公式法因式分解2教案
2024年人教版八年级数学上册教案及教学反思第14章14.3.2 公式法(第2课时)

第十四章整式的乘法与因式分解14.3 因式分解14.3.2 公式法第2课时一、教学目标【知识与技能】1.在掌握了因式分解意义的基础上,会运用平方差公式和完全平方公式对比较简单的多项式进行因式分解.【过程与方法】1.经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.2.在运用公式法进行因式分解的同时,培养学生的观察、比较和判断能力以及运算能力,用不同的方法分解因式可以提高综合运用知识的能力.【情感、态度与价值观】1.培养学生逆向思维的意识,同时培养学生团队合作、互帮互助的精神.2.进一步体验“整体”的思想,培养“换元”的意识.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】运用完全平方公式法进行因式分解.【教学难点】观察多项式的特点,判断是否符合公式的特征和综合运用分解的方法,并完整地进行分解.五、课前准备教师:课件、直尺、矩形图片等。
学生:三角尺、练习本、铅笔、钢笔。
六、教学过程(一)导入新课我们知道,因式分解与整式乘法是反方向的变形,我们学习了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?(出示课件2)(二)探索新知1.创设情境,探究运用完全平方公式分解因式教师问1:什么叫因式分解?(出示课件4)学生回答:把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.教师问2:我们已经学过哪些因式分解的方法?学生回答:提公因式法、平方差公式:a2–b2=(a+b)(a–b)教师问3:把下列各式分解因式:(1)ax4-a;(2)16m4-n4.学生回答:(1)ax4-a=a(x2+1)(x+1)(x-1);(2)16m4-n4=(4m2+n)(2m+n)(2m-n).教师问4:结合上题思考因式分解要注意什么问题?学生回答:①一提二看三检查;②分解要彻底.教师问5:我们学过的乘法公式除了平方差公式之外,还有哪些公式?请写出来.学生回答:完全平方公式:(a±b)2=a2±2ab+b2教师讲解:这节课我们就来讨论如何运用完全平方公式把多项式因式分解.教师问6:你能把下面4个图形拼成一个正方形并求出你拼成的图形的面积吗?(出示课件5)学生讨论后拼出下图:教师问7:这个大正方形的面积可以怎么求?学生回答:(a+b)2=a2+2ab+b2教师问8:将上面的等式倒过来看,能得到什么呢?学生回答:a2+2ab+b2=(a+b)2(出示课件6)教师问:观察这两个多项式:a2+2ab+b2;a2–2ab+b2,请回答下列各题:(出示课件7)(1)每个多项式有几项?学生回答:三项(2)每个多项式的第一项和第三项有什么特征?学生回答:这两项都是数或式的平方,并且符号相同.(3)中间项和第一项,第三项有什么关系?学生回答:是第一项和第三项底数的积的±2倍.教师讲解:我们把a²+2ab+b²和a²–2ab+b²这样的式子叫做完全平方式.教师问9:把下列各式分解因式:(1)a2+2ab+b2;(2)a2-2ab+b2.学生回答:(1)a2+2ab+b2=(a+b)2;(2)a2-2ab+b2=(a-b)2.教师问10:将整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式.能不能用语言叙述呢?学生回答后,师生共同讨论后解答如下:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方.即a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.教师问11:下列各式是不是完全平方式?如果是,请分解因式.(1)a2-4a+4;(2)x2+4x+4y2;(3)4a2+2ab+14b2;(4)a2-ab+b2;(5)x2-6x-9;(6)a2+a+0.25.学生讨论后回答如下:(1)a2-4a+4;是,原式=(a-2)2 (2)x2+4x+4y2;不是(3)4a2+2ab+14b2;是,原式=(2a+12b)2(4)a2-ab+b2;不是(5)x2-6x-9;不是(6)a2+a+0.25.是,原式=(a+0.5)2教师问12:根据学习用平方差公式分解因式的经验和方法,分析和推测什么叫做运用完全平方公式分解因式?能够用完全平方公式分解因式的多项式具有什么特点?学生讨论后回答,师生共同归纳如下:①三项式;②两项为两个数的平方和的形式;③第三项为加(或减)这两个数的积的2倍.总结点拨:(出示课件8)完全平方式: a²±2ab+b²完全平方式的特点:1.必须是三项式(或可以看成三项的);2.有两个同号的数或式的平方;3.中间有两底数之积的±2倍.简记口诀:首平方,尾平方,首尾两倍在中央.(出示课件9)凡具备这些特点的三项式,就是完全平方式,将它写成完全平方形式,便实现了因式分解.两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例1:分解因式:(出示课件12)(1)16x2+24x+9;(2)–x2+4xy–4y2.师生共同解答如下:(1)分析:(1)中,16x2=(4x)2,9=3²,24x=2·4x·3,所以16x2+24x+9是一个完全平方式,即16x2 + 24x +9= (4x)2+2·4x·3+ 32.解:(1)16x2+ 24x +9= (4x)2 + 2·4x·3 + 32= (4x + 3)2;(2)中首项有负号,一般先利用添括号法则,将其变形为–(x2–4xy+4y2),然后再利用公式分解因式.(2)–x2+ 4xy–4y2=–(x2–4xy+4y2)=–(x–2y)2.