自动控制原理常用名词解释知识分享

合集下载

自动控制原理知识点总结

自动控制原理知识点总结

自动控制原理知识点总结1. 控制系统基本概念:自动控制系统是通过对被控对象进行测量、比较和纠正等操作,使其输出保持在期望值附近的技术体系。

控制系统由传感器、控制器和执行器组成。

2. 反馈控制原理:反馈是指对被控对象输出进行测量,并将测量结果与期望值进行比较,通过纠正控制信号来消除误差。

反馈控制系统具有稳定性好、抗干扰能力强的特点。

3. 控制回路的结构:控制回路通常包括输入端、输出端、传感器、控制器和执行器等组成。

传感器用于将被测量的物理量转换为电信号;控制器根据测量结果和期望值进行计算,并输出控制信号;执行器根据控制信号,对被控对象进行操作。

4. 控制器的分类:控制器按照控制操作的方式可以分为比例控制器、积分控制器和微分控制器。

比例控制器根据误差的大小与一定的系数成比例地输出控制信号;积分控制器根据误差的累积值输出控制信号;微分控制器根据误差变化率的大小输出控制信号。

5. 稳定性分析:稳定性是指控制系统在无限时间内,输出能够在期望值附近波动。

常用的稳定性分析方法有判据法、频域法和根轨迹法等。

6. 控制系统的频域分析:频域分析是一种通过研究系统对不同频率的输入信号的响应特性,来分析控制系统的方法。

常用的频域分析方法有频率响应曲线、伯德图和封闭环传递函数等。

7. 根轨迹法:根轨迹法是一种用于分析和设计控制系统稳定性和性能的图形方法。

根轨迹是指系统极点随参数变化而形成的轨迹,通过分析根轨迹的形状,可以得到系统的稳定性和性能信息。

8. 灵敏度分析:灵敏度是指输出响应对于某个参数的变化的敏感程度。

灵敏度分析可以用于确定系统设计中的参数范围,以保证系统的稳定性和性能。

9. 鲁棒性分析:鲁棒性是指控制系统对于模型参数变化和外部干扰的抵抗能力。

鲁棒性分析可以用于设计具有稳定性好和抗干扰能力强的控制系统。

10. 自适应控制:自适应控制是指控制系统能够根据被控对象的变化自动调整控制策略和参数。

自适应控制通常使用系统辨识技术来识别被控对象的模型,并根据模型参数进行自动调整。

1038自动控制原理

1038自动控制原理

自动控制原理 【1038】
一、名词解释
1、什么是自动控制和反馈控制?
自动控制,是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器、设备或生产过程(统称被控对象)的某个工作状态或参数(即被控量)自动地按照预定的规律运行。

反馈控制,将取自被控量的反馈信息,用于不断的修正被控量与输入之间的偏差,从而实现对被控对象进行控制的任务就是反馈控制。

2、什么是系统结构图?
系统结构图反映的是系统中模块的调用关系和层次关系,谁调用谁,有一个先后次序(时序)关系.所以系统结构图既不同于数据流图,也不同于程序流程图.在系统结构图中的有向线段表示调用时程序的控制从调用模块移到被调用模块,并隐含了当调用结束时控制将交回给调用模块。

结构化设计方法使用的描述方式是系统结构图,也称结构图或控制结构图。

它表示了一个系统 (或功能模块) 的层次分解关系,模块之间的调用关系,以及模块之间数据流和控制流信息的传递关系,它是描述系统物理结构的主要图表工具。

二、简答题
1. 简述根轨迹绘制的八个基本法则?
答:
1) 根轨迹的起点、终点
2) 根轨迹的分支数、对称性和连续性
3) 根轨迹的实轴上的分布
4) 根轨迹的渐近线
5) 根轨迹的分离点和分离角
6) 根轨迹的起始角和终止角
7) 根轨迹与虚轴的交点
8) 根之和
三、计算题
2.单位反馈系统的开环传递函数为1
1)(+=s s G k ,求: 1)系统在单位阶跃信号输入下的稳态误差是多少?
2)求系统的频率特性,幅频特性,相频特性?
3)当系统的输入信号为)30sin()( +=t t x i ,系统的稳态输出?。

