GPS基线向量解算及平差处理技巧
GPS基线解算的优化及平差的方法技巧

GPS数据处理GPS基线解算的优化及平差的方法技巧摘要:对影响GPS基线解算质量的主要因素进行分析和研究,结合实例阐明基于南方GPS后处理软件的GPS基线解算的优化技术和方法。
以及对GPS 解算数据平差处理的方法与技巧。
关键词:GPS基线解算;固定解;浮动解;残差曲线;优化,数据传输、数据分流、观测数据的平滑、滤波、平差计算、同步环、异步环、重复基线。
GPS接收机采集记录的是GPS接收机天线至卫星的伪距、载波相位和卫星星历等数据。
GPS数据处理就是从原始观测值出发得到最终的测量定位成果,其数据处理过程大致可划分为数据传输、格式转换(可选)、基线解算和网平差以及GPS网与地面网联合平差等四个阶段。
GPS测量数据处理的流程如图所示。
GPS测量数据处理流程一、引言根据GPS外业观测和基线数据处理的实际情况,即使通过选取恰当的点位来保证良好的观测条件,进行星历预报来保证观测到的卫星数目及星座的图形强度,但在实际的基线解算过程中,时常会遇到基线只有浮动解而无固定解。
在此情况下,对基线解算进行优化处理后通常能够得到固定解,从而提高基线质量,避免或减少返工重测现象。
二、影响GPS基线解算结果的几个因素及其对策影响GPS基线解算质量的因素较多也较为复杂,如卫星的周跳、星历误差、对流层及电离层影响、多路径误差、无线电干扰、不明因素影响及起算点误差过大等都会影响基线解算。
应对措施1基线起点坐标不准确的应对方法要解决基线起点坐标不准确的问题,可以在进行基线解算时,使用坐标准确度较高的点作为基线解算的起点,较为准确的起点坐标可以通过进行较长时间的单点定位或通过与WGS-84坐标较准确的点联测得到;也可以采用在进行整网的基线解算时,所有基线起点的坐标均由一个点坐标衍生而来,使得基线结果均具有某一系统偏差,然后,再在GPS网平差处理时,引入系统参数的方法加以解决。
2卫星观测时间短的应对方法卫星整周模糊度难以确定的影响。
由于个别或少数卫星观测时间太短,而导致这些卫星的整周模糊度难以准确确定。
9_4 基线向量网平差

设网中固定点号为1,其坐标为: 基线向量观测值为:
差及其权阵分别为: , ;
待定点近似坐标及其改正数分别为: , 待定点坐标平差值为: 。
为网中点数。
由 、 以及 三式,不难得出基线向量观测值 的误差方程为:
9.4 基线向量网平差《GPS定位原理及应用》授课教案
第9章 GPS测量数据处理
9.4 基线向量网平差
两观测站对GPS卫星的同步观测数据,经过平差后,解算出两观测站间的基线向量及其方差与协方差。实际工作中,同时参加作业的接收机可能多于两台,这样,在同一观测时间段中,便可能在多个观测站上同步观测成网,称为GPS基线向量网。GPS基线向量网的平差是以GPS基线向量为观测值,以其方差阵之逆阵为权,进行平差计算,消除许多图形闭合条件不符值,求定各GPS网点的坐标并进行精度评定。
法方程组成与解算以及精度评定与三维约束平差相同。求单位权方差时自由度计算中应加上地面观测值个数。
三维联合平差也可以在三维直角坐标系中进行。
由于地面网通常都有是在大地坐标系统或高斯平面坐标系统中进行平差计算的,为计算网点的大地高程,必须以相应的精度确定点的高程异常。但实际上高程异常的精度在东西沿海地区好于1m,而在西北高山地区,只能保持数米的精度。这样,高程异常的误差直接影响所求地面网点大地高的精度,从而影响据以计算的空间直角坐标的精度,在这种情况下,大工业高的方差和协方差也难以比较可靠地确定,这样一来便会对两网的联合平差造成不利影响。因此,通常应选择二维联合平差的方案。
1.三维联合平差
GPS基线向量观测值的误差方程和条件方程同三维约束平差。地面网观测值误差方程为:
(1)空间弦长观测值的误差方程:
式中:
GPS基线向量网平差

(2)得到GPS网中各个点在WGS-84系下经 过了平差处理的三维空间直角坐标在进行GPS
网的三维无约束平差时,如果指定网中某点准 确的WGS-84坐标作为起算点,则最后可得到 的GPS网中各个点经过了平差处理的在WGS84系下的坐标。为将来可能进行的高程拟合, 提供经过了平差处理的大地高数据 。
(3)用GPS水准替代常规水准测量获取各点 的正高或正常高是目前GPS应用中一个较新的 领域,现在一般采用的是利用公共点进行高程 拟合的方法。在进行高程拟合之前,必须获得 经过平差的大地高数据,三维无约束平差可以 提供这些数据。
原理:对于某一条基线向量,都可写出下列方 程
方差-协方差阵、协因数阵、权阵分别是:
三维平差
所谓三维平差是指平差在三维空间坐标系中进 行,观测值为三维空间中的观测值,解算出的 结果为点的三维空间坐标。GPS 网的三维平 差,一般在三维空间直角坐标系或三维空 间 大地坐标系下进行 。
二维平差
指平差在二维平面坐标系下进行,观测值为二 维观测值,解算出的结果为点的二维平面坐标。 二维平差一般适合于小范围 GPS 网的平差指的是平差时所采用的观 测值除了GPS观测值以外,还采用了地面常规 观测值,这些地面常规观测值包括边长、方向、 角度等观测值。
二、GPS网平差的原理
三维无约束平差
定义:所谓 GPS 网的三维无约束平差是指平 差在 WGS-84三维空间直角坐标系下进行,平 差时不引入使得 GPS 网产生由非观测量所引 起的变形的外部约束条件。具体地说,就是在 进行平差时,所采用的起算条件不超过三个。 对于 GPS 网来说,在进行三维平差时,其必要 的起算条件的数量为三个,这三个起算条件既 可以是一个起算点的三维坐标向量,也可以是 其它的起算条件 。
GPS基线解算的方法及精度分析【正文+开题报告+任务书】

目录摘要 (1)1GPS基线解算方法 (1)1.1GPS 定位及基线解算原理 (2)1.2GPS 基线解算的重要影响因素及解决方案 (2)2GPS控制网基线解算的一般原则和质量分析方法 (4)2.1 GPS控制基本作业流程在大地测量和工程控制测量 (5)2.2 通过基线解算结果来分析GPS野外数据的观测质量 (5)2.3 基线解算的一般原则 (6)2.4 GPS网的三维无约束平差的主要作用 (6)2.5 基线解算质量分析 (7)2.5.1 基线向量的改正数 (7)2.5.2 数据删除率 (7)2.5.3 RDOP (7)2.5.4 同步环闭合差 (7)2.5.5 异步环闭合差 (8)2.5.6 重复基线较差 (8)2.5.7 小结 (8)3GPS控制网基线解算优化方法探讨 (8)3.1 观测数据及基线解算质量评定要素 (8)3.2 优化基线解算精度技术方法 (9)3.2.1 提高起算点坐标精度 (9)3.2.2 删除或优化卫星组合 (9)3.2.3 调整卫星截止高度角等控制参数 (10)3.2.4 截取观测时段 (11)3.3小结 (11)4GPS双差解的RATlO定义及作用 (11)4.1初始整周未知数偏差搜索及ratio的定义 (12)4.2小结 (12)5GPS 基线解算的精度分析 (12)5.1精度分析 (12)5.2小结 (13)6总结 (13)参考文献 (14)Abstract (1)GPS基线解算的方法及精度分析摘要:对GPS控制网基线处理中对观测数据及基线解算质量评定要素进行了总结,针对控制网内业数据处理基线解算中经常出现的一些问题,总结出优化解算的原则和方法,并提出合理建议。