例2:如果x2–6x+N是一个完全平方式,那么N是( )(出示课件15)A . 11 B. 9 C. –11 D. –9师生共同解答如下:解析:根据完全平方式的特征,中间项–6x=2x×(–3),故可知N=(–3)2=9.答案:B总结点拨:(出示课件16)本题要熟练掌握完全平方公式的结构特征,根据参数所在位置,结合公式,找出参数与已知项之间的数量关系,从而求出参数的值.计算过程中,要注意积的2倍的符号,避免漏解.例3:把下列各式分解因式:(出示课件18)(1)3ax2+6axy+3ay2 ;(2)(a+b)2–12(a+b)+36.师生共同解答如下:分析:(1)中有公因式3a,应先提出公因式,再进一步分解因式;(2)中将a+b 看成一个整体,设a+b=m,则原式化为m2–12m+36.解: (1)原式=3a(x2+2xy+y2)=3a(x+y)2;(2)原式=(a+b)2–2·(a+b) ·6+62=(a+b–6)2.总结点拨:利用公式把某些具有特殊形式(如平方差式,完全平方式等)的多项式分解因式,这种分解因式的方法叫做公式法.(出示课件19)例4:把下列完全平方式分解因式:(出示课件21)(1)1002–2×100×99+99²;(2)342+34×32+162.师生共同解答如下:解:(1)原式=(100–99)²=1(2)原式=(34+16)2=2500.总结点拨:本题利用完全平方公式分解因式,可以简化计算.例5:已知:a 2+b 2+2a –4b+5=0,求2a 2+4b –3的值.(出示课件23) 师生共同解答如下:分析:从已知条件可以看出,a 2+b 2+2a –4b+5与完全平方式有很大的相似性(颜色相同的项),因此可通过“凑”成完全平方式的方法,将已知条件转化成非负数之和等于0的形式,从而利用非负数的性质来求解.(出示课件24)解:由已知可得(a 2+2a+1)+(b 2–4b+4)=0即(a+1)2+(b –2)2=0∴ 2a 2+4b –3=2×(–1)2+4×2–3=7总结点拨:遇到多项式的值等于0、求另一个多项式的值,常常通过变形为完全平方公式和(非负数的和)的形式,然后利用非负数性质来解答.(三)课堂练习(出示课件27-31)1.下列四个多项式中,能因式分解的是( )A .a 2+1B .a 2–6a +9C .x 2+5yD .x 2–5y2.把多项式4x 2y –4xy 2–x 3分解因式的结果是( )A .4xy(x –y)–x 3B .–x(x –2y)21020a b +=⎧∴⎨-=⎩12a b =-⎧∴⎨=⎩C.x(4xy–4y2–x2) D.–x(–4xy+4y2+x2)3.若m=2n+1,则m2–4mn+4n2的值是________.4.若关于x的多项式x2–8x+m2是完全平方式,则m的值为_________ .5. 把下列多项式因式分解.(1)x2–12x+36; (2)4(2a+b)2–4(2a+b)+1;(3) y2+2y+1–x2;6. 计算:(1) 38.92–2×38.9×48.9+48.92.(2)20142-2014×4026+201327. 分解因式:(1)4x2+4x+1;(2)1x2–2x+3.3小聪和小明的解答过程如下:小聪: 小明:他们做对了吗?若错误,请你帮忙纠正过来.8. (1)已知a–b=3,求a(a–2b)+b2的值;(2)已知ab=2,a+b=5,求a3b+2a2b2+ab3的值.参考答案:1.B2.B3.14. ±45. 解:(1)原式=x2–2·x·6+62=(x–6)2;(2)原式=[2(2a+b)]²–2·2(2a+b)·1+1²=(4a+2b–1)2;(3)原式=(y+1)²–x²=(y+1+x)(y+1–x).6. 解:(1)原式=(38.9–48.9)2=100.(2)原式=20142-2×2014×2013+20132=(2014-2013)2=17. 解: (1)原式=(2x)2+2•2x•1+1=(2x+1)2(2)原式=13(x2–6x+9)=13(x–3)28. 解:(1)原式=a2–2ab+b2=(a–b)2.当a–b=3时,原式=32=9.(2)原式=ab(a2+2ab+b2)=ab(a+b)2. 当ab=2,a+b=5时,原式=2×52=50.(四)课堂小结今天我们学了哪些内容:a2±2ab+b2=(a±b)2一提,二看,三检查。
公式法分解因式(二)课件

例3 分解因式
1. 3ax2+6axy+3ay2 2. -x2-4y2+4xy 3. (x+y)x2+2xy(x+y)+y2(x+y)
例4 分解因式
1. a2+b2-2ab - 4(a-b)+4 2. 9(a+2b)2- 30a- 60b+25
3. x4+x2 +1
两人一组,合作编题。
编两道分解因式题,分别满足: 1. 要用到提公因式法和完全平
完全平方公式法分解因式
复习
1、因式分解定义 2、已学过的因式分解的方法
例1 判断下列多项式是不是完 全平方式,若是,请分解因式。
1. x2+12x+36 2. x2-4xy-4y2 3. (x+y)2-6(x+y)+9
例2 分解因式
1. 9a2b2+6ab+1 2. 4-12(x-y)+9(x-y)2 3. x6-10x3+25
方公式。 2. 要用到平方差公式和完全平
方公式。
看谁做得快
1. 20022-4×2002+4 2. 1.23452+0.76552 +
2.469 × 0.7655 3. 20062-4010×2006+20052
随堂测试:分解因式
(1)x2y2-6xy+9 (2)-a+2a2-a3 (3)a4-8a2b2+16b4 (4) (x2+5x)(x2+5_______ 2.我想进一步研究的问题是______
分解因式歌 首先提取公因式,然后想到用公式。 两项想到平方差,然后立方和与差。 三项考虑全平方,十字相乘不能忘。 添项拆项试一试,整体换元功能强。