自动控制原理知识点复习资料整理

自动控制原理知识点复习资料整理

自动控制原理知识点总结第一章1、自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。

2、被控制量:在控制系统中.按规定的任务需要加以控制的物理量。

3、控制量:作为被控制量的控制指令而加给系统的输入星.也称控制输入。

4、扰动量:干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入。

5、反馈:通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较。

反送到输入端的信号称为反馈信号。

6、负反馈:反馈信号与输人信号相减,其差为偏差信号。

7、负反馈控制原理:检测偏差用以消除偏差。

将系统的输出信号引回插入端,与输入信号相减,形成偏差信号。

然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。

8、自动控制系统的两种常用控制方式是开环控制和闭环控制。

9、开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。

10、闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。

主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。

11、控制系统的性能指标主要表现在:(1)、稳定性:系统的工作基础。

(2)、快速性:动态过程时间要短,振荡要轻。

(3)、准确性:稳态精度要高,误差要小。

12、实现自动控制的主要原则有:主反馈原则、补偿原则、复合控制原则。

第二章1、控制系统的数学模型有:微分方程、传递函数、动态结构图、频率特性。

2、传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比3、求传递函数通常有两种方法:对系统的微分方程取拉氏变换,或化简系统的动态方框图。

对于由电阻、电感、电容元件组成的电气网络,一般采用运算阻抗的方法求传递函数。

4、结构图的变换与化简化简方框图是求传递函数的常用方法。

(完整版)自动控制原理知识点总结

(完整版)自动控制原理知识点总结

@~@自动控制原理知识点总结第一章1.什么是自动控制?(填空)自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。

2.自动控制系统的两种常用控制方式是什么?(填空)开环控制和闭环控制3.开环控制和闭环控制的概念?开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。

闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。

主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。

掌握典型闭环控制系统的结构。

开环控制和闭环控制各自的优缺点?(分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。

)4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断)(1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力(2)、快速性:通过动态过程时间长短来表征的e来表征的(3)、准确性:有输入给定值与输入响应的终值之间的差值ss第二章1.控制系统的数学模型有什么?(填空)微分方程、传递函数、动态结构图、频率特性2.了解微分方程的建立?(1)、确定系统的输入变量和输入变量(2)、建立初始微分方程组。

