17.2.3 因式分解法 公开课一等奖教案

合集下载

《因式分解》教案公开课获奖

《因式分解》教案公开课获奖

《因式分解》教案公开课获奖一、教学内容本节课教学内容选自高中数学教材第二册第四章《多项式与因式分解》第三节“因式分解”。

具体内容包括:因式分解的定义与意义、因式分解的基本方法(提公因式法、公式法)、实际例题的讲解与练习。

二、教学目标1. 知识与技能:使学生理解因式分解的概念,掌握提公因式法和公式法两种因式分解方法,并能熟练运用这些方法解决实际问题。

2. 过程与方法:培养学生运用数学知识分析问题、解决问题的能力,提高学生的逻辑思维能力和运算能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作精神和创新意识。

三、教学难点与重点教学重点:因式分解的定义、提公因式法、公式法。

教学难点:如何引导学生发现并运用因式分解的方法,解决实际问题。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:教材、练习本、草稿纸。

五、教学过程1. 实践情景引入(1)通过一个实际问题的引入,让学生感受到因式分解在实际问题中的应用。

(2)让学生尝试解决引入问题,发现解决问题的关键是找到公因式。

2. 新课导入(1)讲解因式分解的定义,让学生明白因式分解的意义。

(2)介绍提公因式法,并通过例题讲解和随堂练习,让学生掌握该方法。

3. 例题讲解(1)选取具有代表性的例题,讲解因式分解的方法和步骤。

(2)引导学生运用提公因式法进行因式分解。

4. 随堂练习(1)让学生独立完成练习题,巩固提公因式法。

(2)针对学生的完成情况进行点评,指出错误原因,并进行纠正。

5. 公式法讲解(1)介绍公式法,并通过例题讲解,让学生掌握该方法。

(2)引导学生运用公式法进行因式分解。

6. 小结与巩固(1)对本节课的内容进行小结,强调因式分解的重要性。

(2)布置课后作业,巩固所学知识。

六、板书设计1. 《因式分解》2. 内容:(1)因式分解的定义与意义(2)提公因式法(3)公式法(4)例题及解答七、作业设计1. 作业题目:(1)利用提公因式法分解下列多项式:a. 3x^2 + 6xb. 4y^3 2y^2(2)利用公式法分解下列多项式:a. x^2 4b. y^2 6y + 92. 答案:(1)a. 3x(x+2) b. 2y^2(y1)(2)a. (x2)(x+2) b. (y3)^2八、课后反思及拓展延伸1. 反思:本节课学生对提公因式法和公式法的掌握程度,以及在实际问题中的应用能力。

因式分解 说课案 全国一等奖ppt课件

因式分解 说课案 全国一等奖ppt课件

法1:(
)+(
)
提取公因式法
探求:a2-bc+ac-ab能分解因式吗?
a2 - bc + a c - a b 法1:(a2+ac)+(-bc-ab)
法2:(
)+(
)
提取公因式法
探求:a2-bc+ac-ab能分解因式吗?
a2 - bc + a c - a b
法1:(a2+ac)+(-bc-ab) 法2:〔a2 -ab〕+(ac-bc)
提取公因式法
目标分析
2.教学目的 知识技艺

程 与
在教学过程中,领会类比的数学思想
方 法
逐渐构成独立思索,自动探求的习惯。
提取公因式法
目标分析
2.教学目的 知识技艺 过程与方法
经过现实情景,让学生认识到
情 感
数学的运用价值,并提高学生
态 关注生存环境的环保认识。

提取公因式法
目标分析
3.教学重、难点
提取公因式法
教材
目的
分析
分析
教学 方法
过程 设计
教学 设计 阐明
过程设计
创设情景 〔2分钟〕
视频图片 新课引入
因式分解
寻觅公因式 新课讲解
提取公因式法
共同小结 知识回想
课堂小结 〔2分钟〕
提取公因式法
沙尘暴
近年来,我国土地沙漠化问题严重, 有3队青年志愿者向沙漠宣战,组织了 一次植物造林活动。每队都种树37行, 其中一队种树102列,二队种树93列, 三队种树105列,完成这次植树活动共 需求多少棵树苗?
xy
-xy