2023七年级数学下册第8章整式乘法与因式分解8.4因式分解2公式法教案(新版)沪科版

题型三:综合题
5. 已知一个二次方程 \(x^2 + (a+b)x + ab = 0\) 的两个根的和为 \(-a-b\),两个根的积为 \(ab\),求这个二次方程。
提示:在解题过程中,请同学们注意运用完全平方公式和平方差公式,以及灵活运用所学的因式分解技巧。
1.理论介绍:首先,我们要了解公式法分解因式的基本概念。公式法是利用特定的数学公式将一个多项式分解成两个或多个多项式的乘积。它是解决因式分解问题的重要方法之一。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了公式法在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调完全平方公式和平方差公式这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
四、教学资源
软硬件资源:
1. 教室内的多媒体设备,包括投影仪和计算机。
2. 学生用的计算器。
3. 白板和记号笔。
课程平台:
1. 人教版七年级数学下册教材。
2. 与教材配套的练习册和作业本。
信息化资源:
1. 教学PPT,包含本节课的主要内容和例题。
2. 在线数学题库,用于学生练习和巩固知识。
教学手段:
六、教学资源拓展
1.拓展资源:
(1)课后习题:为学生提供与本节课内容相关的课后习题,包括不同难度的题目,以便学生巩固所学知识。
(2)在线课程:推荐一些与因式分解相关的在线课程或视频,如“公式法分解因式技巧讲解”、“因式分解的实际应用”等,以便学生进一步学习和拓展知识。
(3)数学竞赛题目:提供一些与因式分解相关的数学竞赛题目,激发学生的学习兴趣和挑战精神。
因式分解教案_2

因式分解教案因式分解教案篇1教学目标1.知识与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.重、难点与关键1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法采用“激趣导学”的教学方法.教学过程一、创设情境,激趣导入【问题牵引】请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探索:你会做下面的填空吗?1.ma+mb+mc=()();2.x2-4=()();3.x2-2xy+y2=()2.【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①(x+1)(x-1)=x2-1;②a2-1+b2=(a+1)(a-1)+b2;③7x-7=7(x-1).(2)在下列括号里,填上适当的项,使等式成立.①9x2(______)+y2=(3x+y)(_______);②x2-4xy+(_______)=(x-_______)2.四、随堂练习,巩固深化课本练习.【探研时空】计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业.板书设计15.4.1 因式分解1、因式分解例:练习:15.4.2 提公因式法教学目标1.知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式.2.过程与方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.3.情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.重、难点与关键1.重点:掌握用提公因式法把多项式分解因式.2.难点:正确地确定多项式的最大公因式.3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.•公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.教学方法采用“启发式”教学方法.教学过程一、回顾交流,导入新知【复习交流】下列从左到右的变形是否是因式分解,为什么?(1)2x2+4=2(x2+2);(2)2t2-3t+1= (2t3-3t2+t);(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;(5)x2-2xy+y2=(x-y)2.问题:1.多项式mn+mb中各项含有相同因式吗?2.多项式4x2-x和xy2-yz-y呢?请将上述多项式分别写成两个因式的乘积的形式,并说明理由.【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y 中的公因式是y.概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.二、小组合作,探究方法【教师提问】多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.三、范例学习,应用所学【例1】把-4x2yz-12xy2z+4xyz分解因式.解:-4x2yz-12xy2z+4xyz=-(4x2yz+12xy2z-4xyz)=-4xyz(x+3y-1)【例2】分解因式,3a2(x-y)3-4b2(y-x)2【思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.解法1:3a2(x-y)3-4b2(y-x)2=-3a2(y-x)3-4b2(y-x)2=-[(y-x)23a2(y-x)+4b2(y-x)2]=-(y-x)2 [3a2(y-x)+4b2]=-(y-x)2(3a2y-3a2x+4b2)解法2:3a2(x-y)3-4b2(y-x)2=(x-y)23a2(x-y)-4b2(x-y)2=(x-y)2 [3a2(x-y)-4b2]=(x-y)2(3a2x-3a2y-4b2)【例3】用简便的方法计算:0.84×12+12×0.6-0.44×12.