八年级三角形边角关系 经典例题

八年级三角形边角关系 经典例题
八年级三角形边角关系 经典例题

1、 如图,BE 是∠ABD 的平分线,CF 是∠ACD 的平分线,BE 、CF 相交于点G,∠BDC=140°, ∠BGC=110°。求∠A 的度数.

2、如图,已知P 是△ABC 内一点,连结AP,PB,PC

求证:(1)PA+PB+PC > 2

1(AB+AC+BC) (2)PA+PB+PC < AB+AC+BC

3、如图1,△ABC 中,点P 是∠ABC 与∠ACB 平分线的交点.

(1)求∠P 与∠A 有怎样的大小关系?

(2)如图2,点P 是∠CBD 与∠BCE 平分线的交点,求∠P 与∠A 的关系.

(3)如图3,点P 是∠ABC 与∠ACF 平分线的交点,求∠P 与∠A 的关系.

4、如图1,在△ABC 中,AD ⊥BC,AE 是角平分线,

(1)求∠DAE 与∠B 、∠C 之间的关系;

(2)如图2,AE 是∠BAC 的角平分线,FD 垂直于BC 于D,求∠DFE 与∠B 、∠C 之间的关系.

(3)如图3,当点F 在AE 延长线上时,FD 仍垂直于BC 于D ,继续探讨∠DFE 与∠B 、∠C 的关系

E

G A

B

D C F 十一章经典例题

图1 图2 F

图3

5、如图△ABC中, ∠BAD=∠CBE=∠ACF,

∠ABC=50°,∠ACB=62°,求∠DFE的大小.

6、△ABC中,AD、BE、CF是角平分线,交点是点G,GH⊥BC

求证:∠BGD=∠CGH.

7、如图,∠xOy=90°,点A、B分别在坐标轴Ox、Oy上移动,BF是∠ABP的平分线,BF的反向延

长线与∠OAB的平分线交于点C,求证∠ACB的度数是定值.

8、在平面直角坐标系中,点O为坐标原点,点A在第一象限,

点B是x正半轴上一点。过点O做OD∥AB,∠BAO的平分线与

∠MOD的平分线相交于点Q,

AQO AON

的值

9、直角坐标系中,OP平分∠XOY,B为Y轴正半轴上一点,D为第四象限内一点,BD交x轴

于C,过D作DE∥OP交x轴于点E,CA平分∠BCE交OP于A,∠BDE的平分线交OP 于G,交直线AC于M,如图

求证2OGD OED

OAC

∠-∠

为定值

E

D

C

B

A

F

G

A

B C

D

E

F

H

M

D

B

A

Q

N

y

x

O

必修五解三角形常考题型非常全面

必修五解三角形常考题型 1.1正弦定理和余弦定理 1.1.1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形 例1 在V ABC 中,已知A:B:C=1:2:3,求a :b :c. 【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。 解:::1:2:3,A . ,,, 6 3 2 1::sin :sin :sin sin :sin :sin :1 2.6 3 2 2A B C B C A B C a b A B C ππ π π π π π =++=∴= = = ∴=== =Q 而 【解题策略】要牢记正弦定理极其变形形式,要做到灵活应用。 例2在ABC 中,已知 ,C=30°,求a+b 的取值范围。 【点拨】 此题可先运用正弦定理将a+b 表示为某个角的三角函数,然后再求解。 解:∵C=30°, ,∴由正弦定理得: sin sin sin a b c A B C === ∴ )sin (150°-A ). ∴ )[sinA+sin(150° )·2sin75°·cos(75° -A)= 2 cos(75°-A) ① 当75°-A=0°,即A=75°时,a+b 取得最大值 2 ; ② ∵A=180°-(C+B)=150°-B,∴A <150°,∴0°<A <150°, ∴-75°<75°-A <75°,∴cos75°<cos(75°-A)≤1, ∴> 2 cos75° = 2 × 4 . 综合①②可得a+b 的取值范围为 ,8+ 考察点2:利用正弦定理判断三角形形状 例3在△ABC 中,2 a ·tanB=2 b ·tanA ,判断三角形ABC 的形状。 【点拨】通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC 的形状。

