现实生活中遇到的数学问题,体会数学分类讨论思想在解题中的应用.3.为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定a吨以下的收费标准相同;规定a吨以上的超过部分收费标准相同,以下是小明家1﹣4月份用水量和交费情况:根据表格中提供的信息,回答以下问题:(1)求出规定吨数a;(2)若小明家6月份缴水费29元,则6月份用水多少吨?【分析】(1)根据1、2、3月份的条件,当用水量不超过10吨时,每吨的收费2元.根据3月份的条件,用水12吨,其中10吨应交20元,则超过的2吨收费6元,则超出10吨的部分每吨收费3元.(2)题中存在的相等关系是:10吨的费用20元+超过部分的费用=29元【解答】解:(1)从表中可以看出规定用水量不超过10吨,10吨以内,每吨2元,超过10吨的部分每吨3元.(2)设小明家6月份用水x吨,29>10×2,所以x>10.所以,10×2+(x﹣10)×3=29,解得:x=13.小明家7月份用水13吨.【点评】本题主要考查一元一次方程的应用,正确理解收费标准,列出符合题意的一元一次方程是解决本题的关键.4.“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.(1)若两人同时出发,小张车速为20千米,小李车速为15千米,经过多少小时能相遇?(2)若小李的车速为10千米,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?【分析】(1)小张比小李多走10千米,设经过t小时相遇,则根据他们走的路程相等列出等式,即可求出t;(2)设小张的车速为x,则根据两人相遇时所走的路程相等,可列出等式,即可求得小张的车速.【解答】解:(1)设经过t小时相遇,20t=15t+10,解方程得:t=2,所以两人经过两个小时后相遇;(2)设小张的车速为x,则相遇时小张所走的路程为+,小李走的路程为:10×=5千米,所以有:+=5+10,解得x=18千米.故小张的车速为18千米每小时.【点评】本题考查了一元一次方程的应用,难度一般,关键要根据题意找出等量关系,根据等量关系列出等式.5.华联超市用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)(1)该商场购进甲、乙两种商品各多少件?(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?【分析】(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据单价×数量=总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单件利润×销售数量,列式计算即可求出结论.【解答】解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据总利润=单件利润×销售数量列式计算;(3)找准等量关系,正确列出一元一次方程.6.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15cm,各装10cm高的水,下表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没有溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少cm?【分析】设后来甲、乙、丙三杯内水的高度为3x、4x、5x,利用水的体积不变进而表示出三杯水的体积,进而得出方程求出即可【解答】解:设后来甲、乙、丙三杯内水的高度为3x、4x、5x,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4(cm).答:甲杯内水的高度变为3×2.4=7.2(cm).【点评】此题主要考查了一元一次方程的应用,根据题意表示出水的体积是解题关键.7.为发展校园足球运动,某城区四校决定联合购买一批足球运动装备.市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少元;(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花发费用;(3)在(2)的条件下,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)先求出到两家商场购买一样合算时足球的个数,再根据题意即可求解.【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元.根据题意得2(x+50)=3x.解得x=100.x+50=150.答:每套队服150元,每个足球100元.(2)到甲商场购买所花的费用为:100a+14000(元);到乙商场购买所花的费用为:80a+15000(元);(3)由100a+14000=80a+15000,得:a=50,所以:①当a=50时,两家花费一样;②当a<50时,到甲处购买更合算;③当a>50时,到乙处购买更合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.8.2014年元旦将至,“春风电器”商场一款“格力”电暖器的原价为每件900元,为了参与市场竞争,商场按原价打9折后再让利40元销售,此时仍可获利10%,此商品的进价是多少元?【分析】设商品的进价为x元,依商店按售价的9折再让利40元销售,此时仍可获利10%,可得方程式,求解即可得答案.【解答】解:设商品的进价为x元,依题意得:900×90%﹣40﹣x=10%x,整理,得770﹣x=0.1x解之得:x=700答:此商品的进价是700元.【点评】考查了一元一次方程的应用.应识记有关利润的公式:利润=销售价﹣成本价.9.某商场将甲种商品降价40%,乙种商品降价20%开展优惠促销活动.已知甲、乙两种商品的原销售单价之和为140元,某顾客参加活动购买甲、乙各一件,共付100元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,那么商场在这次促销活动中销售甲、乙两种商品各一件是盈利还是亏损了?如果是盈利,盈利了多少元;如果是亏损,亏损了多少元.【分析】(1)设甲商品原销售单价为x元,则乙商品的原销售单价为(140﹣x)元,根据优惠后购买甲、乙各一件共需100元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设甲商品的进价为a元/件,乙商品的进价为b元/件,根据甲、乙商品的盈亏情况,即可分别得出关于a、b的一元一次方程,解之即可求出a、b的值,再代入100﹣a﹣b中即可找出结论.【解答】解:(1)设甲商品原销售单价为x元,则乙商品的原销售单价为(140﹣x)元,根据题意得:(1﹣40%)x+(1﹣20%)(140﹣x)=100,解得:x=60,∴140﹣x=80.答:甲商品原销售单价为60元,乙商品的原销售单价为80元.(2)设甲商品的进价为a元/件,乙商品的进价为b元/件,根据题意得:(1﹣25%)a=(1﹣40%)×60,(1+25%)b=(1﹣20%)×80,解得:a=48,b=51.2,∴100﹣a﹣b=100﹣48﹣51.2=0.8.答:商场在这次促销活动中盈利,盈利了0.8元【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.10.为表彰县“著名苏区三好学生”,县中小学统一组织文艺汇演.甲、乙两校共92名学生,(其中甲校人数多于乙校人数,且甲校人数不够90名)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:如果两所学校分别单独购买服装,一共应付5000元.。
苏科版七年级上册数学期末复习:一元一次方程实际应用 专项练习题 2套(含答案)

苏科版七年级上册数学期末复习:一元一次方程实际应用专项练习题11.A、B两地相距550千米,甲、乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/小时,乙车的速度为90千米/小时,经过t小时,两车相距50千米,则t的值为()A.2.5 B.2或10 C.2.5或3 D.32.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是()A.B.C.D.3.超市正在热销某种商品,其标价为每件100元,若这种商品打7折销售,则每件可获利15元,设该商品每件的进价为x元,根据题意可列出的一元一次方程为()A.100×0.7﹣x=15 B.100﹣x×0.7=15C.(100﹣x)×0.7=15 D.100﹣x=15×0.74.某电商销售某款羽绒服,标价为300元,若按标价的八折销售,仍可获利60元.设这款羽绒服的进价为x元,根据题意可列方程为()A.300×0.8﹣x=60 B.300﹣0.8x=60C.300×0.2﹣x=60 D.300﹣0.2x=605.我国古代有一问题:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果设快马x天可追上慢马,下面所列方程中正确的是()A.240x=150(x+12)B.150x=240(x+12)C.240x=150(x﹣12)D.150x=240(x﹣12)6.