【教师活动】引导学生观察并分析怎样计算更为简便.解:0.84×12+12×0.6-0.44×12=12×(0.84+0.6-0.44)=12×1=12.【教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?四、随堂练习,巩固深化课本P167练习第1、2、3题.【探研时空】利用提公因式法计算:0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69五、课堂总结,发展潜能1.利用提公因式法因式分解,关键是找准最大公因式.•在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.六、布置作业,专题突破课本P170习题15.4第1、4(1)、6题.板书设计15.4.2 提公因式法1、提公因式法例:练习:15.4.3 公式法(一)教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知【问题牵引】请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).【学生活动】动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25; 2.分解因式16m2-9n.【学生活动】从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学【例1】把下列各式分解因式:(投影显示或板书)(1)x2-9y2;(2)16x4-y4;(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;(5)m2(16x-y)+n2(y-16x).【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.【学生活动】分四人小组,合作探究.解:(1)x2-9y2=(x+3y)(x-3y);(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);(5)m2(16x-y)+n2(y-16x)=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).三、随堂练习,巩固深化课本P168练习第1、2题.【探研时空】1.求证:当n是正整数时,n3-n的值一定是6的倍数.2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.四、课堂总结,发展潜能运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.五、布置作业,专题突破课本P171习题15.4第2、4(2)、11题.板书设计15.4.3 公式法(一)1、平方差公式:例:a2-b2=(a+b)(a-b)练习:15.4.3 公式法(二)教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力.2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的.教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知【问题牵引】1.分解因式:(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3) x2-0.01y2.因式分解教案篇2教学目标:1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力.2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法.3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想.教学重、难点:用提公因式法和公式法分解因式.教具准备:多媒体课件(小黑板)教学方法:活动探究法教学过程:引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解.什么叫因式分解?知识详解知识点1 因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【说明】 (1)因式分解与整式乘法是相反方向的变形.例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验.怎样把一个多项式分解因式?知识点2 提公因式法多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).探究交流下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.典例剖析师生互动例1 用提公因式法将下列各式因式分解.(1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形, 再把b-a化成-(a-b),然后再提取公因式.小结运用提公因式法分解因式时,要注意下列问题:(1)因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能再分解.(2)如果出现像(2)小题需统一时,首先统一,尽可能使统一的个数少。
因式分解教案-2