相似三角形知识点及典型例题

相似三角形知识点及典型例题 知识点归纳: 1、三角形相似的判定方法 (1)定义法:对应角相等,对应边成比例的两个三角形相似。 (2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似。 (3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似。简述为:两角对应相等,两三角形相似。 (4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。 (5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。简述为:三边对应成比例,两三角形相似。 (6)判定直角三角形相似的方法: ①以上各种判定均适用。 ②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似。 ③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。 #直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。 每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高, 则有射影定理如下: (1)(AD)2=BD·DC,(2)(AB)2=BD·BC , (3)(AC)2=CD·BC 。 注:由上述射影定理还可以证明勾股定理。即(AB)2+(AC)2=(BC)2。

典型例题: 例1 如图,已知等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ‖AB ,BG 分别交AD ,AC 于E 、 F ,求证:BE2=EF·EG 证明:如图,连结EC ,∵AB =AC ,AD ⊥BC , ∴∠ABC =∠ACB ,AD 垂直平分BC ∴BE =EC ,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2, 即∠3=∠4,又CG ∥AB ,∴∠G =∠3,∴∠4=∠G 又∵∠CEG =∠CEF ,∴△CEF ∽△GEC ,∴EG CE =CE EF ∴EC 2 =EG· EF,故EB 2 =EF·EG 【解题技巧点拨】 本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明.而其中利用线段的垂直平分线的性质得到BE=EC ,把原来处在同一条直线上的三条线段BE ,EF ,EC 转换到相似三角形的基本图形中是证明本题的关键。 例2 已知:如图,AD 是Rt △ABC 斜BC 上的高,E 是AC 的中点,ED 与AB 的延长线相交于F ,求证:BA FB =AC FD 证法一:如图,在Rt △ABC 中,∵∠BAC =Rt ∠,AD ⊥BC , ∴∠3=∠C ,又E 是Rt △ADC 的斜边AC 上的中点, ∴ED=21 AC =EC ,∴∠2=∠C ,又∠1=∠2,∴∠1=∠3, ∴∠DFB =∠AFD ,∴△DFB ∽△AFD ,∴FD FB =AD BD (1) 又AD 是Rt △ABC 的斜边BC 上的高,∴Rt △ABD ∽Rt △CAD ,∴AD BD =AC BA (2) 由(1)(2)两式得FD FB =AC BA ,故BA FB =AC FD 证法二:过点A 作AG ∥EF 交CB 延长线于点G ,则BA FB =AG FD (1) ∵E 是AC 的中点,ED ∥AC ,∴D 是GC 的中点,又AD ⊥GC ,∴AD 是线段GC 的垂直平分线,∴AG =AC (2) 由(1)(2)两式得:BA FB =AC FD ,证毕。 【解题技巧点拨】 本题证法中,通过连续两次证明三角形相似,得到相应的比例式,然后通过中间比“AD BD ”过渡,使问题得证,证法 二中是运用平行线分线段成比例定理的推论,三角形的中位线的判定,线段的垂直平分线的判定与性质使问题得证.

解三角形经典练习试题集锦(附答案)

解三角形 一、选择题 1.在△ABC 中,若0 30,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32- 2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D . A tan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为0 60,则 底边长为( ) A .2 B . 2 3 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( ) A .0 60 30或 B .0 060 45或 C .0 060120或 D .0 15030或 6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .0 90 B .0 120 C .0 135 D .0 150 二、填空题 1.在Rt △ABC 中,0 90C =,则B A sin sin 的最大值是 _______________。 2.在△ABC 中,若=++=A c bc b a 则,2 2 2 _________。 3.在△ABC 中,若====a C B b 则,135,30,20 _________。 4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则 C =_____________。 5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值 是________。 三、解答题 1.在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么? 2.在△ABC 中,求证: )cos cos (a A b B c a b b a -=- 3.在锐角△ABC 中,求证: C B A C B A cos cos cos sin sin sin ++>++。

新版沪科版八年级上册教案13.1 第一课时三角形中的边角关系(一)

