核反应方程的分类与计算
第二节 核衰变与核反应方程式

思考与研讨
解:⑴由质量数守恒和电荷数守恒得:
10 5
B
01n
24He
37Li
⑵由于α粒子和反冲核都带正电,由左手定则知, 它们旋转方向都是顺时针方向,示意图如下。
⑶由动量守恒可以求出反冲核的速度大
小是103m/s方向和α粒子的速度方向
相反,由带电粒子在匀强磁场中做匀速
α
圆周运动的半径公式
r mv qB
跟踪训练题
2、21083Bi的半衰期是5天,10g的铋210 经过20天后还应该剩下多少?
3、放射性元素2411Na经过6 h后只剩下 1/8没有衰变,它的半衰期是多长?
思考与研讨
例7. 静止在匀强磁B核场俘中获的了一一个个1速50 度为v
=7.3×104m/s的中子而发生核反应,生成α粒子与 一个新核。测得α粒子的速度为2×104 m/s,方向与 反应前中子运动的方向相同,且与磁感线方向垂直。 求:⑴写出核反应方程。⑵画出核反应生成的两个粒 子的运动轨迹及旋转方向的示意图(磁感线方向垂直 于纸面向外)。⑶求α粒子与新核轨道半径之比。
1 0
n
11H
1 0e
思考与研讨
例1、关于天然放射现象,下列说法正确的是: ( B)C A、是玛丽*居里夫妇发现的 B、首先说明了原子核不是单一的粒子 C、γ 射线必须伴随着α或β射线而产生 D、任何放射性元素都能同时发出三种射线
例2、在核反应方程式
U 235
92
10
n 9308
Sr
136 54
可求得它们的半径之比是120∶7
2、反应能:在核反应过程中,原子核的质 量和电荷数会发生变化,同时伴随着能量的 释放或吸收,所放出或吸收的能量叫做反应 能。
2.核衰变与核反应方程

例2.三个原子核X、Y、Z,X核放出一个正电子后
变为Y核,Y核与质子发生核反应后生成Z核并放出 一 个 氦 核 ( He ) 。 则 下 面 说 法 中 正 确 的 是 ( CD )
(A)X核比Z核多一个质子
(B)X核比Z核少一个中子
(C)X核的质量数比Z核的质量数大3
(D)X核与Z核的总电荷是Y核电荷的2倍
2
5.衰变规律是对大量原子组成的放射性样品 而言的,是一种统计规律.不适用于少量原子 核.对某个原子核或少量原子核来讲无意义.
6.单位时间内放射性元素衰变的数量与放射 性元素的量成正比.医用放射性元素要求半 衰期短.
例1.由原子核的衰变规律可知( C ) A.放射性元素一次衰变可同时产生α射 线和β射线. B.放射性元素发生β衰变,新核的化学性 质不变. C.放射性元素衰变的速率跟它所处的状 态无关. D.放射性元素发生正电子衰变时,新核质 量数不变,核电荷数增加1.