因式分解教案有关因式分解教案4篇因式分解教案篇1学习目标1、学会用公式法因式法分解2、综合运用提取公式法、公式法分解因式学习重难点重点:完全平方公式分解因式.难点:综合运用两种公式法因式分解自学过程设计完全平方公式:完全平方公式的逆运用:做一做:1.(1)16x2-8x+_______=(4x-1)2;(2)_______+6x+9=(x+3)2;(3)16x2+_______+9y2=(4x+3y)2;(4)(a-b)2-2(a-b)+1=(______-1)2.2.在代数式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,•可用完全平方公式因式分解的是_________(填序号)3.下列因式分解正确的是( )A.x2+y2=(x+y)2B.x2-xy+x2=(x-y)2C.1+4x-4x2=(1-2x)2D.4-4x+x2=(x-2)24.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+15.计算:20062-40102006+20052=___________________.6.若x+y=1,则 x2+xy+ y2的值是_________________.想一想你还有哪些地方不是很懂?请写出来。
________________________________________________________________________ ____________ 预习展示一:1.判别下列各式是不是完全平方式.2、把下列各式因式分解:(1)-x2+4xy-4y2(2)3ax2+6axy+3ay2(3)(2x+y)2-6(2x+y)+9应用探究:1、用简便方法计算49.92+9.98 +0.12拓展提高:(1)( a2+b2)( a2+b2 10)+25=0 求a2+b2(2)4x2+y2-4xy-12x+6y+9=0求x、y关系(3)分解因式:m4+4教后反思考察利用公式法因式分解的题目不会很难,但是需要学生记住公式的形式,之后利用公式把式子进行变形,从而达到进行因式分解的目的,但是这里有用到实际中去的例子,对学生来说会难一些。
二次三项式的因式分解(用公式法)教学案(二)

二次三项式的因式分解(用公式法)教学案(二)一、素质教育目标(一)知识教学点:熟练地运用公式法在实数范围内将二次三项式因式分解.(二)能力训练点:通过本节课的教学,提高学生研究问题、解决问题的能力.(三)德育渗透点:进一步对学生进行辩证唯物主义思想教育.二、教学重点、难点1.教学重点:用公式法将二次三项式因式分解.2.教学难点:一元二次方程的根和二次三项因式分解的关系.三、教学步骤(一)明确目标对于含有一个字母在实数范围内可分解的二次三项式,学生利用十字相乘法或用公式法可以解决.对于含有两个字母的二次三项式如何用公式法进行因式分解是我们本节课研究的目标.(二)整体感知本节课是上节课的继续和深化,上节课主要练习了利用公式法将含有一个字母的二次三项式因式分解,这节课研究含有两个字母的二次三项式的因式分解,实际上可设二次三项式为零,把一个字母看成是未知数,其它看成已知数,求出方程的两个根,然后利用公式法将问题解决.本节课较上节课有一定的难度.通过本节课,进一步提高学生分析问题、解决问题的能力.上节课是本节课的基础,本节课是上节课的加深和巩固.(三)重点、难点的学习和目标完成的过程1.复习提问:(1)如果x1,x2是方程ax2+bx+c=0的两个根,则ax2+bx+c如何因式分解?(2)将下列各式因式分解?①4x2+8x-1;②6x2-9x-21.2.例1 把2x2-8xy+5y2分解因式.解:∵关于x的方程2x2-8xy+5y2=0的根是教师引导、板书,学生回答.注意以下两个问题:(1)把x看成未知数,其它看成已知数.(2)结果不能漏掉字母y.练习:在实数范围内分解下列各式.(1)6x2-11xy-7y;(2)3x2+4xy-y2.学生板书、笔答,评价.注意(1)可有两种方法,学生体会应选用较简单的方法.例2 把(m2-m)x2-(2m2-1)x+m(m+1)分解因式.分析:此题有两种方法,方法(一)∵关于x的方程(m2-m)x2-(2m2-1)x+m(m+1)=0∴(m2-m)x2-(2m2-1)x+m(m+1)=[(m-1)x-m][mx-(m+1)]=(mx-x-m)(mx-m-1).方法(二)用十字相乘法.(m2-m)x2-(2m2-1)x+m(m+1)=m(m-1)x2-(2m2-1)x+m(m+1)=[(m-1)x-m][mx-(m+1)]=(mx-x-m)(mx-m-1).方法(二)比方法(一)简单.由此可以得出:遇见二次三项式的因式分解:(1)首先考虑能否提取公因式.(2)能否运用十字相乘法.(3)最后考虑用公式法.以上教师引导,学生板书、笔答,学生总结结论.练习:把下列各式因式分解:(1)(m2-m)x2-(2m2-1)x+m(m+1);(2)(x2+x)2-2x(x+1)-3.解:(1)(m2-m)x2-(2m2-1)x+m(m+1)=m(m-1)x2-(2m2-1)x+m(m+1)=[mx-(m+1)][(m-1)x-m]=(mx-m-1)[(m-1)x-m)].(因式分解法)(2)(x2+x)2-2x(x+1)-3…第一步=(x2+x-3)(x2+x+1)…第二步(1)题用十字相乘法较简单.(2)题第一步到第二步用十字相乘法,由第二步到第三步用公式法.注意以下几点:(1)因式分解一定进行到底.(2)当b2-4ac≥0时,ax2+bx+c在实数范围内可以分解.当b2-4ac<0时,ax2+bx+c在实数范围内不可分解.(四)总结与扩展启发引导、小结本节课内容.1.遇见二次三项式因式分解.(1)首先考虑能否提取公因式.(2)其次考虑能否选用十字相乘法.(3)最后考虑公式法.2.通过本节课的学习,提高学生分析问题、解决问题的能力.3.注意以下几点;(1)在进行2x2-8xy+5y2分解因式时,千万不要漏掉字母y.(2)因式分解一定进行到不能再分解为止.