已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km的两地同时出发,相向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相遇后又相距20km?③甲乙两人从相距60km的两地相向而行,甲的速度是4km/h,乙的速度是6km/h,如果甲先走了20km后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km的两地同时出发,背向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相距60km?其中可以用方程4x+6x+20=60表述题目中对应数量关系的应用题序号是()A.①②③④B.①③④C.②③④D.①②7.一件工程甲单独做50天可完成,乙单独做75天可完成,现在两个人合作.但是中途乙因事离开几天,从开工后40天把这件工程做完.则乙中途离开了多少天.()A.10 B.25 C.30 D.358.某人驾驶一小船航行在甲,乙码头之间,顺水航行需6h,逆水航行比顺水航行多用2h,若水流的速度是每小时2km,那么船在静水中的平均速度为每小时多少千米()A.14 B.15 C.16 D.179.学校把一些图书分给某班学生阅读,如果每人分4本,则剩余30本;如果每人分5本,则还缺15本.设这个班有学生x人,依据题意可列方程为()A.4x﹣30=5x+15 B.4x+30=5x﹣15C.4x﹣30=5x﹣15 D.4x+30=5x+1510.为进一步深化课堂教学改革,武侯区初中数学开展了分享学习课堂之“生讲生学”活动,某中学决定购买甲、乙两种礼品共30件,用于表彰在活动中表现优秀的学生.已知某商店甲乙两种礼品的标价分别为25元和15元,购买时恰逢该商店全场9折优惠活动,买完礼品共花费495元,问购买甲、乙礼品各多少件?设购买甲礼品x件,根据题意,可列方程为()A.25x+15(30﹣x)=495 B.[25x+15(30﹣x)]×0.9=495 C.[25x+15(30﹣x)]×9=495 D.[25x+15(30﹣x)]÷0.9=495 11.甲、乙两地相距180km,一列慢车以40km/h的速度从甲地匀速驶往乙地,慢车出发30分钟后,一列快车以60km/h的速度也从甲地匀速驶往乙地,两车相继到达终点乙地,在此过程中,两车恰好相距10km的次数是()A.1 B.2 C.3 D.412.某眼镜厂车间有28名工人,每个工人每天生产镜架60个或者镜片90片,为使每天生产的镜架和镜片刚好配套.设安排x名工人生产镜片,则可列方程()A.60(28﹣x)=90x B.60x=90(28﹣x)C.2×60(28﹣x)=90x D.60(28﹣x)=2×90x13.长为300米的春游队伍,以2米/秒的速度向东行进.在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为4米/秒.则往返共用的时间为()A.200s B.205s C.210s D.215s14.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母正好配套,设有x名工人生产螺钉,其他工人生产螺母,则根据题意可列方程为()A.2000x=1200(22﹣x)B.2×1200x=2000(22﹣x)C.2×2000x=1200(22﹣x)D.1200x=2000(22﹣x)15.一项工程,甲队单独做需10天完成,乙队单独做需8天完成,甲乙两队的工作效率的最简整数比是()A.5:4 B.10:8 C.4:5 D.8:1016.随着传统节日“端午节”临近,某超市决定开展“欢度端午,回馈顾客”的活动,将进价为120元一盒的某品牌粽子按标价的8折出售,仍可获利20%,则该超市该品牌粽子的标价为__元.()A.180 B.170 C.160 D.15017.中国总理李克强2020年6月1日考察山东时表示,地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.市场、企业、个体工商户活起来,生存下去,再发展起来,国家才能更好!为了响应党中央、国务院的号召,各地有序开放了“地摊经济”、“马路经济”,长沙某地摊摊主将进价为10元的小商品提价100%后再6折销售,该小商品的利润率()A.40% B.20% C.60% D.30%18.疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1964元,求其他两个年级的捐款数.若设七年级捐款数为x元,则可列方程为()A.x+x+1964=x B.x+x+1964=xC.x+x+1964=x D.x+x+1964=3x19.由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的原售价为()A.230元B.250 元C.270元D.300 元20.某球队参加了10场足球赛,共积17分,已知胜一场得3分,平一场得1分,负一场得0分,其中该队输了3场,则该队胜的场次为()A.4 B.5 C.6 D.7参考答案1.解:依题意,得:110t+90t=550﹣50或110t+90t=550+50,解得:t=2.5或t=3.故选:C.2.解:A、设最小的数是x.x+x+7+x+7+1=19x=故本选项不符合题意;B、设最小的数是x.x+x+6+x+7=19,x=2.故本选项符合题意.C、设最小的数是x.x+x+1+x+7=19,x=,故本选项不符合题意.D、设最小的数是x.x+x+1+x+8=19,x=,故本选项不符合题意.故选:B.3.解:设该商品每件的进价为x元,依题意,得:100×0.7﹣x=15.故选:A.4.解:设这款羽绒服的进价为x元,依题意,得:300×0.8﹣x=60.故选:A.5.解:设快马x天可追上慢马,则慢马跑了(x+12)天,依题意,得:240x=150(x+12).故选:A.6.解:①设两人开始工作x小时后还有20个零件没有加工,依题意,得:4x+6x+20=60,∴①可以用方程4x+6x+20=60来表述;②设经过x小时后两人相遇后又相距20km,依题意,得:4x+6x﹣20=60,∴②不可以用方程4x+6x+20=60来表述;③设乙出发后x小时两人相遇,依题意,得:4x+20+6x=80,∴③方程4x+6x+20=60来表述;④设经过x小时后两人相距60km,依题意,得:4x+6x+20=60,∴④可以用方程4x+6x+20=60来表述.故选:B.7.解:设乙中途离开了x天,×40+(40﹣x)=1,解得,x=25即乙中途离开了25天,故选:B.8.解:设船在静水中的速度为x千米每小时,根据题意得:6(x+2)=(6+2)(x﹣2),解得:x=14,故选:A.9.解:设这个班有学生x人,由题意得:4x+30=5x﹣15,故选:B.10.解:设购买甲礼品x件,则购买乙种礼品(30﹣x)件,由题意,得[25x+15(30﹣x)]×0.9=495.故选:B.11.解:∵10÷40=(h),∴快车未出发,慢车出发小时时,两车相距10km;设快车出发x小时时,两车相距10km.快车未超过慢车时,40(x+)﹣10=60x,解得:x=;快车超过慢车10km时,40(x+)+10=60x,解得:x=;快车到达乙地后,40(x+)=180﹣10,解得:x=.∴两车恰好相距10km的次数是4.故选:D.12.解:设x人生产镜片,由题意得,90x=2×60(28﹣x).故选:C.13.解:设从排尾到排头需要t1秒,从排头到排尾需要t2秒,根据题意,得(4﹣2)t1=300,(4+2)t2=300,解得t1=150,t2=50,t1+t2=150+50=200(秒).答:此人往返一趟共需200秒,故选:A.14.解:∵有x名工人生产螺钉,∴有(22﹣x)名工人生产螺母.∵每天生产螺母的总数是生产螺钉总数的2倍,∴2×1200x=2000(22﹣x).故选:B.15.解:根据工作量=工作效率×工作时间,可得工作量一定时,工作效率和工作时间成反比,所以甲队和乙队的工作效率的比是甲乙的工时间的反比;因此甲队和乙队的工作效率的最简整数比是8:10=4:5.答:甲乙两队的工作效率的最简整数比是4:5.故选:C.16.解:设该超市该品牌粽子的标价为x元,则售价为80%x元,由题意得:80%x﹣120=20%×120,解得:x=180.即该超市该品牌粽子的标价为180元.故选:A.17.解:设该小商品的利润率为x,依题意,得:10×(1+100%)×0.6﹣10=10x,解得:x=0.2=20%.故选:B.18.解:由题意可得,七年级捐款数为x元,则三个年级的总的捐款数为:x÷=x,故八年级的捐款为:,则x++1964=x,故选:A.19.解:设该商品的原售价为x元,根据题意得:75%x+25=90%x﹣20,解得:x=300,则该商品的原售价为300元.故选:D.20.解:设该队胜了x场,由题意得:3x+(10﹣3﹣x)=17解得:x=5;故选:B.苏科版七年级上册数学期末复习:一元一次方程实际应用专项练习题2 1.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x米,根据题意,列出方程为()A.2x+4×20=4×340 B.2x﹣4×72=4×340C.2x+4×72=4×340 D.2x﹣4×20=4×3402.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t的值是()A.2或2.5 B.2或10 C.10或12.5 D.2或12.53.