13.1 三角形中的边角关系 第一课时三角形中的边角关系(一) 教学目标 1、了解三角形的概念,掌握分类思想 2、经历探索三角形中的三条边之间的关系,感受几何学中基本图形的内涵 3、让学生养成有条理的思考的习惯,以及说理有据的意识,体会三角形三边关系在现实生活中的实际价值 重、难点与关键 重点:了解三角形分类思想,弄清三角形三边关系 难点:对两边之差小于第三边的领悟 关键:从观察、联想入手,应用连结两点之间的线中,线段最短这一原理进行迁移 教学过程 一、情境合一,探究新知 1、投影图片,把事先收集的与三角形有关系的生活图片,运用投影仪播放,让学生对三角 形有一个感性认识.如下图: 教师活动:通过播放图片,引导学生认识三角形,并提出图中能找出的几个三角形具有什么样的特性. 学生讨论 教师归纳,由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形. 教师活动:给出一个三角形,如图,并标上字母,引导学生体会用符号来表示一个三角形的方法,认识三角形的基本元素:边、角、顶点等. 学生活动:学会运用大小写字母来表示三角形的边与角,如图的三角形可记作⊿ABC,三边可记作AB、AC、CA;三个角可记作∠A、∠B、∠C,或可用三个字母表示为∠BAC、∠ABC、∠ACB.

注意:表示边时要两个大写字母,或一个小写字母.注意小写字母标注的规律:通常顶点大写字母所对的变就是这个顶点的小写字母. 2、教师给出不同类型的三角形,引导学生从边和角两种角度观察、分类. (1)从边的角度来分类有: 不等边三角形 等腰三角形(包括等边三角形) 说明:对于等腰三角形来说,相等的两边称为腰,第三边称为底边。两腰所夹的角称为顶角,腰与底边的夹角称为底角:而等边三角形的三边都相等,它是等腰三角形的特例. (2)从角的角度来分类有: 锐角三角形(三个内角均为小于900的角) 直角三角形(有一个角是900) 钝角三角形(有一个内角大于900) 二、联系实际,合作探究 1、问题牵引1. 国庆节的晚上,小明从甲地到乙地后再往丙地走,并到达丙地,小红从甲地直接到丙地,如图所示,请你谈谈小明和小红谁走的路程长?依据是什么? 学生活动:发现小红走的路程短,小明走的路程长。依据是:两点之间线段最短. 2、问题牵引2. 在一个三角形中,任意两边的长度之和与第三边的长度之间有着怎样的关系呢? 教师在黑板上画出按角分类的三个三角形,请三位同学量出三边的长度,再进行比较. (1)三角形任意两边之和大于第三边. (2)三角形任意两边之差小于第三边. 三、范例学习,应用所学 1、例1(课本68页例1)等腰三角形中,周长是18cm. (1)如果腰长是底边长的2倍,求各边长. (2)如果一边长为4cm,求另两边长. 2、例2 有两根长度分别为8m和5m的钢管,再用一根长度为3m的钢管能将他们焊接成 一个三角形钢架吗?为什么?长度为4m呢?长度为2m呢? 四、随堂练习,巩固深化 1、课本69页练习第1,2,3题. 2、等腰三角形的两边长分别是7cm,8cm. (1)求这个三角形的周长. (2)如果两边长分别为3cm和6cm呢? 五、课堂总结,提高认识 1、由学生进行归纳总结

解三角形的必备知识和典型例题及习题

解三角形的必备知识和典型例题及习题 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2+b 2=c 2。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a 2= b 2+ c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =2 1ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)?S =21ab sin C =21bc sin A =21ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角. 第2、已知两边和他们的夹角,求第三边和其他两角. 5.三角形中的三角变换 三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

解三角形典型例题

1.正弦定理和余弦定理 在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 2.S △ABC =2ab sin C =2bc sin A =2ac sin B =4R =2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r . 1.在△ABC 中,A >B ?a >b ?sin A >sin B ?cos A c; a-b