关键词:GPS;基线解算;优化;精度分析Method and precision analysis of GPS baseline solutionAbstract:Of baseline processing in GPS control network of observation data and baseline decoding quality evaluation factors are summarized, in view of the GPS control network data processing base in the industry often appear some problems in calculating, sums up the principles and methods of optimization algorithm,and put forward reasonable Suggestions.Key words:GPS;Baseline solution;optimization;Precision analysis1 GPS 基线解算方法GPS 测量数据的处理可分为基线解算和网平差两个阶段,因为GPS 测量得到的是 GPS 相位中心到卫星发射中心的伪距,载波相位和卫星星等,使得要得到工程测量的定位成果,必须先进行基线向量解算,评定基线精度,它是GPS 数据处理的重要环节,其解算质量的好坏将直接影响到GPS 网的定位精度。
影响GPS基线解算结果的因素分析及应对措施

国土资源(2008年增刊1)134文★大连鹏程工程勘测设计有限公司 熊启生中国人民解放军65015部队 张坤鹏 王智超PS静态定位在测量中主要用于测定各种用途的控制点。
其中较为常见的方面是利用GPS建立各种类型和等级的控制网,在这些方面GPS技术已基本上取代了常规的测量方法,成为了主要手段。
较之于常规方法,GPS在布设控制网方面具有测量精度高;选点灵活、不需要造标、费用低;全天侯作业;观测时间短;操作简便等优点。
基线解算是GPS网观测数据处理过程的重要环节,基线解算质量的好坏直接关系到各条基线的观测精度,从而影响整个控制网的精度。
因此基线解算质量控制以及基线解算过程中数据的处理方法是整个控制网数据处理的关键点。
本文结合GPS定位原理和实际经验,在南方GPS静态处理软件中对于GPS基线解算阶段需要解决的一些关键问题进行论述。
影响GPS基线解算结果的因素影响GPS基线解算结果因素的判别1.基线解算时所设定的起点坐标不准确。
起点坐标不准确,会导致基线出现尺度和方向上的偏差。
2.少数卫星的观测时间太短,导致这些卫星的整周未知数无法准确确定。
当卫星的观测时间太短时,会导致与该颗卫星有关的整周未知数无法准确确定,而对于基线解算来讲,参与计算的卫星,如果与其相关的整周未知数没有准确确定的话,就将影响该条基线解算的精度。
3.在整个观测时段里,有个别时间段里周跳太多,致使周跳修复不完善。
4.在观测时段内,多路径效应比较严重,观测值的改正数普遍较大。
5.多路径效应严重、对流层或电离层折射影响过大。
1.基线起点坐标不准确的判别。
对于由起点坐标不准确所对基线解算质量造成的影响,目前还没有较容易的方法来加以判别,因此,在实际工作中,只有尽量提高起点坐标的准确度,以避免这种情况的发生。
2.卫星观测时间短的判别。
关于卫星观测时间太短这类问题的判断比较简单,只要查看观测数据的记录文件中有关对与每个卫星的观测数据的数量就可以了,南方静态数据处理软件还输出卫星的可见性图(如图1),这就更直观了。
工程测量GPS网平差方法总结

工程测量GPS网平差方法总结摘要:本文针对工程测量平面控制网要求相对精度高的特点,找出GPS网平差需解决的关键问题,给出解决问题的几种具体方法,并对各方法使用条件和精度进行了对比分析,对实际作业有一定的指导意义。