中百超市推出如下优惠方案:(1)一次性购物不超过100元,不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.王波两次购物分别付款80元、252元,如果他将这两次所购商品一次性购买,则应付款()A.288元B.332元C.288元或316元D.332元或363元4.一列匀速前进的火车,从它进入600米的隧道到离开,共需30秒,又知在隧道顶部的一固定的灯发出的一束光线垂直照射火车5秒,则这列火车的长度是()A.100米B.120米C.150米D.200米5.在高速公路上,一辆长4米,速度为110千米/小时的轿车准备超越一辆长12米,速度为100千米/小时的卡车,则轿车从开始追及到超越卡车,需要花费的时间约是()A.1.6秒B.4.32秒C.5.76秒D.345.6秒6.为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?()A.140元B.150元C.160元D.200元7.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里D.3里8.某服装进货价80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为()A.5 B.6 C.7 D.89.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)10.用一根长12cm的铁丝围成一个长方形,使得长方形的宽是长的,则这个长方形的面积是()A.4cm2B.6cm2C.8cm2D.12cm211.用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套.设用x张铝片制瓶身,则下面所列方程正确的是()A.2×16x=45(100﹣x)B.16x=45(100﹣x)C.16x=2×45(100﹣x)D.16x=45(50﹣x)12.甲计划用若干个工作日完成某项工作,从第二个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是()A.8 B.7 C.6 D.513.小明买书需用34元钱,付款时恰好用了1元和5元的纸币共10张,设所用的1元纸币为x张,根据题意,下面所列方程正确的是()A.x+10(x﹣50)=34 B.x+5(10﹣x)=34C.x+5(x﹣10)=34 D.5x+(10﹣x)=3414.如图,在长为a厘米的木条上钻4个圆孔,每个圆孔的直径为2厘米,则x等于()A.厘米B.厘米C.厘米D.厘米15.某种商品因换季准备打折出售,若按定价的七五折出售将赔25元,若按定价的九折出售将赚20元,则这种商品的定价为()A.280元B.300元C.320元D.200元16.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.17.某个体户在一次买卖中同时卖出两件上衣,售价都是225元,若按成本价计算,其中一件盈利25%,另一件亏损25%,在这次买卖中他()A.赚30元B.赚15元C.亏30元D.不赚不亏18.小明在新亚百货大楼以8折(即标价的80%)的优惠价买了一双沃特牌运动鞋,节省了45元,那么小明买鞋子时应付给营业员()A.150元B.180元C.200元D.225元19.一船在静水中的速度为20km/h,水流速度为4km/h,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm,则下列方程正确的是()A.(20+4)x+(20﹣4)x=15 B.20x+4x=5C.D.20.在矩形ABCD中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE.若AE=x(cm),依题意可得方程()A.6+2x=14﹣3x B.6+2x=x+(14﹣3x)C.14﹣3x=6 D.6+2x=14﹣x参考答案1.解:设汽车离山谷x米,则汽车离山谷距离的2倍即2x,因为汽车的速度是72千米/时即20米/秒,则汽车前进的距离为:4×20米/秒,声音传播的距离为:4×340米/秒,根据等量关系列方程得:2x+4×20=4×340,故选:A.2.解:(1)当甲、乙两车未相遇时,根据题意,得120t+80t=450﹣50,解得t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得t=2.5.故选:A.3.解:(1)若第二次购物超过100元,但不超过300元,设此时所购物品价值为x元,则90%x=252,解得x=280两次所购物价值为80+280=360>300所以享受8折优惠,因此王波应付360×80%=288(元).(2)若第二次购物超过300元,设此时购物价值为y元,则80%y=252,解得y=315 两次所购物价值为80+315=395,因此王波应付395×80%=316(元)故选:C.4.解:设这火车的长为x米,则=,x=120.因此选择B.5.解:设需要的时间为x秒,110千米/小时=米/秒,100千米/小时=米/秒,根据轿车走的路程等于超越卡车的路程加上两车的车身长,得出:解得:x=5.76故选:C.6.解:设小慧同学不买卡直接购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150即:小慧同学不凭卡购书的书价为150元.故选:B.7.解:设第一天走了x里,依题意得:x+x+x+x+x+x=378,解得x=192.则()5x=()5×192=6(里).故选:C.8.解:根据题意得:200×﹣80=80×50%,解得:x=6.故选:B.9.解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个,∴可得2×22x=16(27﹣x).故选:D.10.解:设围成的长方形的宽为x,则长为2x,根据题意得:2(x+2x)=12,解得:x=2,∴2x=4,∴围成长方形的面积为2×4=8(cm2).故选:C.11.解:设用x张制瓶身,则用(100﹣x)张制瓶底才能正好制成整套的饮料瓶,根据题意列方程得,2×16x=45(100﹣x),故选:A.12.解:(方法一)设甲计划完成此项工作的天数为x,根据题意得:x﹣(1+)=3,解得:x=7.(方法二)设甲计划完成此项工作的天数为x,依题意,得:+=1,解得:x=7,经检验,x=7是所列分式方程的解,且符合题意.故选:B.13.解:设所用的1元纸币为x张,根据题意得:x+5(10﹣x)=34,故选:B.14.解:由题意可得,5x+2×4=a,解得,x=,故选:A.15.解:设这种商品的定价为x元,由题意,得0.75x+25=0.9x﹣20,解得:x=300.故选:B.16.解:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x只羊,∴乙有+1只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴+1+1=x﹣1,即x+1=2(x﹣3)故选:C.17.解:设两件上衣的进价分别为a元,b元,根据题意得:(1+25%)a=225,(1﹣25%)b=225,解得:a=180,b=300,∴这次买卖中盈利的钱为225﹣180+225﹣300=﹣30(元),则这次买卖中他亏了30元.18.解:设运动鞋原价x元,由题意得:x﹣80%x=45,解得:x=225,225﹣45=180(元),故选:B.19.解:若设甲、乙两码头的距离为xkm,由题意得:+=5,故选:D.20.解:设AE为xcm,则AM为(14﹣3x)cm,根据题意得出:∵AN=MW,∴AN+6=x+MR,即6+2x=x+(14﹣3x)故选:B.。
苏科版七年级数学上册《4.3用一元一次方程解决问题》专项练习题-带答案

苏科版七年级数学上册《4.3用一元一次方程解决问题》专项练习题-带答案学校:___________班级:___________姓名:___________考号:___________基础过关全练知识点1用一元一次方程解决问题的步骤1.【教材变式·P115T10】某景区的门票分为两种:A种门票60元/张,B 种门票12元/张.某旅行社为一个旅行团代购部分门票,若旅行社购买A,B两种门票共15张,总费用为516元,求旅行社为这个旅行团代购A 种门票和B种门票各多少张.2.【新情境·志愿者服务】【新独家原创】某大学的志愿者负责冬奥会某馆的对外联络和文化展示服务工作,负责对外联络服务工作的有17人,负责文化展示服务工作的有10人,现在另调20人去两服务处支援,使得在对外联络服务工作的人数比在文化展示服务工作的人数的2倍多5,问:应调往对外联络、文化展示两服务处各多少人?知识点2 用一元一次方程解决实际问题3.(2022江苏宿迁沭阳月考)某小组的m 个人计划做n 个中国结,如果每人做6个,那么比计划多做9个,如果每人做4个,那么比计划少做7个.有下列四个等式:①6m +9=4m -7;②6m -9=4m +7;③n+96=n−74;④n−96=n+74,其中正确的是( )A.①②B.②④C.②③D.③④4.一个两位数,个位上的数字比十位上的数字的2倍多1,如果个位上的数字与十位上的数字交换位置,得到一个新的两位数,新的两位数比原来两位数的2倍少1,则原两位数为 .5.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.每件衬衫降价多少元时,销售完这批衬衫正好达到盈利40%的预期目标?6.