(3)对二次三项式ax2+bx+c的因式分解,当b2-4ac≥0时,它在实数范围内可以分解;当b2-4ac<0时,ax2+bx+c在实数范围内不可以分解.四、布置作业1.教材P.38中B 1 . 2(8).2.把下列各式分解因式:(1)(m2-m)x2-(2m2-1)x+m(m+1);(2)(x2+x)2-3x(x+1)-4.五、板书设计12.6 二次三项式的因式分解(二)结论:例1.把2x2-8xy+5y2因式分解.如果x1,x2为一元二次方解:略程ax2+bx+c=0的两个根,则ax2+bx+c=a(x-x1)(x-x2)六、作业参考答案A21.教材P.39中1.(1)(3x+5)(2x-3);(2)(7x-6y)(6x-7y);(4)(2x-9y)(7x-2y)3.(1)[mx-(m+1)][(m-1)x-m] (2)解:(x2+x)2-3x(x+1)-4 =(x2+x-4)(x2+x+1)。
初中数学_因式分解——公式法(2)教学设计学情分析教材分析课后反思

14.3 因式分解(第三课时)14.3.2 公式法(2)一、教学目标(一)学习目标1.掌握完全平方公式的特点.2.会运用完全平方公式因式分解.3.能熟练运用公式法和提公因式法分解因式.(二)学习重点掌握完全平方公式的特点,运用完全平方公式分解因式.(三)学习难点灵活运用公式分解分解因式.二、教学设计(一)课前设计1.自学反馈请同学们根据爱作业在线预习的情况组内交流,有困惑的地方组长帮忙解决。
公式法:把乘法公式的等号两边 互换位置 ,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫公式法. 如:利用平方差公式和完全平方公式分解因式都属于公式法.(二)课堂展示探究一 剖析完全平方公式活动1 剖析完全平方公式问题 :我们将形如222a ab b ++和222a ab b -+的式子叫完全平方式.完全平方式有哪些特点呢?学生思考后分小组讨论,再归纳总结:完全平方式的特点是:①完全平方式是一个二次三项式;②首末两项是两个数(或整式)的 平方,而且符号相同,中间相是这两个数(或整式)的积的2倍 ,符号正负均可. 口诀:首平方,末平方,首末积的2倍中间放.追问:平方差公式中的a 、b 可代表多项式,类似地,完全平方公式中的a 、b 是否也可以代表一个多项式呢?【设计意图】类比平方差公式分解因式的学习过程,剖析完全平方式的特点,为熟练运用完全平方公式分解因式奠定基础.●活动2 辨析完全平方公式问题 :下列多项式中,哪些是完全平方式?若是完全平方式,请指出谁相当于公式中的a 、b .(1)224129x xy y ++ ;(2)244x x -++ ;(3)2269x xy y -+- ;(4)221x x +- 学生独立思考后,集体订正.【设计意图】通过辨析完全平方式,为运用完全平方式分解因式作准备.尤其是对于(2)、(3)这种形式的完全平方式,学生辨析较困难,关键是掌握:完全平方式首末两项是两个数(或整式)的平方,而且符号相同,各项的位置是可以调换的,为本节课突破难点奠定基础.探究二 直接运用完全平方公式因式分解●活动1 公式中的a 、b 代表单项式的因式分解例1 分解因式:(1)216249x x ++ ;(2)2244x xy y -+- 【知识点】运用完全平方公式分解因式【解题过程】解:(1)222216249(4)2433(43)x x x x x ++=++=+;(2)222222244(44)22(2)(2)x xy y x xy y x x y y x y ⎡⎤-+-=--+=--+=--⎣⎦ 【思路点拨】(1)先将原多项式变形为22(4)2433x x ++,认清谁是公式中的a 、b ,再进行因式分解 ;(2)可将负号提出是本题的关键,变形为2222(44)22(2)x xy y x x y y ⎡⎤--+=--+⎣⎦,再因式分解. 【答案】 (1)2(43)x +;(2)2(2)x y --.练习:因式分解(1)2242025x xy y -+ (2)221294xy x y -- 【知识点】运用完全平方公式分解因式【解题过程】解:(1)2222242025(2)225(5)(25)x xy y x x y y x y -+=-+=-;(2)22222221294(9124)(3)232(2)(32)xy x y x xy y x x y y x y ⎡⎤--=--+=--+=--⎣⎦【思路点拨】(1)先将原多项式变形为22(2)225(5)x x y y -+,辨析公式中的a 、b ,再进行因式分解 ;(2)将负号提出是本题的关键,变形为22(3)232(2)x x y y ⎡⎤--+⎣⎦,再因式分解.【答案】 (1)2(25)x y -;(2)2(32)x y --.●活动2 公式中的a 、b 代表多项式的因式分解例2 分解因式:(1)2()12()36a b a b +-++ ;(2)22()4()4m n m m n m +-++ . 【知识点】运用完全平方公式分解因式【数学思想】整体思想【解题过程】解:(1)2222()12()36()2()66(6)a b a b a b a b a b +-++=+-++=+-;(2)222222()4()4()2()2(2)(2)()m n m m n m m n m n m m m n m n m +-++=+-++=+-=-.【思路点拨】此类题的关键是整体思想的运用,(1)中将a+b 看成一个整体,设a+b =m ,则原多项式就化为21236m m -+ ,可用完全平方公式分解因式;(2)类似,注意分解后有同类项还需合并同类项.【答案】 (1)2(6)a b +-;(2)2()n m -.