关键词:工程测量GPS网平差独立坐标系1引言GPS技术具有自动化程度高、作业速度快、定位精度高、不受天气条件限制和经济效益高等优势,在航空、航天、军事、交通、运输、水利、资源勘探、通信、气象等几乎所有的领域中都广泛应用,在测绘领域更是迅速普及,测量模式从传统的静态差分相对定位到实时动态测量(RTK)技术,从临时基站RTK 到网络RTK(CORS), 其技术不断发展,日新月异,但GPS技术最典型的用途还是应用静态差分相对定位建立各种精度的控制网。
工程测量对控制网的精度要求有其特殊性,一般对相对精度要求要高于绝对精度,鉴于此,在进行工程测量GPS网平差时就要考虑其自身的特点,尽量提高控制网的相对精度。
本文将从实践的角度对工程测量GPS网平差的具体方法进行总结。
2工程测量GPS网平差需解决的问题及应对措施2.1工程测量GPS网平差需解决的问题GPS网平差,其实质就是在WGS-84坐标系下对基线向量解算和无约束平差后转换为国家或地方坐标系成果,通常采用固定至少2个已知点数据,强制约束到国家或地方坐标系。
因控制点成果的用途不同,对其精度要求不同,采用的平差方法也不同,在工程测量中,GPS网等级分为二、三和四等及一、二级,相对精度要求在1/10000至1/120000之间,特殊工程控制网要求甚至更高。
因国家大地控制网是依高斯投影方法按6°带或3°带进行分带和计算,并把观测成果归算到参考椭球面上,这样做,便于成果的统一、使用和互算。
但倘若直接作为工程测量GPS网的固定点进行平差,就有可能产生以下问题:(1)因早期国家控制点精度不高造成内符合精度高的GPS网精度的降低;(2)当测区远离中央子午线时,因高斯投影变形大,致使控制网点坐标反算边长与实测边长存在误差,影响施工放样;(3)当测区海拔高时,由于实地边长归算到参考椭球面上的长度变形大,也会产生第2条的问题;(4)不满足某些特殊需要,如桥梁控制网采用桥轴线坐标系更加方便、实用。
GPS 基线向量网平差

Dij
Pij
=
D −1 ij
σ0 为先验的单位权中误差
平差所用的观测方程就是通过上面的方法列出的
但为了使平差进行下去
还必须引入位
置基准 引入位置基准的方法一般有两种 第一种是以 GPS 网中一个点的 WGS-84 坐标作为 起算的位置基准 即可有一个基准方程
dX i
dYi
=
X Yi
0 i 0
43
2. 约束平差
GPS 网的约束平差指的是平差时所采用的观测值完全是 GPS 观测值 即 GPS 基线向量 而且 在平差时引入了使得 GPS 网产生由非观测量所引起的变形的外部起算数据
3. 联合平差
GPS 网的联合平差指的是平差时所采用的观测值除了 GPS 观测值以外 还采用了地面常 规观测值 这些地面常规观测值包括边长 方向 角度等观测值等
−
Xi
Yi
=
0
dZi
Z
0 i
Zi
第二种是采用秩亏自由网基准
引入下面的基准方程
GT dB = 0
1 0 0 ... 1 0 0
GT = 0 1 0 ... 0 1 0 = [E E E ... E]
0 0 1 ... 0 0 1
dB = [db1 db2 db3 ... ] dbn T
第七章 GPS 基线向量网平差
GPS 基线解算就是利用 GPS 观测值 通过数据处理 得到测站的坐标或测站间的基线向 量值
我们在采用 GPS 观测完整个 GPS 网后 经过基线解算可以获得具有同步观测数据的测站 间的基线向量 为了确定 GPS 网中各个点在某一坐标系统下的绝对坐标 需要提供位置基准 方位基准和尺度基准 而 GPS 基线向量只含有在 WGS-84 下的方位基准和尺度基准 而我们 布设 GPS 网的主要目的是确定网中各个点在某一特定局部坐标系下的坐标 这就需要通过在 平差时引入该坐标系下的起算数据来实现 当然 GPS 基线向量网的平差 还可以消除 GPS 基线向量观测值和地面观测中由于各种类型的误差而引起的矛盾
GPS基线解算优化的处理方法及原则