【主题教育·爱国主义教育】(2023江苏苏州相城期末)某中学组织部分师生去北京展览馆参观“奋进新时代”主题成就展.若单租45座客车若干辆,则全部坐满;若单租60座的客车,则少租一辆,且余15个座位.求该校前去参观的师生总人数.能力提升全练7.【主题教育·生命安全与健康】(2022贵州铜仁中考,7,★★☆)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为()A.14B.15C.16D.178.(2022四川乐山中考,15,★★☆)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”.如图所示,“优美矩形” ABCD的周长为26,则正方形d的边长为.9.(2021陕西中考,19,★★☆)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件标价降低30元销售11件的销售额相等.求这种服装每件的标价.10.(2020山西中考,17,★★☆)2020年5月份,省城太原开展了“活力太原·乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.11.(2022江苏苏州期末,24,★★★)如图,已知点A、B、C是数轴上三点,O 为原点.点C对应的数为6,A、B两点对应的数分别为a、b,且满足(a+10)2+|b-2|=0.(1)求a、b的值;(2)动点P、Q分别同时从A、C出发,以每秒6个单位和3个单位的速CQ,设度沿数轴正方向运动,M为AP的中点,N在线段CQ上,且CN=13运动时间为t秒(t>0).①求点M、N对应的数(用含t的式子表示);②当t为何值时,OM=2BN?素养探究全练12.【运算能力】已知数轴上点A,B表示的数分别为-1,3,动点P表示的数为x.(1)若点P到A,B的距离和为6,求出x的值;(2)是否存在点P,使得PA-PB=3?若存在,求出x的值;若不存在,说明理由;(3)若点M,N分别从点A,B同时出发,沿数轴正方向分别以3个单位长度/秒,2个单位长度/秒的速度运动,多长时间后,M、N两点相距1个单位长度?答案全解全析基础过关全练1.解析设旅行社为这个旅行团代购A种门票x张,则代购B种门票(15-x)张,依题意得60x+12(15-x)=516,解得x=7,则15-x=8.答:旅行社为这个旅行团代购A种门票7张,B种门票8张.2.解析设调往对外联络服务处x人,则调往文化展示服务处(20-x)人依题意得17+x-2[10+(20-x)]=5,解得x=16∴20-x=20-16=4.答:调往对外联络服务处16人,调往文化展示服务处4人.3.C某小组m个人计划做n个中国结,根据中国结的个数一定,如果每人做6个,那么比计划多做9个,如果每人做4个,那么比计划少做7个,则可列方程为6m-9=4m+7,故②正确,①错误;根据某小组的人数一定,则可列方程n+96=n−74,故③正确,④错误.4.37解析设原两位数的十位上的数字为x,则个位上的数字为2x+1.根据题意,得2(10x+2x+1)-1=10(2x+1)+x,解这个方程,得x=3,所以2x+1=7.故原来的两位数为37.5.解析设每件衬衫降价x元时,销售完这批衬衫正好达到盈利40%的预期目标.根据题意,得120×400+(120-x)×(500-400)-80×500=80×500×40%解这个方程,得x=40.答:每件衬衫降价40元时,销售完这批衬衫正好达到盈利40%的预期目标.6.解析设单租45座客车x辆,则该校前去参观的师生总人数为45x 根据题意得45x=60(x-1)-15解得x=5∴45x=45×5=225.答:该校前去参观的师生总人数为225.能力提升全练7.B设小红答对的个数为x,由题意得5x-(20-x)=70,解得x=15.即小红答对的个数为15.8.5解析设正方形b的边长为x,则正方形a的边长为2x,正方形c的边长为3x,正方形d的边长为5x,依题意得(3x+5x+5x)×2=26,解得x=1,所以5x=5×1=5,即正方形d的边长为5.9.解析设这种服装每件的标价是x元根据题意,得10×0.8x=11(x-30),解得x=110.答:这种服装每件的标价为110元.10.解析设该电饭煲的进价为x元,则标价为(1+50%)x元,售价为80%×(1+50%)x元根据题意,得80%×(1+50%)x-128=568,解得x=580.答:该电饭煲的进价为580元.11.解析(1)∵(a+10)2+|b-2|=0∴a+10=0,b-2=0,∴a=-10,b=2.(2)①∵动点P 、Q 分别同时从A 、C 出发,以每秒6个单位和3个单位的速度运动,运动时间为t 秒∴AP=6t,CQ=3t∵M 为AP 的中点,N 在线段CQ 上,且CN=13CQ ∴AM=12AP=3t,CN=13CQ=t ∵点A 表示的数是-10,点C 表示的数是6∴M 表示的数是-10+3t,N 表示的数是6+t.②∵OM=|-10+3t|,BN=BC+CN=6-2+t=4+t,OM=2BN∴|-10+3t|=2(4+t)=8+2t当点M 在点O 右侧时,OM=-10+3t由-10+3t=8+2t,得t=18当点M 在点O 左侧时,OM=-(-10+3t)由-(-10+3t)=8+2t,得t=25 故当t=18或t=25时,OM=2BN. 素养探究全练12.解析 (1)当点P 在点A 的左侧时,PA=-1-x,PB=3-x则-1-x+3-x=6,解得x=-2;当点P 在点B 的右侧时,PA=x+1,PB=x-3则x+1+x-3=6,解得x=4.综上所述,当点P 到A,B 的距离和为6时,x=-2或4.(2)存在.∵AB=3-(-1)=4∴当PA-PB=3时,点P在线段AB上∴PA=x+1,PB=3-x由题意得(x+1)-(3-x)=3解得x=2.5.(3)设出发t秒后,M,N两点相距1个单位长度.由题意得,点M的坐标为3t-1,点N的坐标为2t+3当点M在点N的左侧时,(2t+3)-(3t-1)=1解得t=3;当点M在点N的右侧时,(3t-1)-(2t+3)=1解得t=5.综上所述,出发3秒或5秒后,M,N两点相距1个单位长度.。
苏科版七年级数学上册期末备考:《一元一次方程》应用练习题(一)

七年级数学上册期末备考:《一元一次方程》应用练习题(一)一.选择题1.我国古代问题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,问绳长井深各几何?”其题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份绳长比水井深度多四尺;如果将绳子折成四等份,那么每等份绳长比水井深度多一尺.问绳长和井深各多少尺?若假设井深为x尺,则下列符合题意的方程是()A.B.3(x+4)=4(x+1)C.D.3x+4=4x+12.我国明朝珠算发明家程大位,他完成的古代数学名著《直指算法统宗》,详述了传统的珠算规则,确立了算盘用法.书中记载如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?设大和尚有x人,则可列方程为()A.3x+(100﹣x)=100 B.3x+3(100﹣x)=100C.x+3(100﹣x)=100 D.x+(100﹣x)=1003.中国明代数学著作《算法统宗》中有这样一首古诗:“巍巍古寺在山中,不知寺内几多僧?三百六十四只碗,恰好用尽不用争.三人共餐一碗饭,四人共尝一碗羹,请问先生能算者,算出寺内几多僧?”其大意是,某古寺用餐,3个和尚合吃一碗饭,4个和尚合分一碗汤,一共用了364只碗,问有多少个和尚?根据题意,可以设和尚的个数为x,则得到的方程是()A.3x+4x=364 B.x+x=364C.x+4x=364 D.3x+x=3644.某车间有28名工人生产螺钉和螺母,每人每小时平均能生产螺钉12个或螺母18个,1个螺钉需要配2个螺母,若安排m名工人生产螺钉时每小时生产的螺栓和螺母刚好配套,那么可列方程为()A.12×m=18×(28﹣m)×2 B.12×(28﹣m)=18×m×2C.12×m×2=18×(28﹣m)D.12×(28﹣m)×2=18×m5.某网上电器商城销售某种品牌的高端电器.已知该电器按批发价上浮50%进行标价,若按照标价的九折销售,则可获纯利润350元,现由于商城搞促销,该电器按照标价的八折销售,则可获纯利润()A.180元B.200元C.220元D.240元6.某商店有两个进价不同的计算器,都卖了64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店()A.不赔不赚B.赚了8元C.赔了8元D.赚了32元7.甲仓库有煤200吨,乙仓库有煤80吨,如果甲仓库每天运出15吨,乙仓库每天运进25吨,问多少天后两仓库存煤相等()A.6天B.5天C.4天D.3天8.某品牌商品,按标价八折出售,仍可获得10%的利润.若该商品标价为275元,则商品的进价为()A.192.5元B.200元C.244.5元D.253元二.填空题9.我国古代《算法统宗》里有这样一首诗:我问开店李三公.众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?设该店有房x间,则可列方程:.10.我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二而税一.次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.”