A.该核发生的是α衰变 a
B.该核发生的是β衰变
b
C.磁场方向一定是垂直纸面向里
D.磁场方向向里还是向外不能判定
222 86
Rn
衰变成
218 84
Po
的过程放出的粒子是
( B)
A.0.25g,a粒子 B.0.75g,a粒子 C.0.25g,β粒子 D.0.75g,β粒子
例6.根据有关放射性知识可知,下列说法正 确的是: ( B ) A.氡的半衰期为3.8天,若取4个氡核,经过 7.6天就只剩下一个氡原子核了 B.β衰变所释放的电子是原子核中的中子转 化为质子和电子所产生的
E/--0e00V..8554
3
-1.51
2
-3.40
D.γ射线
高中核物理-核反应:核能、重核裂变

介绍
mu 390.3139 1027 kg mBa 234.0016 1027 kg mKr 152.6047 1027 kg mn 1.6749 1027 kg
计算“质量亏损” Δm =(mu + mn)-(mBa + mKr + 3mn)= 0.3578×10-27kg ΔE = ΔmC2 = 201MeV 1kg铀完全裂变,释放的核能为:
解:
m =6.644929×10 -27kg
m p =1.672648×10 -27kg
me=9.11×10-31kg
将六个方程式相加,得到
4p
2 e +2 +
ΔE= mc2 =(4m p– m 2me )c 2 -
代入数字,经计算得到
ΔE=3.95×10-12 J
链式反应的示意图:
(3)重核裂变的应用
核电站
核心设施:核反应堆 浓缩铀制成的铀棒 石墨、重水或普通水,用于减 减速剂: 小中子的速度 控制棒:镉,用于 吸收中子,控制 核反应的快慢。
原子弹: 不可控的核反应原子弹爆ຫໍສະໝຸດ 时的蘑菇云 “小男孩”(前)和“胖
1.两个中子和两个质子可以结合成一个 氦核, 已知中子的质量是1.008665u, 质子的质量 是1.007276u, 氦核的质量是4.0026u, 求此核反 应的质量亏损和结合能, (1u=1.66×10-27千克, c=3×108米/秒)
解:△m=0.029282u △E= △mc2=931.5 × 0.029282= 27.3MeV
或 △E = △mc2
= 0.029282 × 1.66×10-27 × (3×108 )2 = 4.37 ×10-12J=27.3MeV
2020年高考物理素养提升专题16 原子结构与原子核(解析版)

素养提升微突破16 原子结构与原子核——认知物体的微观结构原子结构与原子核原子结构与原子核是最近两年调整为必考考点,考试中一般以选择题形式出现,难度不高,属于理解记忆为主,但微观结构看不见,需要考生有丰富的想象能力建模能力。
【2019·新课标全国Ⅰ卷】氢原子能级示意图如图所示。
光子能量在1.63 eV~3.10 eV 的光为可见光。
要使处于基态(n =1)的氢原子被激发后可辐射出可见光光子,最少应给氢原子提供的能量为A .12.09 eVB .10.20 eVC .1.89 eVD .1.5l eV【答案】A【解析】由题意可知,基态(n=1)氢原子被激发后,至少被激发到n=3能级后,跃迁才可能产生能量在1.63eV~3.10eV 的可见光。
故 1.51(13.60)eV 12.09eV E ∆=---=。
故本题选A 。
【素养解读】本题考查波尔原子理论和能级跃迁,意在考查考生的理解能力。
一、原子的核式结构1.电子的发现英国物理学家汤姆孙在研究阴极射线时发现了电子,提出了原子的“枣糕模型”。
2.α粒子散射实验 (1)α粒子散射实验装置(2)α粒子散射实验的结果:绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但少数α粒子穿过金箔后发生了大角度偏转,极少数α粒子甚至被“撞了回来”。
【典例1】【2019·江苏卷】100年前,卢瑟福用α粒子轰击氮核打出了质子.后来,人们用α粒子轰击6028Ni 核也打出了质子:460621228291He+Ni Cu+H X →+;该反应中的X 是 (选填“电子”“正电子”或“中子”).此后,对原子核反应的持续研究为核能利用提供了可能.目前人类获得核能的主要方式是 (选填“核衰变”“核裂变”或“核聚变”)。