正弦定理余弦定理综合应用解三角形经典例题老师

一、知识梳理 1.内角和定理:在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - 面积公式: 111 sin sin sin 222ABC S ab C bc A ac B ?= == 在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二: ?? ? ??===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 形式三:::sin :sin :sin a b c A B C = 形式四: sin ,sin ,sin 222a b c A B C R R R = == 3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2 2 2 2cos a b c bc A =+- 2 2 2 2cos b c a ca B =+- 222 2cos c a b ab C =+-(解三角形的重要工具) 形式二: 222cos 2b c a A bc +-= 222cos 2a c b B ac +-= 222 cos 2a b c C ab +-= 二、方法归纳 (1)已知两角A 、B 与一边a ,由A +B +C =π及sin sin sin a b c A B C == ,可求出角C ,再求b 、c . (2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2 -2b c cosA ,求出a ,再由余弦定理,求出角B 、C . (3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C . (4)已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a b A B = ,求出另一边b 的对角B ,由C =π-(A +B ),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a b A B = 求B 时,可能出一解,两解或无解的情况 a = b sinA 有一解 b >a >b sinA 有两解 a ≥b 有一解 a >b 有一解 三、课堂精讲例题 问题一:利用正弦定理解三角形

三角形中的边角关系

三角形中的边角关系 1、 A+B+C=π , 2C = 2 π-( 2A + 2 B ) 2、 sinC=sin(A+B), cosC=-cos(A+B) sin 2 C =cos( 2 A +2 B ), cos 2 C =sin( 2 A + 2 B ), tan 2 C =cot( 2 A + 2 B ) sin2C=-sin2(A+B), cos2C=cos2(A+B) 3、 三角形面积公式 S ?= 12 absinC= 12 bcsinA= 12 casinB p= 12 (a+b+c ) 4、 正弦定理sin sin sin a b c A B C = = =2R sinA ?sinB ? sinC ?a = b ? c sinA= 2a R ,sinB=2b R ,sinC= 2c R a=2RsinA , b=2RsinB , c=2RsinC 适用类型:AAS →S ,SSA →A (2,1,0解) 5、余弦定理2222cos a b c bc A =+- 2 2 2 co s 2b c a A b c +-= 适用类型:SSS →A ,SAS →S ,AAS →S(2,1,0解) 5、 判定三角形是锐角直角钝角三角形 设c 为三角形的最大边 2c <2a +2b ??ABC 是锐角三角形 2 c =2 a +2 b ??ABC 是直角三角形 2 c >2 a +2 b ??ABC 是钝角三角形 6、 tanA+tanB+tanC=tanAtanBtanC cotAcotB+cotBcotC+cotCcotA=1 tan 2 A tan 2 B +tan 2 B tan 2 C +tan 2 C tan 2 A =1 7* 、若三角形三内角成等差数列,则B=3 π 三边成等差数列,则0

三角形经典习题(必看)

三角形复习卷 一、选择题 1.一个三角形的两边长分别是2cm 和9cm ,第三边的长是一个奇数,则第三边长为( ) A 、5cm B 、7cm C 、9cm D 、11cm 2. 1.在下列条件中:①∠A+∠B=∠C ,②∠A∶∠B∶∠C=2∶3∶4,③∠A=90°-∠B ,④∠A=∠B= 2 1 ∠C 中,能确定△ABC 是直角三角形的条件有( ) A 、1个; B 、2个; C 、3个; D 、4个 3.对于三角形的内角,下列判断中不正确的是( ); A.至少有两个锐角 B.最多有一个直角 C.必有一个角大于600 D.至少有一个角不小600 4. 如图,∠BAC=90°,AD⊥BC,则图中互余的角有( ) A 、2对; B 、3对; C 、4对; D 、5对; 5. 下列说法错误的是( ) A. 三角形三条中线交于三角形内一点; B. 三角形三条角平分线交于三角形内一点 C. 三角形三条高交于三角形内一点; D. 三角形的中线、角平分线、高都是线段 6、一个三角形的两个内角分别为55°和65°,这个三角形的外角不可能是( ) A 、115° B、120° C、125° D、130° 7、如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,且CD 、BE 相交于一点P ,若∠A=50°,则∠BPC=( ) A 、150° B、130° C、120° D、100° 8、7.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是( ) A.5 B.6 C.7 D.8 9如图,在△ABC 中,AD 是角平分线,AE 是高,已知∠BAC=2∠B,∠B=2∠DAE,那么∠ACB 为( )A. 80° B. 72° C. 48° D. 36° 10.在△ABC 中,∠A=2∠B=4∠C ,则△ABC 为( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.都有可能 11.直角三角形两锐角的平分线相交所夹的钝角为( ) A 、125° B 、135° C 、145° D 、150° 12.等腰△ABC 的底边为5cm ,一腰上的中线把周长分为差为3cm 的两部分,则△ABC 的腰长是( )cm 。 A B C D E P 第7题 第9题