GPS基线解算优化的处理方法及原则作者:吴杰来源:《中国科技博览》2015年第16期[摘要]本文从影响GPS测量精确度和质量的误差产生源头入手,对GPS测量产生误差的主要类型进行了细致的分析,同时重点阐述了造成GPS解算误差的主要因素及优化处理方法和原则,以供工作人员参考和借鉴。
[关键词]GPS测量;产生误差;优化解算;处理原则中图分类号:TM930.11 文献标识码:A 文章编号:1009-914X(2015)16-0303-01前言目前的科学技术正处于飞速发展的阶段,在科学技术范畴中,GPS技术的应用越来越广泛。
在生活生产中的影响也越来越重要。
尤其是GPS测量技术。
但是由于各种限制,GPS在测量方面还存在着很多不足。
其中误差对于GPS测量的影响非常大,为后续的数据处理工作带来严重的影响。
尤其是GPS基线向量解算,占据了数据处理工作的大部分时间。
因此,需要做好基线解算的优化处理。
1、GPS测量产生误差的主要类型1.1 跟信号传播相关的误差①对流层的折射。
对流层就是指距离地面大约40千米以上范围内的大气层,它的质量约占大气层总质量的百分之九十九。
对流层具有非常强的对流作用,自然现象中的雾、雪、风、雨等现象都是在这里产生的。
然而随着时间、季节、纬度等因素的改变,对流层中所含物质成分也在发生着改变。
这种改变对信号的接收造成了巨大地影响。
在对流层中发生的电磁波的折射效应我们称之为对流层的延迟。
②电离层的折射。
从电磁波的传播角度来分析,距地面50千米以上的大气层我们称之为电离层。
由于太阳的辐射,存在于电离层中的大气被电离,转变成自由电子与正离子的形式,广布在电离层中。
形成弥散的介质。
进入到电离层中的电磁波,会被带电粒子所影响,从而在传播速度上出现了改变。
在中纬度区域当中,测站的天顶方向电离层的延迟在白天大概会达到10米左右,而到了晚上大概也会在1~3米左右,当卫星本身高度角小于10度的时候,电离层延迟可能会达到10~45米左右,对信号传播造成的影响非常大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基线向量解算及平差软件特点与问题一、基本方法:1、基线清理数据量大的时候,基线解算比较耗时。
GPS观测接收机数量较多时,会因为自然同步产生许多长基线,即许多相距较远的点连接而成的基线。
这些长基线往往同步观测时间不长,属于不必要的基线,对于控制网质量也无多大益处,所以为了节省计算时间,应在基线解算前将其清理删除。
删除时可在图上选择,也可以在基线表中根据距离选择删除。
2、处理超限闭合环基线解算完成后,首先要检查环闭合差(同步或异步环),对于闭合差大的环,应该进行处理。
一般按相对精度≤1/20000估算,相对闭合差应小于50ppm。
所以大于50 ppm的环应进行处理。
闭合环超限处理是一项繁琐、耗时的工作,也是GPS控制网数据处理的主要内容,主要的技巧和方法可以归纳为:(1)、超限基线处理过程中一些基线要重新解算,解算后会影响到相关环闭合差,所以处理需要反复进行。
作为一般的原则,首先处理相对闭合差较大的环,然后处理环闭合差较小的环。
(2)、整理归纳超限闭合环,分析是否涉及到一条共同基线,例如几组超限闭合环(J012,J015,J016)、(J013,J015,J102)、…,(J012,J020,J015)就涉及到共同基线J012→J015,这条基线有问题的可能性就较大。
(3)、处理时首先分析可能有问题的基线是否必要,如果是连接两个不相邻的点,并且涉及到环甚多,则可以直接将其删除。
井研算例网形复杂回路众多,一般可直接删除不合格基线。
(4)、如果一个闭合差超限的环,相关基线均不能简单删除(删除后影响图形结构,减少了重要环路),应该改变基线解算参数,重新计算相关基线。
方法是在网图上选中重解基线,重新设置高度角,历元间隔、参考星等设置,点击“基线解算”→“解算选择基线”。