即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组(3)、消除中间变量,将式子标准化。

将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边3.传递函数定义和性质?认真理解。

(填空或选择)传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比5.动态结构图的等效变换与化简。

三种基本形式,尤其是式2-61。

主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。

(化简)等效变换,是指被变换部分的输入量和输出量之间的数学关系,在变换前后保持不变。

自动控制原理基本概念知识点总结

自动控制原理基本概念知识点总结

自动控制原理基本概念知识点总结自动控制原理是现代控制工程的基础理论,研究自动控制系统的建模、分析与设计方法。

掌握自动控制原理的基本概念对于理解和应用控制技术起着重要的作用。

本文将对自动控制原理的基本概念知识点进行总结。

一、控制系统基本概念1.1 控制系统的定义控制系统是通过对被控制对象施加命令,以达到预期目标的系统。

它由输入信号、输出信号、被控制对象和控制器等组成。

1.2 开环控制系统与闭环控制系统开环控制系统是指控制器的输出不受被控制对象的反馈信号影响的控制系统。

闭环控制系统是指控制器的输出受到被控制对象的反馈信号影响的控制系统。

1.3 正反馈与负反馈正反馈是指系统的输出信号与输入信号同方向,有放大的作用;负反馈是指系统的输出信号与输入信号反向,有稳定的作用。

二、控制系统的数学描述2.1 传递函数传递函数是用来描述控制系统输入与输出之间的关系的数学模型。

它通常由拉普拉斯变换或者Z变换得到。

2.2 系统的稳定性系统的稳定性是指当系统受到扰动或者参数变化时,输出信号是否趋于有限,并且不出现无穷大的情况。

2.3 时域指标时域指标包括超调量、调节时间、上升时间等,用来衡量系统的动态性能。

三、控制系统的设计方法3.1 PID控制器PID控制器是最常用的一种控制器,它由比例项、积分项和微分项组成,可用于调节系统的稳态误差、快速响应和抑制振荡。

3.2 稳态误差补偿稳态误差补偿方法用于减小系统在达到稳态时的误差,例如使用积分控制器。

3.3 根轨迹法根轨迹法是一种用于分析系统稳定性和性能的图形法,它通过在复平面上绘制传递函数的极点和零点来描述系统的特性。

四、控制系统的稳定性分析4.1 极点配置法极点配置法是一种通过调整系统的极点位置来改变系统的动态响应,从而实现稳定性分析和改进的方法。

4.2 Nyquist准则Nyquist准则是一种通过绘制传递函数的频率响应曲线,并通过判断曲线与负实轴交点的数量来判断系统稳定性的方法。

自动控制原理知识点总结1-3章

自动控制原理知识点总结1-3章

自动控制原理知识点总结第一章1、自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。

2、被控制量:在控制系统中.按规定的任务需要加以控制的物理量。

3、控制量:作为被控制量的控制指令而加给系统的输入星.也称控制输入。

4、扰动量:干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入。

5、反馈:通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较。

反送到输入端的信号称为反馈信号。

6、负反馈:反馈信号与输人信号相减,其差为偏差信号。

7、负反馈控制原理:检测偏差用以消除偏差。

将系统的输出信号引回插入端,与输入信号相减,形成偏差信号。

然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。

8、自动控制系统的两种常用控制方式是开环控制和闭环控制。

9、开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。

10、闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。

主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。

11、控制系统的性能指标主要表现在:(1)、稳定性:系统的工作基础。

(2)、快速性:动态过程时间要短,振荡要轻。

(3)、准确性:稳态精度要高,误差要小。

12、实现自动控制的主要原则有:主反馈原则、补偿原则、复合控制原则。

第二章1、控制系统的数学模型有:微分方程、传递函数、动态结构图、频率特性。

2、传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比3、求传递函数通常有两种方法:对系统的微分方程取拉氏变换,或化简系统的动态方框图。

对于由电阻、电感、电容元件组成的电气网络,一般采用运算阻抗的方法求传递函数。

4、结构图的变换与化简化简方框图是求传递函数的常用方法。

自动控制原理知识点总结1~3章

自动控制原理知识点总结1~3章

自动控制原理知识点总结第一章1、自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。

2、被控制量:在控制系统中.按规定的任务需要加以控制的物理量.3、控制量:作为被控制量的控制指令而加给系统的输入星.也称控制输入。

4、扰动量:干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入.5、反馈:通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较.反送到输入端的信号称为反馈信号。

6、负反馈:反馈信号与输人信号相减,其差为偏差信号.7、负反馈控制原理:检测偏差用以消除偏差。

将系统的输出信号引回插入端,与输入信号相减,形成偏差信号.然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。

8、自动控制系统的两种常用控制方式是开环控制和闭环控制 .9、开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。

10、闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。

主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。

11、控制系统的性能指标主要表现在:(1)、稳定性:系统的工作基础. (2)、快速性:动态过程时间要短,振荡要轻。

(3)、准确性:稳态精度要高,误差要小。

12、实现自动控制的主要原则有:主反馈原则、补偿原则、复合控制原则。

第二章1、控制系统的数学模型有: 微分方程、传递函数、动态结构图、频率特性。

2、传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比3、求传递函数通常有两种方法:对系统的微分方程取拉氏变换,或化简系统的动态方框图.对于由电阻、电感、电容元件组成的电气网络,一般采用运算阻抗的方法求传递函数。

4、结构图的变换与化简化简方框图是求传递函数的常用方法。

自控原理名词解释

自控原理名词解释
,传递函数 ,
脉冲响应
31已知系统的单位阶跃响应为 求系统的频率特性
,传递函数
频率特性
32.(本题10分)已知系统方框图如题32图示,利用方框图化简方法化简该系统,并求出系统的传递函数。
题32图
化简过程省略,传递函数
33. (本题12分)最小相位系统对数幅频特性如图33所示,确定该系统的开环传递函数,并给出该系统的相位裕量。
30已知系统开环频率特性如图30所示,P为开环传递函数在右半S平面的极点数, 为无差度,试根据奈氏判据判别该系统的稳定性。
图30
奈氏曲线逆时针包围(-1,j0)点的两圈,且系统开环不稳定的极点有2个,根据奈氏判据得该系统稳定。
31已知系统的单位阶跃响应为 求该系统的频率特性。
设系统的特征方程式为 试应用劳斯判据判别系统的稳定裕量是否为1。
名词解释
1.传递函数:在初始条件下,系统输出信号的拉式变换与输入信号的拉式变换之比。
2.稳定性:所谓稳定性就是值系统在扰动消失后,有初始偏差状态恢复到原来平衡状态的性能。
3.根轨迹:就是开环传递系数k从0变化到无穷时,闭环特征方程式的根在根平面(S平面)上移动的轨迹
4.相位裕量:奈式曲线与单位圆相交处的相角与-180度(负实轴的相角差 )
图30
奈氏曲线逆时针包围(-1,j0)点的两圈,且系统开环不稳定的极点有2个,根据奈氏判据得该系统稳定。
31已知系统的单位阶跃响应为 求系统的频率特性。
,幅率特性和相频特性
五、计算题(本大题共3小题,第32、33小题各10分,第34小题15分,共35分)
32.(本题10分)设某二阶系统的单位阶跃响应曲线如图32示,试确定该系统传递函数
5.稳态误差:所谓稳态误差就是系统达到稳态时,输出量的期望值与稳态值之间存在的差值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制原理常用名词解释词汇第一章自动控制 ( Automatic Control) :是指在没有人直接参与的条件下,利用控制装置使被控对象的某些物理量(或状态)自动地按照预定的规律去运行。