(完整版)解三角形三类经典题型

解三角形三类经典类型 类型一 类型二 类型三 判断三角形形状 求范围与最值 求值专题 类型一 判断三角形形状 2 2 2 例1已知△ ABC 中,bsinB=csinC,且sin A sin B sin C ,试判断三角形的形状. 解:T bsinB=csinC,由正弦定理得 sin 2 B=sin 2C ,「. sinB=sinC B=C 由sin 2A sin 2 B sin 2C 得a 2 b 2 c 2 三角形为等腰直角三角形. 例2:在厶ABC 中,若E =60 ,2 b=a+c,试判断△ ABC 的形状. 解:T2 b=a+c,由正弦定理得 2sinB=sinA+sinC,由 B=60 得 sinA+sinC= . 3 由三角形内角和定理知 sinA+sin( 120 A )= 3 ,整理得sin(A+ 30 )=1 二A+30 90,即A 60 ,所以三角形为等边三角形 2bc 整理得(a 2 b 2)(a 2 b 2 c 2) 0 ? a 2 b 2或a 2 b 2 c 2 即三角形为等腰三角形或直角三角形 例4:在厶ABC 中,(1)已知sinA=2cosBsinC ,试判断三角形的形状; (2)已知sinA= sin B sinC ,试判断三角形的形状. cosB cosC 解:⑴由三角形内角和定理得 sin(B+C)=2cosBsinC 整理得sinBcosC — cosBsinC=0即sin(B — C)=0 ? B=C 即三角形为等腰三角形 (2)由已知得sinAcosB+sinAcosC=sinB+sinC ,结合正、余弦定理得 例3:在厶ABC 中,已知 tan A tan B 2 ,试判断厶ABC 的形状. b 2 解:法1:由题意得 sin AcosB sin B cos A ■ 2 A sin A ■ 2 - sin B ,化简整理得 sinAcosA=sinBcosB 即 sin2A=sin2B ??? 2A=2B 或 2A+2B=n /? A=B 或 A a 2 a 2 ,2 c b 法2:由已知得sinAcosB sin B cos A 2 a 2 结合正、余弦定理得 b 2 2ac b b 2 2 2 c a a 2 b 2 B i ,?三角形的形状为等腰三角形或直角三角形.

(完整word版)沪科版八年级数学三角形中的边角关系

三角形中的边角关系 知识点 一、 边 1、基本概念(三角形的定义、 边、 顶点、 △、 Rt △) 2、按边对三角形的分类:≠?? ?????? 不等边三角形三角形腰底等腰三角形等边三角形 ☆3、三边关系: (1)任意两边之和大于第三边 (2)任意两边之差小于第三边 验证:两条较短边之和与第三边的关系 二、角 1、基本概念( 内角、外角、∠ ) 2、按角对三角形的分类:???? ???? 锐角三角形斜三角形三角形钝角三角形直角三角形 3、三角形的内角和 (1)三角形三个内角和等于180° (2)直角三角形的两个锐角互余 (3)一个三角形最多3个锐角,最多1个钝角,最多1个直角,最少2个锐角) 三、线 1、中线 (1) 定义 (2) 重心 (3)中线是线段 (4) 表述方法 2、高线 (1)定义 (2)垂心 (3)高是线段,垂线是直线 (4)表示方法 (5)3种高的画法 3、角平分线 (1)定义 (2)外心 (3)画法 (4)表示方法 四、数三角形的个数 (1)图形的形成过程 (2)三角形的大小顺序 (3)按某一条边沿着一定的方向 (4)固定一个顶点,按照一定的顺序不断变换另外两个顶点去数 基础练习 1、图中有____个三角形;其中以AB 为边的三角形有______________;含∠ACB 的三角形有______________;在△BOC 中,OC 的对角是___________;∠OCB 的对边是___________. 2、用集合来表示“用边长把三角形分类”,下面集合正确的是( ) A B C D 3、若三角形的三边长分别为3,4,x -1,则x 的取值范围是_________________________