其意思为“今有人持金出五关,第1关所收税金为持金的,第2关所收税金为剩余金的,第3关所收税金为剩余金的,第4关所收税金为剩余金的,第5关所收税金为剩余金的,5关所收税金之和,恰好重1斤.”若设这个人原本持金x斤,根据题意可列方程为.11.小华和小明周末到北京三山五园绿道骑行.他们按设计好的同一条线路同时出发,小华每小时骑行18km,小明每小时骑行12km,他们完成全部行程所用的时间,小明比小华多半小时.设他们这次骑行线路长为xkm,依题意,可列方程为.12.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个;如果每人做4个,那么比计划少7个.设计划做x个中国结,可列方程.13.如图1是一个由1~28的连续整数排成的“数阵”.如图2,用2×2的方框围住了其中的四个数,如果围住的这四个数中的某三个数的和是27,那么这三个数是a,b,c,d中的.14.水果在物流运输过程中会产生一定的损耗,下表统计了某种水果发货时的重量和收货时的重量.发货时重量(kg)100 200 300 400 500 600 1000收货时重量(kg)94 187 282 338 435 530 901若一家水果商店以6元/kg的价格购买了5000kg该种水果,不考虑其他因素,要想获得约15000元的利润,销售此批水果时定价应为元/kg.15.我国古代数学著作中有这样一道题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.意思是:远远望见一座7层高的雄伟壮丽的佛塔,每层塔点着的红灯数,下层比上层成倍增加,共381盏.则塔尖有盏灯.三.解答题16.根据题意设未知数,并列出方程(不必求解).(1)有两个工程队,甲队人数30名,乙队人数10名,问怎样调整两队的人数,才能使甲队的人数是乙队人数的7倍.(2)有一个班的同学准备去划船,租了若干条船,他们计算了一下,如果比原计划多租1条船,那么正好每条船坐6人;如果比原计划少租1条船,那么正好每条船坐9人.问这个班共有多少名同学?17.小王离岗创业,销售某品牌电脑,1月份的销售量为100台,每台电脑售价相同,2月份的销售量比1月份增加10%,每台售价比1月份降低了400元,2月份与1月份的销售总额相同,求每台电脑1月份的售价.18.新型冠状病毒肺炎是一种极性感染性肺炎,其病原体是一种先前未在人体中发现的新型冠状病毒,市民出于防疫的需求,持续抢购防护用品.某药店口罩每袋售价20元,医用酒精每瓶售价15元.(1)该药店第一周口罩的销售袋数比医用酒精的销售瓶数多100,且第一周这两种防护用品的总销售额为9000元,求该药店第一周销售口罩多少袋?(2)由于疫情紧张,该药店为了帮助大家共渡难关,第二周口罩售价降低了a%,销量比第一周增加了2a%,医用酒精的售价保持不变,销售比第一周增加了a%,结果口罩和医用酒精第二周的总销售额比第一周增加了a%,求a的值.19.《算法统宗》是中国古代数学名著之一,其中记载了这样的数学问题:“用绳子测水井深度,绳长的三分之一比井深多4尺;绳长的四分之一比井深少1尺,问绳长、井深各是多少尺”.若设这个问题中的绳长为x尺,求x的值.20.力“皖”狂澜,新冠肺炎期间,安徽共出动八批,共计1362位医护人员驰援武汉,他们是新时代最可爱的人.3月19日,第二批和第八批医护人员共130人乘坐飞机返回合肥,其中第二批人数是第八批人数的3倍还多10人,第八批安徽共出动了多少名医护人员?21.有76张全等的矩形卡纸,用其做成圆锥,其中x张卡纸用A方法每张剪裁出6个全等的半圆,其余卡纸用B方法每张剪裁出12个全等的圆,一个半圆和一个圆正好做成一个圆锥.(1)一张矩形卡纸长与宽的比是,能做圆锥侧面个,底面个.(2)最多可以做圆锥多少个?卡纸还剩多少张?(3)剩下的卡纸用C方法剪裁,最多还能做几个圆锥?请画出C方法的剪裁示意图.参考答案一.选择题1.解:设井深为x尺,依题意,得:3(x+4)=4(x+1).故选:B.2.解:设大和尚有x人,则小和尚(100﹣x)人,由题意得:3x+(100﹣x)=100,故选:A.3.解:设和尚的个数为x,根据题意得,,故选:B.4.解:设安排m名工人生产螺钉,则(28﹣m)人生产螺母,由题意得12×m×2=18×(28﹣m),故选:C.5.解:设该商品批发价为x元/件,则该商品的标价为(1+50%)x元/件,根据题意,得:(1+50%)x•0.9﹣x=350,解得:x=1000,则其标价为(1+50%)×1000=1500元/件,∴该电器按照标价的八折销售,则可获纯利润为1500×0.8﹣1000=200元,故选:B.6.解:设进价低的计算器进价为x元,进价高的计算器进价为y元,根据题意得:(1+60%)x=64,(1﹣20%)=64,解得:x=40,y=80,∴64×2﹣x﹣y=8.故选:B.7.解:设x天后两仓库存煤相同,则200﹣15x=80+25x,解得x=3.答:3天后两仓库存煤相同.故选:D.8.解:设商品的进价为x元,根据题意得:(1+10%)x=275×80%,1.1x=220,x=200.故商品的进价为200元.故选:B.二.填空题(共7小题)9.解:设该店有房x间,则可列方程:7x+7=9(x﹣1).故答案为:7x+7=9(x﹣1).10.解:设这个人原本持金x斤,根据题意可列方程为:.故答案为:.11.解:设他们这次骑行线路长为xkm,依题意,可列方程为,故答案为:.12.解:设计划做x个“中国结”,根据题意得=.故答案为=.13.解:①若这三个数分别是a、b、c时,依题意得:a+b+c=a+a+1+a+7=27.此时a=,不合题意,舍去.②若这三个数分别是a、b、d时,依题意得:a+b+d=a+a+1+a+8=27.此时a=6,符合题意.③若这三个数分别是b、c、d时,依题意得:b+c+d=a+1+a+7+a+8=27.此时a=,不合题意,舍去.④若这三个数分别是a、c、d时,依题意得:a+c+d=a+a+7+a+8=27.此时a=4,符合题意.综上所述,符合题意的组合为:a,b,d或a,c,d.故答案是:a,b,d或a,c,d.14.解:设销售此批水果时定价为x元/kg,由表格可知,水果的损耗接近10%,则5000×(1﹣10%)x﹣5000×6=15000,解得,x=10答:销售此批水果时定价应为10元/kg,故答案为:10.15.解:设塔的顶层装x盏灯,则从塔顶向下,每一层灯的数量依次是2x、4x、8x、16x、32x、64x,所以x+2x+4x+8x+16x+32x+64x=381127x=381x=381÷127x=3答:塔的顶层装3盏灯.故答案为:3.三.解答题(共6小题)16.解:(1)设从乙队调x人去甲队,则乙队现在有10﹣x人,甲队有30+x人,由题意得30+x=7(10﹣x);(2)设这个班共有x名同学,由题意得﹣1=+1.17.解:设每台电脑1月份的售价为x元,根据题意得,100(1+10%)(x﹣400)=100x,解得:x=4400,答:每台电脑1月份的售价为4400元.18.解:(1)设该药店第一周销售口罩x袋,则医用酒精销售量为(x﹣100)瓶,根据题意得:20x+15(x﹣100)=9000,解得:x=300,答:该药店第一周销售口罩300袋;(2)根据题意得:20(1﹣a%)×300(1+2a%)+15×200(1+a%)=9000(1+a%),令t=a%,原方程整理为5t2﹣t=0,解得:t1=,t2=0,∴a1=20,a2=0(舍去).答:a的值为20.19.解:∵绳长为x尺,则设井深为(x+1)尺,依题意得:x﹣(x+1)=4,解得:x=60,答:x的值为60.20.解:设第八批安徽共出动了x名医护人员,由题意可知:3x+10+x=130,解得:x=30,答:第八批安徽出动了30名医护人员.21.解:(1)观察图形,可知:一张矩形卡纸长与宽的比是4:3,能做圆锥侧面6个,底面12个.故答案为:4:3;6;12.(2)假设76张全等的矩形卡纸全部用完.则有6x=12(76﹣x),解得x=50.6,∴76张全等的矩形卡纸不可能全部用完,假设x=50,则50×6=300,300÷12=25,∵50+25=75(张),76﹣57=1(张)∴最多可以做300个圆锥,卡纸还剩1张.(3)剩下的卡纸用C方法剪裁,最多还能做4个圆锥,如图所示:。
苏科版七年级上册数学第四章一元一次方程专题练习