练习:因式分解(1)222()()a a b c b c -+++ ;(2)2222(1)4(1)4x x x x ++++【知识点】运用完全平方公式分解因式【数学思想】整体思想【解题过程】解:(1)[]22222()()()()a a b c b c a b c a b c -+++=-+=--; (2)22222222224(1)4(1)4(1)2(21)(1)(1)x x x x x x x x x x ⎡⎤⎡⎤++++=++=++=+=+⎣⎦⎣⎦. 【思路点拨】解此类题的关键是整体思想的运用,(1)中将b+c 看成一个整体,设b+c =m ,则原多项式就化为222a am m -+ ,可用完全平方公式分解因式;(2)类似,注意分解后还需继续利用完全平方公式分解彻底.【答案】 (1)2()a b c --;(2)4(1)x +.探究三 综合应用●活动1例3 分解因式: 22363ax axy ay ++ ;【知识点】运用提公因式法、公式法分解因式【解题过程】解:222223633(2)3()ax axy ay a x xy y a x y ++=++=+;3. 课堂总结知识梳理(学生自己总结梳理)(1)完全平方式:形如222a ab b ++和222a ab b -+的式子叫完全平方式.(2)用完全平方公式分解因式:文字语言:两个数的平方和加上或减去这两个数的积的2倍,等于这两个数的和(或差)的平方.符号语言:2222()a ab b a b ++=+;2222()a ab b a b -+=-.(3)公式法:把乘法公式的等号两边互换位置,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫公式法. 如:利用平方差公式和完全平方公式分解因式都属于公式法.重难点归纳(1)完全平方公式使用的条件是:①多项式是一个二次三项式;②首末两项是两个数(或整式)的平方,而且符号相同,中间项是这两个数(或整式)的积2倍,符号正负均可.(2)分解因式的一般步骤:一提,二套,三检查①观察多项式的各项是否有公因式,若有,应先提公因式;②再观察多项式是否可以用平方差公式或完全平方公式进行分解因式;③检查每个多项式是否分解彻底,每个多项式都不能分解时,分解因式就结束了.(3)有时多项式既不能提公因式,也不能运用平方差或完全平方公式分解,则需根据多项式的特点作适当变形后再进行因式分解.(三)课后作业基础型 自主突破1.下列多项式是完全平方式的是( )A .244a a --B .23216a a -+C .224a a ++D .2816a a -+2.已知224x mx -+ 是完全平方式,则m 的值为( )A .1B .2C .±1D .±23. 计算x =156,y =144,则221122x xy y ++ 的值是( ) A .150 B .450 C .45000 D .900004.分解因式2(1)2(1)1a a ---+ 的结果是( )A .(1)(2)a a --B .2(1)a -C .2(1)a +D .2(2)a -5. 计算:222172173417-⨯+ =_____________.能力型 师生共研7. 若224222()8()160x y x y +-++= ,则22x y + 的值为( ).A .4B .2C .± 2D .± 48. 已知△ABC 三边a 、b 、c 满足等式2220a ab b bc c ac -+-+-=,则△ABC 是 三角形.学情分析两班共有学生110人,两班中绝大部分同学都能跟上现有的进度,上课发言积极,部分同学表现的比较出色,但也有个别同学的理解能力和接受能力不尽人意。
沪科版七年级数学下册同步教案 第8章整式乘法与因式分解 因式分解2公式法

2.公式法【知识与技能】1.能运用完全平方公式和平方差公式分解因式.2.能运用分组分解法分解因式.【过程与方法】有意识地引导学生参与到数学活动中,培养学生观察、分析、运用知识的能力,掌握公式法和分组分解法.【情感态度】通过参与数学活动,培养学生独立思考及与他人合作交流的学习习惯,体验运用知识解决问题的喜悦,增强学生学好数学的自信心.【教学重点】运用公式法、分组分解法分解因式.【教学难点】熟练地运用公式法、分组分解法分解因式.一、情境导入,初步认识问题计算:(1)(x+5)(x-5);(2)(x-2)2.【教学说明】教师给出问题,学生根据前面所学的平方差公式、完全平方公式进行计算.二、思考探究,获取新知公式法问题将上面的式子和结果交换位置,你有什么样的发现呢?观察:x2-25=(x+5)(x-5)x2-4x+4=(x-2)2【教学说明】教师提出问题,学生观察、分析、相互交流,发表各自的见解,可以得出从左到右的变形也是因式分解.【归纳结论】运用公式(完全平方公式和平方差公式)进行因式分解的方法叫做公式法.三、典例精析,掌握新知例1把下列各式分解因式:(1)x2+14x+49; (2)9a2-30ab+25b2;(3)x2-81; (4)36a2-25b2.【解】(1)x2+14x+49=x2+2·x·7+72=(x+7)2.(2)9a2-30ab+25b2=(3a)2-2×3a×5b+(5b)2=(3a-5b)2.(3)x2-81=x2-92=(x+9)(x-9).(4)36a2-25b2=(6a)2-(5b)2=(6a+5b)(6a-5b).例2把下列多项式分解因式:(1)ab2-ac2; (2)3ax2+24axy+48ay2.【解】(1)ab2-ac2=a(b2-c2)(提取公因式)=a(b+c)(b-c).(用平方差公式)(2)3ax2+24axy+48ay2=3a(x2+8xy+16y2)(提取公因式)=3a(x+4y)2.(用完全平方公式)【教学说明】教师给出例题,学生独立完成,教师可让几个学生上台展示自己的答案,交流各自的心得,积累解决问题的经验.【归纳结论】在因式分解的过程中,有时提取公因式与利用公式两种方法要同时使用.有公因式要先提取公因式,因式分解一定要分解到各因式不能再分解为止.