解三角形典型例题答案

1. 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+= sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-= cos()cos(),2cos cos 0A B A B A B -=-+= cos 0A =或cos 0B =,得2A π=或2B π= 所以△ABC 是直角三角形。 2. 证明:将ac b c a B 2cos 222-+=,bc a c b A 2cos 2 22-+=代入右边 得右边22222222 22()222a c b b c a a b c abc abc ab +-+--=-= 22a b a b ab b a -==-=左边, ∴)cos cos (a A b B c a b b a -=- 3.证明:∵△AB C 是锐角三角形,∴,2A B π+>即022A B ππ>>-> ∴sin sin()2 A B π >-,即sin cos A B >;同理sin cos B C >;sin cos C A > ∴C B A C B A cos cos cos sin sin sin ++>++ 4.解:∵2,a c b +=∴sin sin 2sin A C B +=,即2sin cos 4sin cos 2222 A C A C B B +-=, ∴1sin cos 222B A C -==0,22 B π<<∴cos 2B = ∴sin 2sin cos 22244B B B ==?=839 5解:22222222sin()sin cos sin ,sin()cos sin sin a b A B a A B A a b A B b A B B ++===-- cos sin ,sin 2sin 2,222cos sin B A A B A B A B A B π===+=或2 ∴等腰或直角三角形 6解:2sin sin 2sin sin )sin ,R A A R C C b B ?-?=- 222sin sin )sin ,,a A c C b B a c b -=--=-

完整八年级三角形的边角关系练习题含解析答案

三角形的边角关系 练习题 回顾: 1三角形的概念 定义:由________ 线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2、三角形的分类 按角分: 锐角三角形 三角形直角三角形 钝角三角形 按边分: 不等边三角形 三角形血诂一%旳底边和腰不相等的等腰三角形 等腰三角形々 等边三角形 3、三角形的重要线段 在三角形中,最重要的三种线段是三角形的中线、三角形的角平分线、三角形的高。 说明:(1)三角形的三条中线的交点在三角形的_______ 部。 (2)三角形的三条角平分线的交点在三角形的_________ 部。 (3)______ 角形的三条高的交点在三角形的内部;___________ 角形的三条高的交点是直角顶点;_____ 三角形的三条高所在直线的交点在三角形的外部。 4、三角形三边的关系 定理:三角形任意两边的和第三边; 推论:三角形任意两边的差第三边; 说明:运用“三角形中任意两边的和大于第三边”可以判断三条线段能否组成三角形,也可以检验较小的两边的和是否大于第三边。 5、三角形各角的关系 定理:三角形的内角和是_________ ; 推论:(1)当有一个角是90°时,其余的两个角的和为90°; (2)三角形的任意一个外角______ 口它不相邻的两个内角的和。 (3)三角形的任意一个外角______ 意一个和它不相邻的内角。 说明:任一三角形中,最多有三个锐角,最少有两个锐角;最多有一个钝角;最多有一个直角