《因式分解》教案公开课获奖

《因式分解》教案公开课获奖

《因式分解》教案公开课获奖一、教学内容本节课的内容选自高中数学教材第九章《代数式》第三节《因式分解》。

详细内容包括因式分解的定义、原理、常用方法和应用。

重点讲解提公因式法、公式法、十字相乘法等因式分解方法。

二、教学目标1. 让学生掌握因式分解的定义、原理和常用方法,能熟练运用这些方法解决实际问题。

2. 培养学生的逻辑思维能力和运算能力。

3. 培养学生运用因式分解解决实际问题的能力,提高数学素养。

三、教学难点与重点教学难点:熟练掌握各种因式分解方法,并能灵活运用。

教学重点:理解因式分解的定义和原理,掌握提公因式法、公式法、十字相乘法等因式分解方法。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:练习本、草稿纸、计算器。

五、教学过程1. 实践情景引入通过一个简单的实际例子,让学生感受到因式分解在解决实际问题中的重要作用。

2. 知识讲解(1)回顾整式的乘法,引导学生发现乘法与除法的关系。

(2)讲解因式分解的定义、原理和常用方法。

(3)通过例题,详细讲解提公因式法、公式法、十字相乘法等因式分解方法。

3. 例题讲解选取具有代表性的例题,详细讲解解题思路和步骤。

4. 随堂练习设计针对性的练习题,让学生及时巩固所学知识。

六、板书设计1. 《因式分解》2. 定义、原理、方法列表3. 例题及解答过程4. 练习题及答案七、作业设计1. 作业题目(1)利用提公因式法分解因式:6x^2 9x。

(2)利用公式法分解因式:x^2 4。

(3)利用十字相乘法分解因式:x^2 + 3x 4。

2. 答案(1)3x(2x 3)(2)(x + 2)(x 2)(3)(x + 4)(x 1)八、课后反思及拓展延伸1. 反思:本节课学生掌握因式分解的方法情况,分析教学过程中的不足,及时调整教学方法。

2. 拓展延伸:介绍因式分解在其他数学领域中的应用,如代数方程、不等式的求解等,激发学生的学习兴趣。

重点和难点解析1. 教学目标的设定2. 教学难点与重点的把握3. 教学过程中的例题讲解和随堂练习设计4. 板书设计5. 作业设计6. 课后反思及拓展延伸一、教学目标的设定教学目标应明确、具体,符合学生的认知发展水平。

《因式分解法》示范公开课教学设计【部编新人教版九年级数学上册】

《因式分解法》示范公开课教学设计【部编新人教版九年级数学上册】

《因式分解法》教学设计
一、教学目标
1.了解因式分解法的概念;
2.会利用因式分解法解简单数字系数的一元二次方程;
3.经历探索因式分解法解一元二次方程,发展学生的逻辑推理和数学运算的核心素养,
同时学会灵活选择解方程的方法;
4.通过运用因式分解法解简单系数的一元二次方程,体验解决问题的方法多样性,提
升学习数学的兴趣,并建立学好数学的自信心.
二、教学重难点
重点:应用因式分解法解一元二次方程.
难点:将方程化为一般形式后,对方程左侧二次三项式进行因式分解.
三、教学用具
多媒体课件
四、教学过程设计
思维导图的形式呈现本节课的主要内容:
问题:本节课你学到了什么?能不能对解一元二次方程做一个总结?
四种基本解法比较
教师总结归纳:
配方法要先配方,再降次;通过配方法可以推出求根公式,公式法直接利用求。

《因式分解》精品教案公开课获奖

《因式分解》精品教案公开课获奖

《因式分解》精品教案公开课获奖一、教学内容本节课选自人教版数学八年级下册第十七章《因式分解》。

具体内容包括17.1节“因式分解意义和方法”,以及17.2节“提取公因式法分解因式”。

在此基础上,我详细解读平方差公式和完全平方公式应用,并安排相应例题和实践练习。

二、教学目标1. 让学生理解因式分解概念,掌握因式分解基本方法。

2. 培养学生运用提取公因式法、平方差公式和完全平方公式进行因式分解能力。

3. 培养学生逻辑思维能力和解决问题能力。

三、教学难点与重点1. 教学重点:因式分解意义和方法,提取公因式法,平方差公式和完全平方公式应用。

2. 教学难点:如何运用提取公因式法、平方差公式和完全平方公式进行因式分解。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:练习本、铅笔、橡皮。