【答案】中子 核裂变【解析】由质量数和电荷数守恒得:X 应为:10n 即为中子,由于衰变是自发的,且周期与外界因素无关,核聚变目前还无法控制,所以目前获得核能的主要方式是核裂变;【素养解读】本题通过原子核的人工转变考查了核反应方程中的质量数守恒、电荷数守恒等规律。
核反应堆物理分析公式整理

核反应堆物理分析公式整理核反应堆物理分析是指对核反应堆内的核素变化、能量释放、流量分布等物理过程进行分析和计算的过程。
通过分析,可以评估反应堆的安全性、经济性和可靠性,并优化反应堆设计及运行策略。
在核反应堆物理分析中,使用了一系列的公式来描述和计算相关物理量。
下面是一些核反应堆物理分析常用的公式。
1.反应速率方程:核反应堆中的核反应过程可以用速率方程来描述。
速率方程的一般形式为:R=RRRRR其中,R表示反应速率,R表示中子瞬时速度(即,每次碰撞转换成核反应的中子数),R表示中子通量密度,R表示反应截面,R表示燃料中的核素数密度,R表示物质密度。
2.中子产生与灭亡速率:核反应堆中的中子既有产生,又有灭亡。
中子产生与灭亡速率可以用如下方程描述:RR=RRRRRR−RRR其中,Rn表示中子产生与灭亡速率,R表示中子瞬时速度,R表示源项,R表示燃料中的核素数密度,R表示物质密度,R表示吸收截面,R表示催化剂的产生速率。
3.中子扩散方程:反应堆中的中子在空间上呈扩散运动,并服从扩散方程:∇.(-D∇R)+RR_R+RRR∇.−∇(R/R)=0其中,D表示扩散系数,RR_R表示吸收源项。
4.燃耗方程:核反应堆中燃料的核素数(或浓度)随时间的变化可以用如下方程描述:RR/RR=−∑(RRR)−∑(RRRR)其中,R表示中子瞬时速度,R表示中子通量密度,R表示截面,R表示燃料中的核素数密度,R表示衰变常数,R表示体积。
5.中子平衡方程:在反应堆内,中子产生与灭亡速率相等,则有中子平衡方程:RR=R/R(−∑(RRR)−∑(RRRRRR)+R∑(RRRRR))+RR=0其中,RR表示中子产生与灭亡速率,R表示燃料中的核素数密度,R表示体积,R表示中子瞬时速度,R表示中子通量密度,R表示截面,RR表示散源项。
这些公式只是核反应堆物理分析中的一部分,还有很多其他公式用于描述和计算其它物理量。
在实践中,还需要根据特定反应堆的设计和运行条件,结合适当的假设和参数来应用这些公式。
2025年高考物理总复习专题47 原子核的衰变及核反应方程(附答案解析)

2025年高考物理总复习专题47原子核的衰变及核反应方程
1.原子核的衰变
衰变类型α衰变β衰变
衰变方程A Z X→A-4
Z-2
Y+42He A Z X→A Z+1Y+0-1e
衰变实质2个质子和2个中子结合成
氦核211H+210n→42He
1个中子转化为1个质子和
1个电子10n→11H+0-1e
典型方程238
92
U→234 90Th+42He234 90Th→234 91Pa+0-1e 衰变规律电荷数守恒、质量数守恒、动量守恒2.三种射线的比较
名称构成符号电荷量质量电离能
力
贯穿本领
α射线氦核42He+2e 4 u最强最弱
β射线电子0-1e-e
1
1 837u
较强较强
γ射线光子γ00最弱最强
3.核反应的四种类型
类型可控性核反应方程典例
衰变α衰变自发238 92U→234 90Th+42He β衰变自发234 90Th→234 91Pa+0-1e
人工转变人工控制14
7
N+42He→17 8O+11H
(卢瑟福发现质子)
4
2
He+94Be→12 6C+10n (查德威克发现中子)
模型归纳
第1页(共9页)。
核裂变相关方程式综述

核裂变相关方程式综述核裂变是指重原子核在一定条件下发生分裂的过程,具有广泛的应用和重要的科学意义。
在核裂变过程中,会涉及到一系列与能量转化和守恒相关的方程式。
本文将对核裂变相关方程式进行综述,探讨其基本原理和应用。
一、能量守恒方程式在核裂变过程中,能量守恒是基本的原理之一。