三角形的计数 例1 如图,平面上有A、B C D E五个点,其中B C、D及A、E C分别在同一条直线上, 那么以这五个点中的三个点为顶点的三角形有( ) A 4个 B 、6个 C、8 个D 、10 个 解析: 课件出示答案:C 小结:分类讨论是三角形的计数中常见的思路方法。 举一反三: 1、已知△ ABC是直角三角形,且/ BAC=30,直线EF与厶ABC的两边AC AB分别交于点M N,那么/ CME乂BNF=( ) A、150° B 、180° 解析: 因为/ A=30°,所以/ NMA社MNA=180 -30 ° =150 所以/ CME社BNF=/ NMA# MNA=150 .故选A. 三角形的三边关系 例2边长为整数,周长为20的等腰三角形的个数是。 解析: 根据三角形的周长及三角形的三边关系建立不等式和方程,求出其中一边长的范围,再求其正 整数解? 答案:

经典初中数学三角形专题训练及例题解析

知 识点梳理 考点一、三角形 1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 2、三角形的分类. ?????钝角三角形直角三角形锐角三角形 ??? ????) (等边三角形等腰三角形不等边三角形 3、三角形的三边关系: 三角形任意两边之和大于第三边,任意两边之差小于第三边. 4、三角形的重要线段 ①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心 ②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心 ③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同) 5、三角形具有稳定性 6、三角形的内角和定理及性质 定理:三角形的内角和等于180°. 推论1:直角三角形的两个锐角互补。 推论2:三角形的一个外角等于不相邻的两个内角的和。 推论3:三角形的一个外角大于与它不相邻的任何一个内角。 7、多边形的外角和恒为360° 8、多边形及多边形的对角线 ①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形. ②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。 ③多边形的对角线的条数: A.从n 边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。 三角形 (按角分) 三角形 (按边分)

边形共有 2)3 ( n n 条对角线。 9、边形的内角和公式及外角和 ①多边形的内角和等于(n-2)×180°(n≥3)。 ②多边形的外角和等于360°。 10、平面镶嵌及平面镶嵌的条件。 ①平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。 ②平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360°。考点二、全等三角形 1、全等三角形的概念 能够完全重合的两个三角形叫做全等三角形。。 2、三角形全等的判定 三角形全等的判定定理: (1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”) (2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”) (3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。直角三角形全等的判定: 对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”) 3、全等变换 只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。 全等变换包括一下三种: (1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。 (2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。 (3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。考点三、等腰三角形 1、等腰三角形的性质 (1)等腰三角形的性质定理及推论: 定理:等腰三角形的两个底角相等(简称:等边对等角) 推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。 推论2:等边三角形的各个角都相等,并且每个角都等于60°。 2、三角形中的中位线

实用文档之解三角形经典练习题集锦(附答案)

实用文档之"解三角形" 一、选择题 1.在△ABC 中,若0 30,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32- 2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D . A tan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则 △ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角 为0 60,则底边长为( ) A .2 B .23 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( ) A .006030或 B .006045或 C .0 060120或 D .0 015030或 6.边长为5,7,8的三角形的最大角与最小角的和是 ( ) A .090 B .0120 C .0135 D .0 150 二、填空题 1.在Rt △ABC 中,0 90C =,则B A sin sin 的最大值是_______________。 2.在△ABC 中,若=++=A c bc b a 则,2 2 2 _________。 3 . 在△ABC 中,若 ====a C B b 则,135,30,20 _________。 4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则 C =_____________。 5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。 三、解答题 1.在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么? 2.在△ABC 中,求证: )cos cos (a A b B c a b b a -=- 3.在锐角△ABC 中,求 证: C B A C B A cos cos cos sin sin sin ++>++。 4.在△ABC 中,设,3 ,2π =-=+C A b c a 求B sin 的 值。 解三角形 一、选择题 1.在△ABC 中,::1:2:3A B C =,则::a b c 等于 ( ) A .1:2:3 B .3:2:1 C .2 D .2 2.在△ABC 中,若角B 为钝角,则sin sin B A -的值( ) A .大于零 B .小于零 C .等于零 D .不能确定 3.在△ABC 中,若B A 2=,则a 等于( ) A .A b sin 2 B .A b cos 2 C .B b sin 2