五、教学过程1. 导入:通过一个实践情景引入,让学生思考如何将一个多项式拆分成几个整式乘积形式,从而引出因式分解概念。

2. 新课:详细讲解因式分解意义和方法,以及提取公因式法、平方差公式和完全平方公式应用。

3. 例题讲解:选取具有代表性例题,引导学生运用所学方法进行因式分解,并讲解解题思路。

4. 随堂练习:让学生独立完成练习题,巩固所学知识,并及时给予指导和反馈。

六、板书设计1. 因式分解意义和方法2. 提取公因式法3. 平方差公式:a² b² = (a + b)(a b)4. 完全平方公式:a² + 2ab + b² = (a + b)²,a² 2ab + b² =(a b)²5. 例题及解题步骤七、作业设计1. 作业题目:(1)分解因式:x² 4(2)分解因式:a² + 2a + 1(3)分解因式:2x² + 4x + 22. 答案:(1)(x + 2)(x 2)(2)(a + 1)²(3)2(x + 1)²八、课后反思及拓展延伸1. 反思:本节课学生对因式分解方法掌握情况较好,但部分学生在运用平方差公式和完全平方公式时还存在困难,需要在今后教学中加强巩固。

因式分解公式法市公开课一等奖省优质课获奖课件

因式分解公式法市公开课一等奖省优质课获奖课件

【跟踪练习】学生独立确定解题思绪,小组内交流,上台展示并讲解思绪。5分钟
点拨精讲:先分解因式后计算出来,再约分。
第7页
【点拨精讲】(3分钟) 1、分解因式步骤:先排列,第一项系数不为负;然后
提取公因式;再利用公式分解,最终检验各因式是否能再 分解.
2、不能直接用平方差公式分解,应考虑能否经过变形, 创设应用差公式因式分解; 2、掌握利用平方公式因式分解步骤。
【学习重、难点】 重点:利用平方差公式因式分解。 难点:能熟练利用平方差公式因式分解。
第2页
【预习导学】
x2 4
x 2x 2
y2 25
y 5 y 5
平方差


第3页
【预习导学】
点拨精讲:判断是否符合平方差公式结构。
第8页
【课堂小结】
(学生总结本堂课收获与迷惑)2分钟
【当堂训练】10分钟
第9页
点拨精讲:先提公因式,然后再利用公式;一直要分解到不能分解为止。
第4页
【合作探究】小组讨论交流解题思绪,小组活动后,小组代表展示活动结果。10分钟
探究1 求证:当n是正整数时,两个连续奇数平方差一定是8倍
数。
第5页
【合作探究】小组讨论交流解题思绪,小组活动后,小组代表展示活动结果。10分钟
第6页

《因式分解》word优质课获奖教案 (市优)

   《因式分解》word优质课获奖教案 (市优)

本课在整个单元中,属于比较重要的环节。

除了起到承接上个课时、转接下课时的作用之外,还有一些重点的计算知识和转化相应的课时。

本单元在学科核心素养中,具体体现出非常重要的一环,就是在高效课堂的设计和转化过程中,注意学生主体意识的培养和学生学习兴趣的提高。

学习兴趣之于学生,是非常重要而且更加有意义的教学活动。

对于不同层次的学生来讲,环节上的应用更加大了不同学生之间互相弥合的意义。

11.1因式分解教学思想设计因式分解与整式运算是不同的整式变形,概念的引人应着重引导学生观察变形的特点,理解变形的意义,还应随时回忆这一概念、运用这一概念、巩固这个概念,而不要希望一蹴而就。

在因式分解中换元思想起着重要的作用,公因式m既可以是单项式,又可以是多项式,公式法中的a,b……也可以表示任何一个代数式。

本章运用换元法这一重要的数学思想方法也是为今后的代数学习打下良好的基础。

提取公因式法是因式分解的最基本的方法,也是最常用的方法,它的理论依据是乘法分配律。

在讲解时可以先讲单项式乘以多项式,再把它逆过来运算就是提取公因式,用这个方法,首先对要分解的多项式认真观察,确定公因式是至关重要的。

教学目标知识与技能目标1.了解因式分解的意义及其与整式的乘法之间的关系。

2.感受因式分解在解决相关问题中的作用。

过程与方法目标通过了解因式分解的意义及其与整式的乘法之间的关系,从中体事物之间可以相互转化的辩证思想。

情感与态度目标培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。

重点难点重点:因式分解的概念。

难点:理解因式分解与整式乘法的相互关系及灵活运用提公因式法分解因式。

关键点:对公式的结构特征应做出具体分析,掌握公式的特点,加深理解,并培养学生在多变的情况运用公式。

教学方法讲授法教学仪器多媒体教学过程设计 一、回顾:1.整式乘法有几种形式? (1)单项式乘以单项式(2)单项式乘以多项式:a (m +n )=am +an(3)多项式乘以多项式:(a +b )(m +n )=am +an +bm +bn 2.乘法公式有哪些?(1)两数和乘以它们的差公式:()()2b a b a b a -=-+(2)两数和的平方公式:()2222b ab a b a +±=±3.试计算(1)3a (a -2b +c ) (2)(a +3)(a -3) (3)()22b a + (4)()23b a -二、探索新知,找出规律1.根据上面得到的结果,你会做下面的填空吗?(1)32a -6ab +3ac=( )( ) (2)2a -9=( )( )(3)2a +4ab +42b =( )( ) (4)2a -6ab +92b =( )( ) 2.观察复习与回顾的练习,你能发现它们之间的联系与区别吗? 学生反复仔细观察、对比,找出其中的联系与区别。