根据质能等效原理,质量和能量之间存在着转换关系,由爱因斯坦提出的质能方程E=mc^2 揭示了质量和能量之间的对应关系。
在核裂变过程中,原子核的质量发生变化,因此能量也会发生变化。
能量守恒方程式可以表达为:E_总 = E_核 + E_剩 + E_产其中,E_总代表裂变反应前后系统的总能量,E_核代表裂变反应产生的核能量,E_剩代表未参与反应的原子核的能量,E_产代表产生的其他形式的能量。
二、裂变反应速率方程式核裂变反应的速率可以通过反应速率方程式来描述。
一般情况下,核裂变反应的速率与裂变产物的浓度成正比。
裂变反应速率方程式可以表达为:r = k[A]其中,r代表裂变反应的速率,k代表反应速率常数,[A]代表裂变产物的浓度。
三、裂变链式反应方程式核裂变通常涉及到链式反应的过程,裂变链式反应方程式可以用来描述链式反应的整个过程。
裂变链式反应可以分为三个阶段:起始阶段、自持阶段和爆炸阶段。
裂变链式反应方程式可以表达为:N = N_0(2^n)其中,N代表裂变链式反应中的反应物或产物的数量,N_0代表起始时的反应物或产物的数量,n代表经过的链式反应的次数。
这一方程式是裂变链式反应的基本特征之一。
四、裂变产物生成速率方程式核裂变产物的生成速率也可以通过方程式来描述。
裂变产物生成速率方程式可以表达为:d[A]/dt = λ[A]其中,d[A]/dt代表裂变产物的生成速率,λ代表裂变产物的衰变常数。
五、裂变反应的截面方程式核裂变反应的截面可以通过方程式来描述。
截面可以看作是衡量核反应发生概率大小的物理量。
裂变反应的截面方程式可以表达为:σ = A/P其中,σ代表裂变反应的截面,A代表裂变的总截面积,P代表入射粒子的流强度。
核反应核能质能方程

核反应核能质能方程一、考点聚焦核能.质量亏损.爱因斯坦的质能方程 Ⅱ要求核反应堆.核电站 Ⅰ要求重核的裂变.链式反应.轻核的聚变 Ⅰ要求可控热核反应. Ⅰ要求二、知识扫描1、 核反应在核物理学中,原子核在其它粒子的轰击下产生新原子核的过程,称为核反应.典型的原子核人工转变147N+42He 8O+11H 质子11H 的发觉方程 卢瑟福94Be+426C+10n 中子10n 的发觉方程 查德威克2、 核能〔1〕核反应中放出的能量称为核能〔2〕质量亏损:原子核的质量小于组成它的核子质量之和.质量亏损.〔3〕质能方程: 质能关系为E=mc2原子核的结合能ΔE=Δmc2 3、 裂变把重核分裂成质量较小的核,开释出的核能的反应,叫裂变典型的裂变反应是:23592U+Sr+13654Xe+1010n 4.轻核的聚变把轻核结合成质量较大的核,开释出的核能的反应叫轻核的聚变.聚变反应开释能量较多,典型的轻核聚变为:21H+He+10n5.链式反应一个重核吸取一个中子后发生裂变时,分裂成两个中等质量核,同时开释假设干个中子,假如这些中子再引起其它重核的裂变,就能够使这种裂变反应不断的进行下去,这种反应叫重核裂变的链式反应三、好题精析例1.雷蒙德·戴维斯因研究来自太阳的电子中微子〔v 。
〕而获得了2002年度诺贝尔物理学奖.他探测中微子所用的探测器的主体是一个贮满615t 四氯乙烯〔C 2Cl 4〕溶液的巨桶.电子中微子能够将一个氯核转变为一个氢核,其核反应方程式为νe +3717Cl →3718Ar 十 0-1e3717Cl 核的质量为36.95658 u ,3718Ar 核的质量为36.95691 u , 0-1e 的质量为0.00055 u ,1 u 质量对应的能量为931.5MeV.依照以上数据,能够判定参与上述反应的电子中微子的最小能量为〔A 〕0.82 Me V 〔B 〕0.31 MeV 〔C 〕1.33 MeV 〔D 〕0.51 MeV[解析] 由题意可得:电子中微子的能量E ≥E ∆=mc 2-〔m Ar +m e -m Cl 〕·931.5MeV=(36.95691+0.00055-36.95658)×931.5MeV=0.82MeV那么电子中微子的最小能量为 E min =0.82MeV[点评] 应用爱因斯坦质能方程时,注意单位的使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9 核反应方程的分类与计算