开环控制 ( open loop control ):开环控制是最简单的一种控制方式。

它的特点是,按照控制信息传递的路径,控制量与被控制量之间只有前向通路而没有反馈通路。

也就是说,控制作用的传递路径不是闭合的,故称为开环。

闭环控制 ( closed loop control) :凡是将系统的输出量反送至输入端,对系统的控制作用产生直接的影响,都称为闭环控制系统或反馈控制 Feedback Control 系统。

这种自成循环的控制作用,使信息的传递路径形成了一个闭合的环路,故称为闭环。

复合控制 ( compound control ):是开、闭环控制相结合的一种控制方式。

被控对象:指需要给以控制的机器、设备或生产过程。

被控对象是控制系统的主体,例如火箭、锅炉、机器人、电冰箱等。

控制装置则指对被控对象起控制作用的设备总体,有测量变换部件、放大部件和执行装置。

被控量 (controlled variable ) :指被控对象中要求保持给定值、要按给定规律变化的物理量。

被控量又称输出量、输出信号。

给定值 (set value ) :是作用于自动控制系统的输入端并作为控制依据的物理量。

给定值又称输入信号、输入指令、参考输入。

干扰 (disturbance) :除给定值之外,凡能引起被控量变化的因素,都是干扰。

干扰又称扰动。

第二章数学模型 (mathematical model) :是描述系统内部物理量(或变量)之间动态关系的数学表达式。

传递函数 ( transfer function) :线性定常系统在零初始条件下,输出量的拉氏变换与输入量的拉氏变换之比,称为传递函数。

零点极点 (z ero and pole) :分子多项式的零点(分子多项式的根)称为传递函数的零点;分母多项式的零点(分母多项式的根)称为传递函数的极点。

状态空间表达式 (state space model) :由状态方程与输出方程组成,状态方程是各状态变量的一阶导数与状态、输入之间的一阶微分方程组。

输出方程是系统输出与状态、输入之间的关系方程。

结构图 (block diagram) :将传递函数与第一章介绍的定性描述系统的方框图结合起来,就产生了一种描述系统动态性能及数学结构的方框图,称之为系统的动态结构图。

信号流图 (signal flow diagram) :是表示复杂控制系统中变量间相互关系的另一种图解法,由节点和支路组成。

梅逊公式 (Mason's gain formula) :利用梅逊增益公式,可以直接得到系统输出量与输入变量之间的传递函数。

第三章时域 (time domain) :一种数学域,与频域相区别,用时间 t 和时间响应来描述系统。

一阶系统 ( first order system) :控制系统的运动方程为一阶微分方程,称为一阶系统。

二阶系统 ( s econd order system) :控制系统的运动方程为二阶微分方程,称为二阶系统。

单位阶跃响应 ( unit step response) :系统在零状态条件下,在单位阶跃信号作用下的响应称单位阶跃响应。

阻尼比ζ (damping ratio) :与二阶系统的特征根在 S 平面上的位置密切相关,不同阻尼比对应系统不同的运动规律。

性能指标 (performance index) :系统性能的定量度量。

上升时间 (rise time)t r :响应从终值 10% 上升到终值 90% 所需时间;对有振荡系统亦可定义为响应从零第一次上升到终值所需时间。

上升时间是响应速度的度量。

峰值时间 (peak time)t p :响应超过其终值到达第一个峰值所需时间。

调节时间 (response time) t s :响应到达并保持在终值内所需时间超调量(percent overshoot) σ % :响应的最大偏离量 h(t p ) 与终值h( ∞ ) 之差的百分比。