七(上)数学第四章一元一次方程专题练习(时间60分钟,满分100分)一、填空题(每小题3分,共18分)1.一种药物降价20%后的价格是30元,那么降价前的价格x满足的方程是________.2一队师生共420人,乘车外出旅行,校车可乘60人,如果租用客车,每辆可乘40人,那么还要租用多少辆客车?如果设还要租x辆客车,可列方程为_________.3.当x=_________时,代数式6x一8与代数式x+3互为相反数.4.方程2(x+8)=3(x一1)的解是__________.5.当x=_________时,代数式(5x+2)的绝对值与代数式(一x+7)的绝对值相等.6.甲乙两地相距40千米,小明和小芳两人分别从甲乙两地出发,相向而行,小明每小时比小芳多行l千米,若两人同时出发,经过5小时相遇,如果设小芳的速度为x千米/小时,可列方程为_________.二、选择题(每小题3分,共18分)7.下列各式中是一元一次方程的是( )A.x+2y=3 B.2x一1=0 C.13x一6=x D.3x+2=08.某商场上月的营业额是a万元,本月比上月下降16%,那么本月营业额是( ) A.(a一1)·16%万元B.16%·a万元C.(1—16%)a万元D.116a%万元9.下列是方程3x一2=x的解的是( )A.x=2 B.x=l C.x=一1 D.x=2 310.在方程2x一6=0,23x=2,6x一5=2x一3,13(x—1)=12中与方程5x一9=2x的解相同的方程有( ) A.1个B.2个C.3个D.4个11.买2支铅笔、6支钢笔共用了28.4元,一支钢笔是4.5元,设每支铅笔x元,则可列方程得( ) A.2x+6×4.5=28.4 B.2×4.5+6x=28.4C.28.4+2x=6×4.5 D.2x=28.4+6×4.512.下列方程变形正确的是( )A.若x yb b则x=y B.若2x一x则x=1C.若bx=by则x=y D.若-23x=9则x=一6三、解答题(共64分)13.(每题4分,共16分)解下列方程:(1)15x+1=3一x;(2)4(x+1)=5(2x+1);(3)17x一1=7x+17;(4)3(x+2)一2=5(x+2)+8.14.(本题6分)若x=一3是方程k(x+4)一2k一x=5的解,求k的值.15.(本题7分)当x取何值时,式子x+3与7一13x的值相等.16.(本题7分)在梯形面积公式s=12(a+6b)·h中,已知b=8,h=l0,s=60,求a.17.(本题7分)若3a1m-b3n+与5a3b21n+是同类项,求(m+n)(一n)的值.18.(本题7分)已知关于x的方程2bx=(b+1)x+8,当b为何整数时,方程的解是正整数.19.(本题7分)已知(a+1) 2x一(a一1)x+8=0是关于x的一元一次方程,求代数式60(2x+2a)(x—a)+208的值.20.(本题7分)某商场出售某种文具,每件可盈利2元,为了支援贫困山区,现在按原价的7折出售给一山区学校,结果每件盈利0.2元(盈利=售价一进价),问该文具每件的进价是多少元?请列出方程.参考答案一、填空题1.x(1—20%)=30 2.60+40x=420 3.x=574.x=19 5.x=56或x=94-6.5x+5(x+1)=40二、选择题7.C 8.C 9.B 10.B 11.A 12.A 三、解答题13.(1)x=53(2)x=16-(3)x=16-(4)x=一714.把x=-3代入方程k(x+4)一2k—x=5得k(-3+4)一2k一(-3)=5 解得k=-215.由x+3=7一13x得x=3 16.a=417.由m一1=3 n+3=2n+1 得m=4 n=2 (m+n)(mn)=(4+2)(4—2)=1218.x=81b-当b=2.3.5.9时,方程的解是正整数19.因为(a+1) 2x一(a一1)x+8=0是关于x的一元一次方程所以a+1=0 a=-1,把a=-1代入(a+1) 2x一(a一1)x+8=0 得x=-4 把x=-4 a=-1代入60(2x+2a)(x一a)+208 得60×[2×(一4)+2×(一1)]×[一4一(一1)]+208=200820.设该文具每件的进价是x元.根据题意,得0.7(x+2)一x=0.2一、填空题(每小题3分,共18分)l.若3-x的倒数等于12,则x+1=___________.2.日历中,一个竖列上相邻的两个数的和是27,这两个数中较大的数是__________.3.若代数式10—3(9一y)与代数式42y-的值相等,则y=___________.4.若4x一3与x一7互为相反数,则x+1x=____________.5.一个矩形的周长是20cm,长比宽多3cm,那么矩形的长是________.6.有一根铁丝,第一次用了它的一半少l米,第二次用去了剩余的一半多1米,结果还剩2.5米,问这根铁丝原有_________米.二、选择题(每小题3分,共18分)7.下列方程151211342x x x-++-=+去分母正确的是( )A.4(x一1)一3(5x+1)=6(2x+1)+1B.4(x一1) -15x+1=6(2x+1)+12C.4(x一1) -3(5x+1)=12x+l+12D.4(x一1) -3(5x+1)=6(2x+1)+128.儿子今年10岁,父亲今年37岁,_________父亲的年龄是儿子年龄的4倍.( ) A.1年后B.1年前C.3年后D.不可能9.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉的千克数为( ) A.6.5 B.7.5 C.8.5 D.8 10.甲乙丙三辆卡车所运货物的吨数的比是4:5:6,已知丙车比甲车多运货物12吨,则三辆卡车共运货物( ) A.90吨B.160吨C.1 50吨D.140吨11.某班同学分组参加活动,原来每组7人.后来重新编组,每组6人,这样比原来增加了1组,这个班共有多少名学生( ) A.45 B.42 C.52 D.4812.在一场篮球比赛中,小军一人独自得17分(不含罚球得分),已知他投人的两分球比三分球少4个,他一共投中了多少个两分球? ( ) A.5 B.3 C.2 D.1三、解答题(共(/4分)13.(本题8分)解方程2x一15335x x-+=-.14.(本题8分)解方程0.20.312 0.50.01x x--=.15.(本题8分)y等于什么数时,代数式()31132yy-++与236y+的值相等.16.(本题8分)老师在黑板上抄了一道解方程题目,值日生不小心擦掉了一个数字,变为2211011346x x x-++-=-(△代表被擦掉的数字),课代表根据老师给出的答案x=-118,求出了这个数字,你能写出课代表的计算过程吗?试试看.17.(本题8分)已知当x=3时,代数式22x+(3一C)x+C的值是9,求当x=一3时,这个代数式的值.18.(本题8分)一个三角形的三条边长的比是3:4:5,最大边与最小边的差为8cm,求这个三角形的周长.19.(本题8分)某玩具厂计划做一批玩具,如果每人做20个,那么比计划多做了400个;如果每人做10个,那么比原计划少了200个,玩具厂共有多少名工人?计划做多少个玩具?20.(本题8分)为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的,该市自来水收费价格见价目表,某用户1月份交水费20元,则该用户1月份用水多少m3?价目表每月用水量单价不超过6m3的部分2元/m3超过6m34元/m3参考答案一、填空题l.2 2.17 3.6 4.2125.6.5cm 6.12二、选择题7.D 8.B 9.C 10.A 11.B 12.D 三、解答题13.2528x=14.x=1 15.y=10916.2211011346x x x-++-=-方程两边同乘12得4(2x一△)一3(2x+1)=2(20x+1)一12 整理得18x=7—4△又118x=-所以7411818--=△=217.把x=3代人22x+(3一c)x+c=9得2×9+3(3一c)+c=9 解得c=9把c=9代入22x+(3一c)x+c得22x一6x+9 当x=一3时22x一6x+9=4518.设三角形三边长分别为3xcm、4xcm、5xcm.根据题意,得5x一3x=8 x=4 三角形三边长为12、16、20 三角形的周长为12+16+20=48 答:三角形的周长为48cm.19.设玩具厂共有x名工人.根据题意,得20x—400=10x+200 10x=600 x=60 20x—400=20×60—400=800 答:玩具厂有60名工人,计划做800个玩具.20.若用水6m3,则需交水费6×2=12(元) 因为20>6×2 所以该用户1月份用水超过6m3设该用户1月份用水x m3.根据题意,得2×6+4(x-6)=20 解得x=8 答:该用户1月份用水8m3.一、填空题(每小题3分,共18分)1.某产品现在的成本是36元,比原来降低了10%,则原来的成本是__________元.2.三个连续奇数,中间的一个数是2n+1,用代数式表示这三个奇数的和是__________.3.某工程甲工程队单独完成需m天,则甲每天完成_________,乙工程队单独完成需,n天,则乙每天完成_________,设甲、乙合作a天完成任务,可得方程为__________.4.某商品先提价20%后又降价20%出售,已知现在售价为a元,则原价为_________.5.有一堆土要运走,工具扁担与箩筐都用上,设扁担有x根,箩筐有18只,两人抬土,则列方程为____________,若一人挑土,则列方程为____________.6.甲、乙两站相距540km,一列快车从甲站开出,每小时行驶72km,一列慢车从乙站开出,每小时行驶48km,两车同时出发经过__________小时相遇.二、选择题(每小题3分,共18分)7.下列方程中(1)2x+4=0变形为x+2=0,(2)x一7=5—3x变形为4x=12,(3)45x=3变形为4x=15,(4)6x=一3变形为x=一2,其中变形正确的是( ) A.(1)(3) B.(1)(2)(3) C.(3)(4) D.(1)(2)(4) 8.某商人在一次买卖中均以150元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( ) A.赚20元B.赔20元C.不赚不赔D.无法确定9.某工程甲单独做10天完成,乙单独做6天完成,现在甲先做了2天,乙再参加合做,求完成这项工程总共用去的时间.设完成这项工程总共用去x天,则下列方程中正确的是 ( )A .21106x x ++= B .221106x x +-+= C .1106x x+= D .222110106x x --++= 10.某物品标价为120元,若以9折出售,仍可获利20%.