(5)、基线解算的精度指标rms和ratio是基线解算质量的参考指标,前者是中误差,后者是方差比(,rms越小,表明基线解算质量越高,ratio越大,表明整周未知数解算越可靠,所以重解基线,要关注这两项指标,但是这两项指标只作参考,最重要的指标还是闭合差。
(6)、如果反复修改设置重解基线后,仍不能减小环闭合差,则可将闭合差超限环中的基线,分别与周边的基线组成闭合环,检查其闭合差。
如果仅涉及到其中一条基线的环闭合差超限,则可以将这条基线删除。
(7)、检查环闭合差时,可能会出现两个相同顶点的环,闭合差一个超限,一个不超限。
这是因为某一条基线存在重复基线。
这时可以删除超限环中的重复基线。
3、三维基线自由网平差(1)、三维基线自由网平差目的是检查观测值质量,及获取高程拟合所需大地高平差值。
GPS坐标是WGS84系统,GPS工程控制网需要转换到当地坐标系统,所以都是在高斯平面上进行平差。
平差中未知参数除了坐标改正数外,还设置了平面坐标转换参数。
进行二维平差,要将GPS三维基线向量投影到高斯平面上,转换时要使用没有加平差改正数的原始三维基线向量。
(2)、三维平差不包含外部约束条件,平差合格就说明观测质量合格。
规范对于点位中误差的要求没有明确规定,所以三维基线平差后精度检验,主要指标也是边长(基线)相对中误差,而一般基线计算后环闭合差合格,三维平差后基线相对中误差就会合格。
4、二维基线向量平差由于经过三维平差检验,所以如果三维平差精度很好,而二维平差精度不合格,则应该是已知数据的问题。
这时可以尝试以下处理方法:(1)、如果只有1-2个已知点,属于自由网平差。
2个点时因为平差设置尺度和旋转参数,所以仍然是自由网平差,平差精度不会受已知点数据误差影响(条件是问题是误差而不是错误,若出现错误,尺度比参数会较大,这些参数在平差报告二维平差参数中可以看到)。
所以已知点较多,二维平差不合格时,可以输入一个已知点做自由网平差,然后根据已知点坐标计算两两间边长,和GPS网平差坐标计算的边长进行对比,如果和某一已知点相关的边,两种边长比值与其它边有明显差异时,这个点就可能是有问题的点。
但是这种方法只能识别错误点,对于精度不高的点,难以识别出来。
(2)、输入全部已知点坐标自由网平差值和已知值,做最小二乘转换,如果转换后某一个点已知值和转换值坐标差较大,这个点就可能是精度较差的点,在已知点较多,精度差的点是孤立值的情况下,这种方法有可能能够确定问题点。
(3)、如果查不出孤立的错误或精度不高的已知点,可以放弃作强制约束平差。
先做二维自由网平差,然后输入全部已知数据,对二维平差值做最小二乘平面坐标转换,平差后已知点采用转换值。
这种方法既可以将GPS网纳入当地坐标系统,又能不受较低精度已知点影响,能够保持GPS网较高的相对精度。
5、高程拟合高程拟合的质量可以通过分析已知点拟合值和已知值的差异(残差)来判断,差值小拟合质量高,反之则是拟合质量差。
对于控制面积较小的控制网,拟合质量差一般是已知点高程有问题,查找有问题点的方法类似于二维平面控制网平差。
二、COMPASS软件1、软件区分字母大小写,例如J00和j00,软件视为两个不同点。
同点不同名,或者同名不同点,会导致难以预料的结果,所以导入数据前必须检查处理。
2、软件有时候会出现概略位置解算错误,情况分为两种:A、提示两个重复观测的点,距离多少米,可能不是同一点。
B、网图上显示的位置明显不符(可能偏离明显)。
处理方法:对于第一种情况,经过查实确实是同一点,可以不理会。
对于第二种情况,可以先将这个点删除,再重新单独导入,可能就会正常了。
3、COMPASS软件没有输出高程拟合已知点残差,并且从井研计算数据来看,和南方软件平面数据相差不大,而高程拟合数据相差较大,相当部分点相差几十公分。
4、基线解算不合格重新设置时效果明显,并且单独计算并显示指定环闭合差的功能,对于处理超限闭合环非常方便。