初中数学因式分解教案一等奖优秀范文

初中数学因式分解教案一等奖优秀范文

初中数学因式分解教案一等奖优秀范文1、初中数学因式分解教案一等奖优秀范文一、教学目标【知识与技能】了解运用公式法分解因式的意义,会用平方差分解因式;知道提公因式法分解因式是首先考虑的方法,再考虑用平方差分解因式。

【过程与方法】通过对平方差特点的辨析,培养观察、分析能力,训练对平方差公式的应用能力。

【情感态度价值观】在逆用乘法公式的过程中,培养逆向思维能力,在分解因式时了解换元的思想方法。

二、教学重难点【教学重点】运用平方差公式分解因式。

【教学难点】灵活运用公式法或已经学过的提公因式法分解因式;正确判断因式分解的彻底性。

三、教学过程(一)引入新课我们学习了因式分解的定义,还学习了提公因式法分解因式。

如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,大家知道因式分解与多项式乘法是互逆关系,能否利用这种关系找到新的因式分解的方法呢?大家先观察下列式子:(1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-13a)=他们有什么共同的特点?你可以得出什么结论?(二)探索新知学生独立思考或者与同桌讨论。

引导学生得出:①有两项组成,②两项的符号相反,③两项都可以写成数或式的平方的形式。

提问1:能否用语言以及数学公式将其特征表述出来?2、初中数学因式分解教案一等奖优秀范文教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式, 对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知【问题牵引】请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).【学生活动】动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25;2.分解因式16m2-9n.【学生活动】从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学【例1】把下列各式分解因式:(投影显示或板书)(1)x2-9y2;(2)16x4-y4;(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;(5)m2(16x-y)+n2(y-16x).【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.【学生活动】分四人小组,合作探究.解:(1)x2-9y2=(x+3y)(x-3y);(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)]=5y(2x-y);(5)m2(16x-y)+n2(y-16x)=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).3、初中数学因式分解教案一等奖优秀范文教学目标1.知识与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的`作用.3.情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.重、难点与关键1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法采用“激趣导学”的教学方法.教学过程一、创设情境,激趣导入【问题牵引】请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探索:你会做下面的填空吗?1.ma+mb+mc=()();2.x2-4=()();3.x2-2xy+y2=()2.【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①(x+1)(x-1)=x2-1;②a2-1+b2=(a+1)(a-1)+b2;③7x-7=7(x-1).(2)在下列括号里,填上适当的项,使等式成立.①9x2(______)+y2=(3x+y)(_______);②x2-4xy+(_______)=(x-_______)2.四、随堂练习,巩固深化课本练习.【探研时空】计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业.板书设计4、初中数学因式分解教案一等奖优秀范文15.1.1 整式教学目标1.单项式、单项式的定义.2.多项式、多项式的次数.3、理解整式概念.教学重点单项式及多项式的有关概念.教学难点单项式及多项式的有关概念.教学过程.提出问题,创设情境在七年级,我们已经学习了用字母可以表示数,思考下列问题1.要表示 ABC的周长需要什么条件?要表示它的面积呢?2.小王用七小时行驶了Skm的路程,请问他的平均速度是多少?结论:1、要表示 ABC的周长,需要知道它的各边边长.要表示 ABC 的面积需要知道一条边长和这条边上的高.如果设BC=a,AC=b,AB=c.AB边上的高为h, 那么 ABC的周长可以表示为a+b+c; ABC 的面积可以表示为ch.2.小王的平均速度是.问题:这些式子有什么特征呢?(1)有数字、有表示数字的字母.(2)数字与字母、字母与字母之间还有运算符号连接.归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.判断上面得到的三个式子:a+b+c、ch、是不是代数式?