则该物品进价是 ( ) A .108元 B .90元 C .80元 D .105元 11.一张试卷只有25道选择题,做对一题得4分,做错一题倒扣1分.某学生做了全部试题,共得70分,他做对了多少道题. ( ) A .17 B .18 C .19 D .20 12.某人按定期1年向银行储蓄10000元,利率为4.14%,到期支取时扣除个人所得税(税率为5%)实得利息为 ( )A .414元B .394.7元C .4140元D .393.3元三、解答题(共64分)13.(本题8分)一旅客乘坐的火车以60千米/小时的速度前进,他看见迎面而来的火车用了3秒时间从他身边驶过,已知迎面而来的火车长100米,求迎面而来的火车速度.14.(本题8分)某车问有48名工人,生产某种由一个螺栓及两个螺母为一套的配套产 品,每人每天平均生产螺栓14个或螺母20个,问应分配多少人生产螺栓,才能使每天产出的螺栓与螺母恰好配套?15.(本题8分)一块正方形铁皮,四角截去4个一样的小正方形,折成底面边长是50cm 的无盖长方体盒子,容积是50000cm3,求原来正方形铁皮的边长.16.(本题8分)某企业向银行借了一笔款,年利率为6.3%(不记复利),该企业立即用这笔款购买一批货物,以高于买入价的40%出售,经两年售完,用所得收入还清贷款本利,还剩余5.48万元,问这笔贷款的金额是多少?17.(本题8分)某商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元,该商场为促销制定了两种优惠办法:甲:买一支毛笔就赠送一本书法练习本;乙:按购买金额打九折付款.某校欲为校书法兴趣小组买这种毛笔20支,书法练习本若干本(本数超过20本),当购买多少书法练习本时,采用甲,乙两种优惠办法付款一样多?18.(本题8分)一个蓄水池装有甲乙两个进水管,单独开放甲管,40分钟可注满全池;单独开放乙管,60分钟可注满全池;如果甲乙两管先同时注水12分钟,然后由甲单独注水,问:还需要多少时间才能把水池注满?19.(本题8分)两根同样长但粗细不同的蜡烛,粗烛可燃3小时,细烛可燃2小时.一次停电同时点燃两支蜡烛,来电后同时熄灭,发现粗烛的长度是细烛的2倍,求停电的时间.20.(本题8分)某种商品因换季准备打折出售,如果按定价的六折出售,将赔20元;如果按定价的八折出售,将赚20元.这种商品的定价是多少元?参考答案一、填空题1.40 2.6n+3 3.1m 1n 1a a m n += 4.2524a5.X=18 2x=18 6.4.5二、选择题7.B 8.B 9.D 10.B 11.C 12.D 三、解答题13.设迎面而来的火车速度为x 千米/小时.根据题意,得3秒=11200小时 100米=110千米 60×11200+1200x =110x=60 答:迎面而来的火车速度为60千米/小时 14.设分配x 人生产螺栓才能使每天产出的螺栓与螺母恰好配套.根据题意,得 2×14x=20(48一x) 28x=960—20x 48x=960 x=20 答:分配20人生产螺栓才能使每天产出的螺栓与螺母恰好配套15.设四角截取的小正方形铁皮的边长为x 厘米,则原来正方形铁皮的边长为(50+2x)厘米.根据题意,得50×50x=50000 x=20 50+2x=50+20×2=90答:原来正方形铁皮的边长为90厘米16.设这笔贷款的金额为x 万元.根据题意,得x(1+40%)一x 一2x ×6.3%=5.48 x=20 答:这笔货款的金额为20万元17.设当购买x 本书法练习本时,采用甲、乙两种优惠方法付款一样多,根据题意,得20×25+5(x -20)=0.9(20×25+5x) 解得x=100答:当购买100本书法练习本时,采用甲、乙两种优惠方法付款一样多 18.设还需要x 分钟才能把水池注满.根据题意,得121214060x ++= 解得x=20 答:需要20分钟才能把水池注满19.设停电的时间为x 小时.根据题意,得12132x x ⎛⎫-=- ⎪⎝⎭x=32答:停电的时间为32小时 20.设这种商品的定价为x 元.根据题意,得0.6x+20=0.8x 一20 x=200答:这种商品的定价为200元一、选择题(每小题2分,计20分) 1.下列方程为一元一次方程的是 ( ) A .x+y=5 B .x 2=5 C .x=0 D .15x x+= 2.如果身程2511152n x +-=是关于x 的一元一次方程,则n 的值为 ( ) A .52 B .52- C .2 D .-23.下列方程中,解为x=-2的方程是 ( )A .3x -2=2xB .4x -1=2x+3C .3x+1=2x -1D .2x -3=3x+24.方程2x+1=0的解是 ( ) A .12 B .12- C .2 D .-2 5.根据题意列方程,其中方程列错的是 ( )A .某数的3倍与5的差等于1,列方程为3x -5=1B .某数x 与-5的和等于x 的2倍,列方程为x+5=2xC .比x 的一半少3的数是2.列方程为12x -3=2 D .5与x 的12的差等于x 的13,列方程为11523x x -=6.下列变形中,属于移项的是 ( ) A .5x -4=0得-4+5x=0 B .2x=-1得x=-12C .4x+3=0得4x=-3D .()13245x x --=得13245x x -+= 7.如果3ab 2n -1与ab n+1是同类项,则n 是 ( ) A .2 B .1 C .-1 D .0 8.解方程21101136x x ++-=时。
苏科版七年级数学上册《第4章一元一次方程》综合练习题(附答案)

苏科版七年级数学上册《第4章一元一次方程》综合练习题(附答案)一、单选题1.下列式子:①2x+1;②1+7=15−8+1;③1−2x=x−1;④x+2y=3.其中,方程有()A.1个B.2个C.3个D.4个2.已知2a=b+5,则下列等式中不一定...成立的是()3.关于x的方程2(x−1)−a=0的解是3,则a的值为()A.4B.−4C.5D.−54.下列方程变形中,正确的是()6.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调到甲队汽车()A.8辆B.10辆C.12辆D.16辆7.某商贩售出两套服装,每套均卖110元,按成本计算,其中一套盈利10%,另一套赔了10%,则在这次买卖中这位商贩()A.不赚不赔B.约赚了2.2元C.赔了20元D.约赔了2.2元8.甲、乙两人从同一个地点出发,沿着同一条路线进行赛跑练习,甲每秒跑7m,乙每秒跑6.5m,甲让乙先跑5m.设甲出发xs后追上乙,则下列四个方程中不正确的是()二、填空题三、解答题17.解方程:(1)1−3(x−2)=4(2)2x+13−5x−16=1(3)x−10.3−x+20.5=1.2(4)3|x−1|−7=218.一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1.如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求这个三位数.19.定义:关于x的方程ax−b=0与方程bx−a=0(a,b均为不等于0的常数)称互为“反对方程”,例如:方程2x−1=0与方程x−2=0互为“反对方程”.(1)若关于x的方程2x−3=0与方程3x−c=0互为“反对方程”,则c=___________.(2)若关于x的方程4x+3m+1=0与方程5x−n+2=0互为“反对方程”,求mn的值.(3)若关于x的方程3x−c=0与其“反对方程”的解都是整数,求整数c的值.20.一种笔记本售价为2.5元/本,如果买100本以上(不含100本),售价为2元/本.请回答下面的问题:(1)当n≤100时,买n本笔记本所需钱数为______,当n>100时,买n本笔记本所需的钱数为______.(2)如果七(1)、七(2)两班分别需要购买50本,52本,怎样购买可省钱?可以省多少钱?(3)如果两次共购买200本笔记本(第二次比第一次多),平均每个笔记本为2.2元/本,两次分别购买多少本?21.同学们都知道,|3−(−2)|表示3与−2的差的绝对值,实际上也可以理解为3与−2在数轴上所对应的两个点之间的距离,根据这种意义回答下列问题:(1)|3−(−2)|=_____;(2)若|x+2|=5,求x的值;(3)找出所以符合条件的整数x,使|x+3|+|x−1|=4;(4)求|x−7|+|x+2|的最小值.22.列方程(组)解应用题(1)某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位;若租用同样数量的60座汽车,则比45座汽车多出一辆无人乘坐,但其余客车恰好坐满.问初一年级人数是多少?原计划租用45座汽车多少辆?(2)《孙子算经》是中国古代重要的数学著作,记有许多有趣而又不乏技巧的算术程式,其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八,问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得,那么乙也共有钱到乙所有钱的一半,那么甲共有钱48文,如果乙得到甲所有钱的2348文,问甲,乙二人原来各有多少钱?”23.芜湖市一商场经销的A、B两种商品,A种商品每件售价60元,利润率为50%;B 种商品每件进价为50元,售价80元.(1)A种商品每件进价为元,每件B种商品利润率为.(2)若该商场同时购进A、B两种商品共50件,恰好总进价为2100元,求购进A种商品按上述优惠条件,若小华一次性购买A、B商品实际付款522元,求若没有优惠促销,小华在该商场购买同样商品要付多少元?24.