初中三角形总复习专题典型例题经典测试题2套

三角形资料 一、三角形相关概念 1.三角形的概念 由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接. 2.三角形的表示 通常用三个大写字母表示三角形的顶点,如用A、B、C表示三角形的三个顶点时,此三角形可记作△ABC,其中线段AB、BC、AC是三角形的三条边,∠A、∠B、∠C分别表示三角形的三个内角. 3.三角形中的三种重要线段 三角形的角平分线、中线、高线是三角形中的三种重要线段. (1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. 注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线. ②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部. ③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画. (2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. 注意:①三角形有三条中线,且它们相交三角形内部一点. ②画三角形中线时只需连结顶点及对边的中点即可. (3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高. 注意:①三角形的三条高是线段 ②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.(二)三角形三边关系定理 ①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b. ②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a. 注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可(三)三角形的稳定性 三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理. 三角形内角和性质的推理方法有多种,常见的有以下几种: (四)三角形的内角 结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180° (1)构造平角 ①可过A点作MN∥BC(如图) ②可过一边上任一点,作另两边的平行线(如图) (2)构造邻补角,可延长任一边得邻补角(如图) 构造同旁内角,过任一顶点作射线平行于对边(如图)

解三角形经典例题及解答

知识回顾: 4、理解定理 (1) 正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即 存在正数 k 使 a ksinA , ________________ , c ksinC ; (2)」 b J 等价于 ______________________ sin A sin B sin C (3) 正弦定理的基本作用为: 正弦、余弦定理 1、直角三角形中,角与边的等式关系:在 Rt ABC 中,设 BC=a ,AG=b , AB=c , 根据锐角三角函数中正弦函数的定义,有 -sin A ,- sin B ,又sinC 1 -,从而在直角三 c c c 角形ABC 中,-?- sin A b sin B c si nC 2、当 ABC 是锐角三角形时,设边 AB 上的高是CD 根据任意角三角函数的定义, 有 CD=asinB bsinA ,则 一- b ,同理可得一 sin A sin B sin C b sin B 从而」- sin A b sin B c sin C 3、正弦定理:在一个三角形中,各边和它所对角的 ____ 的比相等,即旦 sin A b sin B c sin C c b a c sin C sin B ' sin A sin C

① 已知三角形的任意两角及其一边可以求其他边,如 a bsinA ; b sin B ② 已知三角形的任意两边与其中一边的对角可以求其他角的正弦值, 如 sin A a sin B ; sinC . b (4) 一般地,已知三角形的某些边和角,求其它的边和角的过程叫作 解三角形? 5、知识拓展 6、 勾股定理: ___________________________________ 7、 余弦定理:三角形中 __________ 平方等于 _______________________ 减去 _____________ ______________ 的两倍,即a 2 b 2 8、余弦定理的推论: cosC ____________________________ 。 9、在 ABC 中,若a 2 b 2 c 2,则 ______________________ ,反之成立; 典型例题: a b sin A sin B c si nC 2R ,其中2R 为外接圆直径. c 2 cosA cosB

《解直角三角形》典型例题

《解直角三角形》典型例题 例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形. 分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决. 解 (1) ; (2)由a b B = tan ,知 ; (3)由c a B = cos ,知860cos 4 cos =? == B a c . 说明 此题还可用其他方法求b 和c . 例 2在Rt △ABC 中, ∠C=90°,∠A=30°,3=b ,解这个三角形. 解法一 ∵ ∴ 设 ,则 由勾股定理,得 ∴ . ∴ . 解法二 13 3 330tan =? =?=b a 说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题. 例 3 设 中, 于D ,若 ,解三 角形ABC .

分析“解三角形ABC”就是求出的全部未知元素.本题CD不是 的边,所以应先从Rt入手. 解在Rt中,有: 在Rt中,有 说明(1)应熟练使用三角函数基本关系式的变形,如: (2)平面几何中有关直角三角形的定理也可以结合使用,本例中 “”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值: 所以解直角三角形问题,应开阔思路,运用多种工具. 例4在中,,求. 分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差; (2)不是直角三角形,可构造直角三角形求解.

解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有 ,且有 ; 在中,,且 , ∴; 于是,有 , 则有 说明还可以这样求:

相关文档
最新文档