例3把下列各式分解因式:(1)x2-y2+ax+ay;(2)a2+2ab+b2-c2.【解】(1)x2-y2+ax+ay=(x2-y2)+(ax+ay)=(x+y)(x-y)+a(x+y)=(x+y)(x-y+a).(2)a2+2ab+b2-c2=(a2+2ab+b2)-c2=(a+b)2-c2=(a+b+c)(a+b-c).【教学说明】教师给出例题,学生相互交流,分组讨论,教师也可适当点拨,让学生掌握分组分解法.【归纳结论】当多项式项数较多(项数大于3)时,因式分解时需先分组,分组后再利用提公因式或运用公式进行分解.四、运用新知,深化理解1.把下列各式写成完全平方的形式.2.把下列各式分解因式.3.把下列多项式分解因式.(1)2x3-32x;(2)9a3b3-ab;(3)mx2-8mx+16m;(4)-x4+256;(5)-a+2a2-a3;(6)27x2y2-18x2y+3x2.4.把下列各式分解因式.(1)4a2-b2+4a-2b;(2)x2-2xy+y2-1;(3)9x2+6x+2y-y2;(4)x2-y2+a2-b2+2ax+2by.5.利用因式分解的方法计算.(1)3.14×562-3.14×442;(2)184.52+184.5×31+15.52.【教学说明】教师给出习题,学生独立自主完成,教师巡视,对有困难的同学进行点拨.5. (1)原式=3.14×(562-442)=3.14×(56+44)(56-44)=3.14×100×12=3768. (2)原式=(184.5+15.5)2=2002=40000.五、师生互动,课堂小结通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?请与同伴交流.【教学说明】学生相互交流,回顾公式法、分组分解法,加深对所得新知的理解和应用.完成练习册中本课时练习.从了解公式法,分组分解法到运用这两种方法分解因式,学生表现出极大的学习热情,但训练强度仍显不足,在后面的学习中这部分内容还应该加强训练.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用文字描
述为: . (2)我们把 和 叫完全平方 式. 5.尝试练习:用完全平方公式分解因式. 定义应用 (1)下列多项式能用完全平方公式分解因式的是( ) A. 1 4a 2 B. a 2 ab b 2 C. a 2 4a 4 D. 4b 2 4b 1
四、巩固练习 1、选择:下列多项式能用完全平方公式分解因式的是(
五、 A. 4 a 2 B. x 2 4 x 4 C. x 2 2 x 1 D. 9 x 2 4 x 16 拓 展 2、填空: 1 练 (1)因式分解: y 2 y __________ ____ 习 4
2 2 __ __ 2 ____
探究课本 例题,让 学生体会 公式运用
学生独立完 成老师提问
(2) a 2 2ab b 2 2 2 __ ___ 2 _______ 4.根据上面的填空完成下面的知识归纳. (1)我们把整式乘法的完全平方公式:
(2)因式分解: 25a 2 10a 1 = 3、把下列多分解因式. (1) m 2 14m 49 (3) 6ax2 12ax 6a
教学反思:
. (2) 4 x 2 y 4 xy 2 y 3 (4) (a b) 2 4ab
教学内容
教 学 意 教学策略 图来自复习引入(2) 3x 3 12x
展示问题, 学 生做答学习 小组内互查。
(3) ( x 2 y) 4 x
二、 二.探索新知 设 问 导 读
1.用幂的相关知识填空: (1)
2 16a 2
(2)
2 x 4
2.用整式乘法的完全平方公式填空. (1) (a 1) 2 (2) (a b) 2
自学检测
四、 巩 分析:多项式中无公因式,是三项式,不能用平方差公式,尝试用 固 完全平方公式分解. 练 解:原式= x 2 2 x 2 2 2 习
(2)把多项式 x 2 4 x 4 分解因式.
= . (3)按第(2)题的格式把下列多项式分解因式 (1) x 2 6 x 9 (2) 4 x 2 4 x 1
(a b) 2 __________ __________ ________
(a b) 2 __________ __________ __________ ____ 反 过 来 就
得到因式分解的完全平方公式:
__________ __________ __________ _____ (a b) 2 __________ __________ __________ _____ (a b) 2
2 2 __ __ 2 ________
由问题的 探究归纳 完全平方 公式
鼓励学生独 立思考, 自主 学习, 教师提 出问题, 学生 进行思考 学生总结归 纳并讲过程
2 2 __ __ 2 ______
3.你能用提公因式法把多项式 a 2 2a 1 分解因式吗?若不能, 能用平方差公式分解吗 ? 若不能,你会想什么办法解决这个问 题?观察第 3 题你会有什么发现?用你的发现尝试把下列多项 式分解因式. (1) a 2 2a 1
公式法因式分解 2
课题:公式法因式分解 2 主备人 李翠萍 备课时间 10 月 10 日 上课时间 10 月 日
学习目标:熟练应用完全平方公式分解因式 重点:把多项式写成符合公式的形式,并分解因式。 难点: (1)辨认多项式中的“a”与“b” ; (2)分解到不能再分为止。 教 学 过 程
一、 一、温故互查 温 1.把下列各式分解因式 故 (1). 16a 3b 16ab 互 查 2 2
应用新知 解决相关 的练习, 并学会运 用公式 学生独立完 成看谁做得 又对又快
三、例题讲解: 把下列多项式分解因式. 1) 4x 2 4xy y 2 3) 3ax2 6axy 3ay2 2) x 2 2 xy y 2 4) 3x 2 6 xy 3 y 2 )