将正整数1,2,3,4,5,……排列成如图所示的数阵:(1)如果设十字架正中心的数为x,用含x的式子表示这五个数的和.(2)十字框中五个数的和能等于180吗?若能,请写出这五个数;若不能,请说明理由;(3)十字框中五个数的和能等于2020吗?若能,请写出这五个数:若不能,请说明理由.参考答案1.解::①2x+1,不是等式,故不是方程,不符合题意;②1+7=15−8+1,不含有未知数,故不是方程,不符合题意;③1−2x=x−1,符合方程的定义,符合题意;④x+2y=3,符合方程的定义,符合题意.故选:B.2.解:A.等式两边同时减去5即可得到,故A正确,不符合题意;B.等式两边同时加上1即可得到,故B 正确,不符合题意;C.等式两边同时除以2即可得到,故C正确,不符合题意;D.等式两边同时乘以3即得到6a=3b+15,故D错误,符合题意;故选:D.3.解:根据题意将x=3代入得:2×(3−1)−a=0解得:a=4故选:A.4.解:A、方程23t=32,系数化为1得t=32×32=94,故该选项不正确;B、方程x−10.2−x0.5=1,整理得5(x−1)−2x=1,去括号得5x−5−2x=1,化简整理可得3x=6,故该选项正确;C、方程3x−2=2x+1,移项得3x−2x=1+2,故该选项不正确;D、方程3−x=2−5(x−1),去括号得3−x=2−5x+5,故该选项不正确;故选:B.5.解:2(x−1)−6=02(x−1)=6x=4∵方程2(x−1)−6=0与1−3a−x3=0的解互为相反数∵1−3a−x3=0的解为:x=−4∵1−3a+43=01=3a+4 33a+4=3,解得:a=−13故选:A.6.解:设需要从乙车队调x辆汽车到甲车队,根据题意得:100+x=2(68−x).解得x=12答:需要从乙队调到甲队汽车12辆.故选:C.7.解:设两套服装进价分别为a元,b元,根据题意得:110−a=10%a,b−110=10%b 解得:a=100 b≈122.2则这次销售中商店盈利110−100+110−122.2=−2.2即约赔2.2元故选D.8.解:由题意可知,甲xs跑的路程为7xm,乙xs跑的路程为6.5xm,根据xs后甲追上乙,列出方程为:7x=6.5x+5故选项A正确,不符合题意;对方程进行变形可得1−2x−56=3−x4故选项C、D正确,不符合题意,选项B不正确,符合题意.故选:B.9.解:x的4倍与7的和等于20,则可列方程为4x+7=20;故答案为:4x+7=20.10.解:由关于x的方程(k−1)x|k|+2=0是一元一次方程则|k|=1,且k−1≠0解得:k=-1.11.解:根据题意可得:13a+2+2a−73=0即a+6+2a−7=0解得a=13;故答案为:13.12.解:∵等式3a−7=2a+11的两边同时减去一个多项式可以得到等式a=8,3a−7−(2a−7)=2a+1−(2a−7)时a=8∵该多项式为2a−7.故答案为2a−7.13.解:根据题意,得:120×5+(120+112)×(x−5)=1则有方程:x20+x−512=1故答案为:x20+x−512=1.14.解:设大箱子x个,小箱子(150−x)个∵大箱子的重量为x4吨,小箱子的重量为150−x6吨根据题意可得x 4+60×16=150−x6+60×14解得x=72150−72=78∵大箱子72个,小箱子78个.故答案为:72,78.15.解:设为了使每天的产品刚好配套,应该分配x名工人生产螺钉,则(22−x)名工人生产螺母根据题意得:2×1200x=2000(22−x)解得:x=10.答:为了使每天的产品刚好配套,应该分配10名工人生产螺钉.故答案为:10.16.解:乙车速度为40÷(1−12)=80(千米/时)设甲行驶时间为t,当相遇前甲、乙两车相距40千米时:(40+80)t=320−40解得t=73当相遇后甲、乙两车相距40千米时:(40+80)t=320+40解得t=3故答案为:73或3.17.(1)解:1−3(x−2)=4去括号,得1−3x+6=4移项,得−3x=4−6−1合并同类项,得−3x=−3系数化为1,得x=1;(2)解:2x+13−5x−16=1去分母,得2(2x+1)−(5x−1)=6去括号,得4x+2−5x+1=6移项,得4x−5x=6−1−2合并同类项,得−x=3系数化为1,得x=−3;(3)解:x−10.3−x+20.5=1.2原方程可变形为10x−103−10x+205=1.2去分母,得5(10x−10)−3(10x+20)=18去括号,得50x−50−30x−60=18移项,得50x−30x=18+50+60合并同类项,得20x=128系数化为1,得x=6.4;(4)解:3|x−1|−7=2去绝对值,得:3(x−1)−7=2或3(1−x)−7=2去括号,得:3x−3−7=2或3−3x−7=2移项,得:3x=2+3+7或−3x=2−3+7合并同类项,得:3x=12或−3x=6系数化为1,得:x=4或x=−2.18.解:由题意设十位上的数为x,则这个数是100(2x+1)+10x+(3x-1)把这个三位数的百位上的数字和个位上的数字对调后的数为100(3x-1)+10x+(2x+1)则100(3x-1)+10x+(2x+1)-[100(2x+1)+10x+(3x-1)]=99解得x=3.所以这个数是738.19.(1)解:由题可知,ax−b=0与方程bx−a=0(a,b均为不等于0的常数)称互为“反对方程”∵2x −3=0与方程3x −c =0互为“反对方程” ∵c =2 故答案为:2.(2)解:将4x +3m +1=0写成4x −(−3m −1)=0的形式 将5x −n +2=0写成5x −(n −2)=0的形式∵4x +3m +1=0与方程5x −n +2=0互为“反对方程” ∵{−3m −1=5n −2=4∵{m =−2n =6∴mn =−2×6=−12;(3)解:3x −c =0的“反对方程”为c ⋅x −3=0 由3x −c =0得 当c ⋅x −3=0,得x =3c∵3x −c =0与c ⋅x −3=0的解均为整数 ∵c3与3c 都为整数∵c 也为整数∵当c =3时c3=1,3c=1都为整数当c =−3时c 3=−1,3c=−1都为整数∵c 的值为±3.20.(1)解:当n ≤100时,买n 本笔记本所需的钱数是:2.5n 当n >100时,买n 本笔记本所需的钱数是:2n ; 故答案为:2.5n ,2n ;(2)解:分开购买所花费用为:2.5×(50+52)=255元 联合购买的费用:2×(50+52)=204元 ∵204<255∵联合购买更省钱,联合购买所省的钱为255−204=51元; (3)解:设第一次购买x 本,则第二购买(200−x )本,根据题意得:2.5x +2(200−x )=2.2×200解得x=80答:第一次购买80本,第二则买120本.21.解:(1)因为在数轴上3与−2之间的距离为5所以|3−(−2)|=5故答案为:5;(2)|x+2|=5即|x−(−2)|=5因为在数轴上距离-2等于5的数字有3和-7故x=3或x=-7;(3)|x+3|+|x−1|=4即|x−(−3)|+|x−1|=4若x在-3的左侧,则x到1的距离大于4,到-3的距离大于0,故x不能在-3的左侧同理x不能在1的右侧若x在-3与1之间(包含-3和-1这两个端点),根据线段的和x与-3和1的距离之和刚好等于4故符合条件的整数x有:-3,-2,-1,0,1;(4)|x−7|+|x+2|即|x−7|+|x−(−2)|由上可知当x在7的右侧或2的左侧时,x与7和-2的距离之和大于9,当x在7和-2之间(包含端点),x与7和-2的距离之和等于9故|x−7|+|x+2|的最小值为9.22.解:(1)设原计划租用45座客车x辆,则租用60座客车(x﹣1)辆,根据题意得:45x+15=60(x﹣1)解得:x=5.当x=5时,60(x﹣1)=60×4=240.答:初一年级人数是240人,原计划租用45座汽车5辆.(2)设甲原有x文钱,则乙原有2(48﹣x)文钱,根据题意,得:2x+2(48﹣x)=483解得:x=36,则2(48﹣x)=24.答:甲原来有36文钱,乙原来有24文钱.23.(1)解:设A种商品每件进价为x元依题意得:60−x=50%x解得:x=40.故A种商品每件进价为40元;每件B种商品利润率为(80−50)÷50=60%.故答案为:40;60%.(2)设购进A种商品x件,则购进B种商品(50−x)件由题意得:40x+50(50−x)=2100解得:x=40.答:购进A种商品40件,B种商品10件.(3)设小华打折前应付款为y元当打折前购物金额超过450元,但不超过600元时由题意得:0.9y=522解得:y=580;当打折前购物金额超过600元时600×0.8+(y−600)×0.7=522解得:y=660.综上可得,小华在该商场购买同样商品要付580元或660元.24.(1)解:五个数的和与框正中心的数还有这种规律.设中心的数为x,则其余4个数分别为x−1,x+1,x−7,x+7.x+x−1+x+1+x−7+x+7=5x∵十字框中五个数的和是5x.(2)十字框中五个数的和不能等于180.∵当5x=180时,解得x=3636÷7=5⋯⋯1,36在数阵中位于第6排的第1个数,其前面无数字∵十字框中五个数的和不能等于180.(3)十字框中五个数的和能等于2020.∵当5x=2020时,解得x=404404÷7=57⋯⋯5,404在数阵中位于第58排的第5个数∵十字框中五个数的和能等于2020这五个数是404,403,405,397,411.。