从不同的角度对核反应方程进行分类时,一般的分类方法有三种。
9。
.1从转变方式的角度分类可分为衰变反应与人工核反应
放射性元素的原子核在自发地放出α、β或γ射线的同时,转变为其他元素原子核的过程叫做衰变,而用人工的方式强制进行的核反应则称为人工核反应。
原子核的人工转变和天然衰变都是一种核素转变为另一种核素,但天然衰变大多数发生于原子序数大于84的放射性元素,衰变过程中放射性元素的原子核数量按指数规律递减,存在着半衰期,且一切衰变反应都是放能反应;而原子核的人工转变则是以极快的速度进行的撞击,存在着放能反应和吸能反应两种类型。
α衰变:例如
226
2224
88
862Ra Rn He →
+,该反应中的质量亏损
()226.0254222.0175 4.00260.0053m u u u ∆=-+=,对应释放的核能4.94MeV ,相当
于13
7.910
J -⨯,其中α粒子的占衰变能的98%,反冲核 的动能只占只占衰变能的2%。
半衰期不同放射性元素放出的α粒子的动能并不相同,一般来说,半衰期较长的α衰变放出的α粒子的动能较小,例如23592
U (半衰期4.5×109年)放射的α粒子能量约为4.2MeV(其
速度7
1.410/m s ⨯),而
212
84
Po (半衰期7310s -⨯)放射的α粒子约为 8.78M 的V (其速度
约为72.110/m s ⨯),两者的大小均比一般资料上所说的
10
c
小。
β衰变又称为-β衰变,例如60
600
2726
1Co Ni e -→
+,它是从原子核中自发地放出一个电
子的核转变,其通式一般可写成0
1
1A
A Z Z X Y e ϑ+-→
++(即11001
1n H e ϑ-→++)的形式,相当于核内的一个中子转变为质子;+β衰变:例如:30
300
1514
1P Si e →
+,其通式一般可写
成01
1A
A Z Z X Y e ϑ-→
++(即110101H n e ϑ→++)的形式,相当于核内一个质子转变为中子,
然而由于质子质量小于中子质量,因此在自由状态下质子是不能自发地转变为中子的,但是当质子束缚于原子核内部时却不存在这种转变的可能。
另外还有一种β衰变叫“EC 衰变”, 这种衰变通常发生于核内中子数过少的原子核,“EC 衰变”是核内的一个质子俘获一个核外
电子并发射出一个中微子的过程,相当于101
110H n ϑ-+→+,经过一次“EC 衰变”的原子
核质量数不变而原子序数减小了1。
γ衰变有两种模型:①经过α衰变或β衰变后生成的处于激发态原子核要通过放出γ光
子释放出更多的能量而跃迁到较低能量状态。
②当原子核由激发态过渡低能态时,由于核 场的影响将能量直接交给原子的内层电子,从而产生内变换电子,所以内壳层电子的动能与壳层电子的电离能之和应是核的两能级的能量差,即等于在两能级间跃迁时所辐射的γ光子的能量。
9。
.2从能量角度分类可分为放能反应与吸能反应
一切自发进行的核反应都是放能反应,反应过客串存在质量亏损,即反应前核子的总质量大于反应后核子的总质量,而吸能反应只有在人工核反应中才会出现。
人工核反应
4
9121
2
460He Be C n +→+就是放能反应;反应前总质量
4.002609.0121813.01478Be m m u u u
α+=+=反应后的总质量
12.0000 1.0086513.008665c n m m u u u +=+=,,因此这一核反应释放的核能约为
5.6MeV 。
而另一著名的人工核反应414171
2781He N O H +→+则是吸能反应;反应前总质量
4.0026014.0030718.00567N m m u u u α+=+=小于反应后总质量后总质量16.99913 1.00782518.00567o p m m u u u +=+=存在着“负质量亏损”0.001285m u
∆=-因此需要吸收能量1.1197MeV 。
由于这份能量只能来自α粒子的动能,因此,只有当α粒子的速度足够大时这一反应才会发生。
“质子与中合成氘核”的核反应112