(是)代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式..明确和巩固整式有关概念(出示投影)结论:(1)正方形的周长:4x.(2)汽车走过的路程:vt.(3)正方体有六个面,每个面都是正方形,这六个正方形全等, 所以它的表面积为6a2;正方体的体积为长宽高,即a3.(4)n的相反数是-n.分析这四个数的特征.它们符合代数式的定义.这五个式子都是数与字母或字母与字母的积,而a+b+c、ch、中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同.请同学们阅读课本P160~P161单项式有关概念.根据这些定义判断4x、vt、6a2、a3、-n、a+b+c、ch、这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数.结论:4x、vt、6a2、a3、-n、ch是单项式.它们的系数分别是4、1、6、1、-1、.它们的次数分别是1、2、2、3、1、2.所以4x、-n都是一次单项式;vt、6a2、 ch都是二次单项式;a3是三次单项式.问题:vt中v和t的指数都是1,它不是一次单项式吗?结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt是二次单项式而不是一次单项式.生活中不仅仅有单项式,像a+b+c,它不是单项式,和单项式有什么联系呢?写出下列式子(出示投影)结论:(1)t-5.(2)3x+5y+2z.(3)三角尺的面积应是直角三角形的面积减去圆的面积,即ab-3.12r2.(4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为32、43,所以它们的面积和是18.于是得这所住宅的建筑面积是x2+2x+18.我们可以观察下列代数式:a+b+c、t-5、3x+5y+2z、ab-3.12r2、x2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式?这样推理合情合理.请看投影,熟悉下列概念.根据定义,我们不难得出a+b+c、t-5、3x+5y+2z、ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.a+b+c的项分别是a、b、c.t-5的项分别是t、-5,其中-5是常数项.3x+5y+2z的项分别是3x、5y、2z.ab-3.12r2的项分别是ab、-3.12r2.x2+2x+18的项分别是x2、2x、18.找多项式的次数应抓住两条,一是找准每个项的次数, 二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也体会到符号的`魅力所在.我们把单项式与多项式统称为整式..随堂练习1.课本P162练习.课时小结通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义, 发展符号感..课后作业1.课本P165~P166习题15.1─1、5、8、9题.2.预习“整式的加减”.课后作业:《课堂感悟与探究》15.1.2 整式的加减(1)教学目的:1、解字母表示数量关系的过程,发展符号感。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.因式分解法
1.理解并掌握用因式分解法解方程的
依据;(难点)
2.会用因式分解法解一些特殊的一元
二次方程.(重点)
一、情境导入
我们知道ab=0,那么a=0或b=0,
类似的解方程(x+1)(x-1)=0时,可转化为
两个一元一次方程x+1=0或x-1=0来
解,你能求(x+3)(x-5)=0的解吗?
二、合作探究
探究点:用因式分解法解一元二次方程
【类型一】利用提公因式法分解因式解
一元二次方程
用因式分解法解下列方程:
(1)x2+5x=0;
(2)(x-5)(x-6)=x-5.
解析:变形后方程右边是零,左边是能
分解的多项式,可用因式分解法.
解:(1)原方程转化为x(x+5)=0,
所以x=0或x+5=0,
所以原方程的解为x1=0,x2=-5;
(2)原方程转化为(x-5)(x-6)-(x-5)
=0,
所以(x-5)[(x-6)-1]=0,
所以(x-5)(x-7)=0,
所以x-5=0或x-7=0,
所以原方程的解为x1=5,x2=7.
方法总结:利用提公因式法时先将方程
右边化为0,观察是否有公因式,若有公因
式,就能快速分解因式求解.
【类型二】利用公式法分解因式解一元
二次方程
用公式法分解因式解下列方程:
(1)x2-6x=-9;
(2)4(x-3)2-25(x-2)2=0.
解:(1)原方程可变形为x2-6x+9=0,
则(x-3)2=0,
∴x-3=0,
∴原方程的解为x1=x2=3;
(2)[2(x-3)]2-[5(x-2)]2=0,
[2(x-3)+5(x-2)][2(x-3)-5(x-2)]=
0,
(7x-16)(-3x+4)=0,
∴7x-16=0或-3x+4=0,
∴原方程的解为x1=
16
7,x2=
4
3.
方法总结:用因式分解法解一元二次方
程的一般步骤是:①将方程的右边化为0;
②将方程的左边分解为两个一次因式的乘
积;③令每一个因式分别为零,就得到两个
一元一次方程;④解这两个一元一次方程,
它们的解就是原方程的解.
三、板书设计
本节课通过学生自学探讨一元二次方程的
解法,使他们知道分解因式是一元二次方程
中应用较为广泛的简便方法,它避免了复杂
的计算,提高了解题速度和准确程度.牢牢
把握用因式分解法解一元二次方程的一般
步骤,通过练习加深学生用因式分解法解一
元二次方程的方法。

相关文档
最新文档