操作方法是综合网图上选择相应的基线闭合环,重新解算后,点击“检查”→“搜索选定基线的闭合差”,系统即弹出对话框,显示闭合环极限解值、精度信息及相对闭合差等信息。
5、COMPASS软件有一项统计检验(X检验),这项检验较严格,一般很难合格。
目前国家规范没见关于X检验的规定,所以可以选择不输出此项目(在网平差设置对话框中设置)。
6、当检查处理完指定闭合环后,选择“检查”→“自动搜索基线闭合差”复查时,仍会看到存在闭合环相对闭合差超限,很可能就是某些基线有重复基线,重复基线中的一条造成了环闭合差超限(当用鼠标点击基线,基线颜色没有明显变化时,如果不是没有点中,那么很可能就是存在重复基线)。
则是应将重复基线中的一条删除,方法是在综合网图视图点中基线,再点击“查看”→“转树型视图”,则系统直接显示选中基线数据。
根据基线名后面附加的扩展名,判断出欲删除的基线,点击右键选择删除即可。
7、如果观测数据量较大,点击“检查”→“自动搜索基线闭合差”时,可在“检查”→“闭合差检查设置”中,设置输出最小ppm和闭合差值,只输出闭合差较大的环,可以方便快速找到超限的基线闭合环。
8、查看环闭合差时,先应该删除上次环闭合差检查结果,否则新的结果会增添到原结果后面。
9、没有解算新增基线功能,又不能再基线列表中批量选择基线,只能在网图上选择,所以不方便分阶段解算。
10、数据导入和基线解算速度较快。
11、二维平差输入已知点坐标方法是:(1)、在树型视图窗口左侧查找点击测站点,窗口右侧即加色突出显示测点基本解算信息框,在测点信息框内点击右键,选择“属性”,系统即弹出设置窗口。
(2)、在综合网图中点击要输入已知点坐标的点,然后点击“查看”→“转到树型视图”,系统就会自动定位到测点基本解算信息框,以后操作方法就如同(1)。
12、没有数据转换rinex工具,但是华测网站有专用工具。
三、华测CGO软件1、基线解算后环闭合差很小,但是环闭合超显示超限,不知原因。
2、分段计算加入新观测数据后,原本删除的基线又被恢复,是一个很大的缺陷。
3、没有计算指定环闭合差计算功能,对于分析基线质量不方便。
4、有时候出现点名显示错误,如,显示为J2023075(可以在树形视图左侧观测数据文件栏目选中后修改)。
5、对南方接收机数据兼容性很差,单算南方数据或华测数据很正常,混算包括先算南方(华测)后加入华测(南方)接收机数据,结果环闭合差超限多而数值很大,重新解算基线处理没什么效果,因而井研数据没有解算成功。
6、数据输入和基线解算速度都较慢。
四、南方平差软件1、功能较强大,尤其是基线解算中“新增基线解算”、“不合格基线解算”,等功能,非常方便。
2、可以导入已经解算的部分基线,非常方便大数据量控制网分阶段解算。
3、当已知点只有两个时,二维基线向量改正数全部为0,估计应该是在三维基线向量投影到二维时,使用了平差后的基线向量,这应该属于算法错误。
4、基线解算改变解算条件时,效果不明显。
五、中海达软件HGO1、计算速度较快,基线解算质量优于其它软件。
2、功能较强,基线处理较方便,例如点击超限闭合环,左侧菜单即弹出相关基线,很方便重新解算或删除。
3、Rinex数据格式必须是“”,对于华测数据””,软件把点名看作J0122911,因此必须要处理。
4、发现图形显示有问题,例如网图打不开或找不到了,但不影响解算。
当输入已知点坐标时,已知点显示输入坐标位置,待定点显示大地坐标位置,相互关系可能会不正确。
如已知点坐标带上代号,已知点就显示在很远的地方,看起来已知点就很找不到了。
5、井研处理结果平面部分差距较小,高程部分和华测较接近,和南方差距较大。
6、系统默认的2009规范要求很严格,相当部分闭合环闭合差很难到达,以后从事GPS控制测量,如要求严格执行2009规范,要有清楚认识。