101H n H γ+→+是放能反应,放出的2.22MeV 能量
以γ光子形式辐射出去,而“用γ光子的形式照射氘核使氘核分裂”的核反应,则是“质子
与中子结合成氘核”核反应的可逆反应:211
110H H n γ+→+,反应前氘核的质量2.013553u
小于质子质量1.007276u 与中子质量1.008665u 之和2.015941u ,其质量差0.00238u -,相当于吸收2.22MeV 的能量, 因此,这个核反应只有当γ光子的能量大于2.22MeV 时才会发生,是吸能反应。
例1:雷蒙·戴维斯因研究太阳的电子中微子(e ϑ)而获得了2002年度诺贝尔物理学奖,他探测中微子所用的探测器的主体是一个注满615t 四氯乙烯24C Cl 溶液的巨桶,电子
中微子可以将一个氯核转变为一个氩核,其核反应方程式3737
017181
e Cl Ar e ϑ-+→+
,已知
3717
Cl 核的质量为36.95658u,
3718Ar 的质量36.9569u ,而0
1e -的质量为0.00088u 所对应的能量
0.82MeV ,就是参与上述核反应的电子中微子的最小能量。
所以选A 。
例2:正物质与反物质相遇将发生湮灭,同时放出巨大能量,一对正、负电子相遇湮灭同时转化为一对频率相同的γ光子,不计电子的初动能,那么这对光子的频率为 H Z ,
(已知电子的质量191.610e m C -=-⨯,普朗克常量34
6.6310h J S -=⨯⋅。
分析:这个核反应体现了从物质存在的一种形式-实物形式,向着物质存在的另一种形
式-场的形式转变过程,在转变过程中质能守恒,核反应方程式00
112e e γ-+→中的能量在
反应前是2
2mc ,在反应后是2h ν,反应后一对γ光子的能量相当于反应物的全部质量亏损
时释放的能量,因此是2
201.210Z mc H h
ν=≈⨯ 例3:一般来说,235
92U 吸收慢中子后进行非对称分裂时,每次产生的两个碎片并不相同,而以碎片在A =90及A =140左右的几率为最大,例如:
135
114390
10
92
06040
0138235.0439 1.0087142.909889.90473 1.00866580.00055
U n Nd
Zr n e ϑ
-+
→+
+
++⨯⨯
核反应方程估算,当1kg
235
92
U 全部裂变时释放的核能,相当于完全燃烧多少吨优质煤时
释放的能量?(煤的燃烧值7
310/J kg ⨯)?
分析:反应前反应物的总质量236.0526m u 初=,反应后生成物的总质量
235.8540m u =终,反应中质量亏损0.2076m u ∆=,核反应中释放的核193.4MeV ,约合
113.1010J -⨯,∴1kg
23592
U 全部裂变时释放的核能,相当于燃烧优质煤的质量
2311
7
100610 3.1010235310
m -⨯⨯⨯⨯=⨯⨯煤kg,约为260t 。
例4:如下一系列核反应是在恒星内部发生的:
1213
6713130
7
6113146714
1578
15150
8
71151276P C N N C e P C N
P N O
O N e P N C ϑ
ϑα
-+→→+++→+→→+++→+
其中P 为质子,0
1e 为正电子,α为α粒子,ϑ为中微子。
已知质子质量
271.267264810p m kg -=⨯,α粒子的质量276.64492810m kg α-=⨯,正电子的质量
300.91110e m kg -=⨯,中微子质量可忽略不计,真空中的光速83.0010/c m s =⨯,试计算
该系列核反应完成后释放的能量。
分析:将上述6个核反应方程式的左边和右边分别相加,并同时消去左右两侧相抵消的
各项后,可得简化后的核反应方程:140
121422H He e ϑ⋅→+⋅+,这是典型的碳-氮循环,
是太阳上目前下在进行的一系列核聚变反应中较典型的一个,在这里碳和氮只是起着催化作用,它们的质量在反应前后保持不变。
核反应中的质量亏损
2942 4.384110P e m m m m kg α-∆=--=⨯相当于释放2123.9510E mc J -∆=∆=⨯的能量。