稳定性 (stability) :稳定性只由结构、参数决定,与初始条件及外作用无关。

系统工作在平衡状态 , 受到扰动偏离了平衡状态,扰动消失之后,系统又恢复到平衡状态,称系统是稳定的。

稳定是系统正常工作的先决条件。

劳斯判据 (Routh stability criterion) :判断系统的闭环稳定性的一种代数判据。

稳态误差 ( steady state error) :态误差是指稳态响应的希望值与实际值之差,它是衡量系统最终控制精度的重要性能指标。

状态变量 (state variables) :指描述系统的变量集合。

状态转移矩阵 (state transition matrix) :可完全描述系统零输入响应的矩阵指数函数。

第四章根轨迹 (root locus) :是指开环系统某个参数由 0 变化到∞,闭环特征根在 s 平面上移动的轨迹。

根轨迹方程 (magnitude and phase equations) :根轨迹所应满足的方程,称根轨迹方程。

由相角方程和幅值方程组成。

参数根轨迹 (parameter root locus) :如果系统的可变参数不是增益 ( 根轨迹 K* 或开环增益 K) 而是系统的其它参数时,此时的根轨迹叫参数根轨迹。

零度根轨迹 (0 o root locus) :在某些情况下,相角方程右边相角的主值将不再是 180 o ,而是 0 o ,将这种根轨迹叫零度根轨迹。

第五章频域 (frequency domain) :一种数学域,与时域相区别,用频率和频率响应来描述系统。

频率特性 (frequency response characteristics) :对于线性系统来说,当输入信号为正弦信号时,稳态时的输出信号是一个与输入信号同频率的正弦信号,不同的只是其幅值与相位,且幅值与相位随输入信号的频率不同而不同。

输出与输入的幅值比随频率变化的函数称为幅频magnitude-frequency 特性,输出与输入的相位差随频率变化的函数称为相频 phase-frequency 特性。

两者合称频率特性。

幅相曲线 (magnitude and phase diagram) :对于一个确定的频率,必有一个幅频特性的幅值和一个幅频特性的相角与之对应,幅值与相角在复平面上代表一个向量。

当频率ω从零变化到无穷时,相应向量的矢端就描绘出一条曲线。

这条曲线就是幅相频率特性曲线,简称幅相曲线。

对数频率特性曲线 (Bode diagram) :又称为伯德图(曲线),其横坐标采用对数分度,对数幅频曲线的纵坐标的单位是分贝,记作 dB ,对数相频曲线的纵坐标单位是度。

最小相位 ( 相角 ) 系统 (minimum phase system) :零点、极点均在 s 平面的左半平面的系统。

奈奎斯特稳定判据 (Nyquist stability criterion) :简称奈氏判据,是根据开环频率特性曲线判断闭环系统稳定性的一种简便方法。

稳定裕度 (stability margin) :表征系统稳定程度的指标,包括幅值裕度 magnitude margin 和相角裕度 phase margin g 。

第六章校正 (Compensation) :改变或调节控制系统,使之能获得满意的性能。

超前网络 (Phase-lead network) :具有相角超前特性的网络称超前网络。

迟后网络 (Phase-lag network) :具有相角迟后特性的网络称超前网络。

串联校正 (Cascade compensation) :将校正装置接在测量点之后和放大器之前,串接于系统前向通道中,称串联校正。

第七章非线性系统 (non-linear system ) :只要系统中包含一个或一个以上具有非线性静特性的元件,即称为非线性系统。

描述函数 (describing function ) :非线性元件稳态输出的基波分量与输入正弦信号的复数比定义为非线性环节的描述函数。

自激振荡 (Sustained oscillation) :非线性系统在没有外界周期变化信号的作用下,系统中能产生具有固定振幅和频率的稳定的周期运动,称为自激振荡。

相平面 (phase plane) :以状态变量为横坐标,以其一阶导数为纵坐标组成的直角坐标平面称为相平面。

第八章离散控制系统 (Discrete-Time Control System) :系统中有一处或多处为离散信号的系统称离散系统。

采样与复现 (sampling and reconstructing ) :把连续信号变换为脉冲序列的过程称采样过程;将离散信号转换复原成连续信号的过程称信号复现过程。

零阶保持器 ( zero-order holder ) :零阶保持器把采样时刻 kT 的采样值恒定不变地保持到下一个采样周期 (k+1)T 。

z 变换 (z-transform) :从 s 域到 z 域的变换。

脉冲传递函数 (transfer function ) :线性定常离散系统在零初始条件下,离散输出信号的 z 变换与离散输入信号的 z 变换之比,称离散系统的脉冲传递函数。

z 平面 (z-plane) :水平轴为 z 的实部、垂直轴为 z 的虚部的复平面。

相关文档
最新文档