静电场散度定理推导
第2章静电场

“立个球面”的立体角=? 2. “任意曲面”dS对“某点”所张的立体角 (1) 以R0为半径的“球面”
3. “立体角”的重要结论
散度方程微分形式的引出:
请注意:此处的ρ 是指自由电荷的体密度ρvf !
(强调)散度方程
• 物理意义: 它们描述了静电场的发散性,给出了通过封闭面的 电通量与面内所围电荷量之间的关系; • 积分形式说明: 任意封闭面的电通量=面内所围电荷总量; 电通量为0,则封闭面内不包含电荷,即面内无源; 进而说明:静电场具有通量源,即自由电荷。 • 微分形式说明: 静电场(电位移)散度=该点处电荷体密度; 进而,静电场具有散度源,即自由电荷的体密度。
例2. 求电荷分布
已知真空中电场分布,求各处电荷分布的体密度. 分析: 由电场分布可知, 球对称, 电场只有径向分量; 可以直接运用散度方程求解; 仍要分球内和球外两种情况;
作业
• 试计算电荷面密度为σ 的无限大平面周围 的电场。
静电场的旋度方程
• 首先应注意,这是静电场,不是任意电场; • 积分形式: 电场沿任意闭合曲线的积分为0; C指任意闭合曲线; C自身方向与C所围曲面方向满足右手规则; 积分式即电场的环流量; • 微分形式: 静电场的旋度为0 无论在有源区还是无源区; 电荷是静电场的什么源?体密度是什么源?
真空中距离为R的两点电荷q1,q2 q1对q2的作用力,电荷量正比,距离平方反比 矢量方向:q1指向q2 真空中介电常数(Dielectric Constant)
1 12 0 8.85 10 ( F / m) 9 4 9 10
真空中静止点电荷的电场强度
q 2受到的电场力:F R, q1 , q2
总结1:
库仑定律(真空中静止电荷电场)
静电场的麦克斯韦方程组

静电场的麦克斯韦方程组引言静电场是电磁学中的一种特殊情况,指的是电荷分布保持不变或者运动速度远小于光速的情况下所产生的电场。
静电场的研究对于理解电磁现象以及应用于各个领域都具有重要意义。
麦克斯韦方程组是描述电磁现象最基本、最完整的数学表达式,其中包含了静电场的方程组。
麦克斯韦方程组麦克斯韦方程组由四个基本方程构成,分别是: 1. 高斯定律(Gauss’s law):描述了电场与其周围电荷分布之间的关系。
2. 高斯定律(Gauss’s law for magnetism):描述了磁场与其周围磁荷分布之间的关系。
3. 法拉第电磁感应定律(Faraday’s law of electromagnetic induction):描述了变化磁场引起感应电场产生。
4. 安培环路定律(Ampere’s circuital law):描述了通过闭合回路的感应电流与该回路内部和周围磁场之间的关系。
这四个方程组成了静电场的麦克斯韦方程组,可以用来描述电场和磁场之间的相互作用以及它们随时间的变化。
静电场的麦克斯韦方程组推导首先,我们从高斯定律开始推导。
高斯定律表达了电场与其周围电荷分布之间的关系,数学形式如下:∇⋅E=ρε0其中,∇是梯度算子,E是电场强度,ρ是电荷密度,ε0是真空介电常数。
接着,我们来推导高斯定律对应的积分形式。
假设我们有一个闭合曲面S,并且曲面内部没有自由电荷。
根据高斯定理(Gauss’s theorem),我们可以得到:∫(∇⋅E) S dS=1ε0∫ρSdS由于曲面内部没有自由电荷,所以右侧积分为零。
因此,我们得到了高斯定律的积分形式:∮ES⋅dS=0其中,S是曲面S的法向量,⋅表示点乘。
接下来,我们推导高斯定律对应的微分形式。
根据矢量分析中的散度定理(divergence theorem),我们可以将上述积分形式转换为微分形式:∇⋅E=0这就是高斯定律的微分形式。
接着,我们来推导高斯定律对应的磁场方程。
静电场的散度与旋度 恒定磁场及其散度与旋度

S
S
1 E ( r ) dS
0
(r ) E (r ) 0
F ( x, y, z ) dl
C
无
0
0
V
( r )dV
S
n
S
F
M
0
高斯定理表明:
C
电磁场与电磁波
第2章 电磁场的基本规律
电磁场与电磁波
第2章 电磁场的基本规律
第一课
2013/3/25
电磁场与电磁波
第2章 电磁场的基本规律
电磁场与电磁波
第2章 电磁场的基本规律
2.2.2 静电场的散度与旋度 1. 静电场散度与高斯定理 回顾1.1 矢量场通量的概念
F ( x, y, z )
1.2 通量的物理意义
en
dS
面积元矢量
dS en dS ——
en ——
d F en dS ——
R (r ) 3 dV R
(r ) R
R3
1 E (r )
0
V
(r ) R dV
V
V
1 dV 4 π 0
V
1 1 2.2.10) p43 (r ) dV 4 π 0 V R 1 1 E (r ) (r ) 2 dV 4π 0 V R 2 1 4 π R R 1 E (r ) (r ) R dV 2.2.11) p43
( R r r )
电磁场与电磁波
第2章 电磁场的基本规律
电磁场与电磁波
电磁学讲义04-散度、环路、旋度定理

思考:如果已经知道电场分布,如何求电荷分布?•如图以P(x,y,z)点为中心,∆x ,∆y 和∆z 为边长,取小立方体。
先考虑与x 轴垂直的两个面贡献的通量,则只考虑A的x 分量即可:同理有:zy z y xx A z y z y x x A x x x ΔΔ•Δ−−ΔΔ•Δ+=),,2(),,2(φz y x yA yy ΔΔΔ∂∂=φz y x z A zz ΔΔΔ∂∂=φ则有散度:A A A A zy x z y x ∂+∂+∂=++=•∇φφφK )2(),,(),,2(x x A z y x A z y x x A x x x Δ±⋅∂∂+≈Δ±zy x x A z y x x A x x A x x x x ΔΔΔ∂∂=ΔΔ•⎥⎦⎤⎢⎣⎡Δ−∂∂−Δ∂∂≈)2(2φ利用全微分概念,有:则:电场的散度-讨论•电场某处的单位体积内的电通量正比于此处单位体积内的电荷量。
•电场的散度定理说明,在电荷体密度不是无穷大的点,场强矢量在该点连续,在各方向可求导。
•只适用于电荷体密度–而不能用于点电荷、线电荷、面电荷所在的位置,那些位置没法定义电荷的体密度。
同时这些位置的电场强度值无意义。
•可用于计算电荷分布。
•计算场强一般采用高斯定理积分形式,不必采用微分形式,即散度定理。
–教材P54例题4用散度定理求电场的方法少见。
§2.4静电场的高斯定理和环路定理--静电场的矢量场理论(二)•静电场环路定理•静电场旋度定理# 旋度的定义•如前所述,在矢量场空间任意点,取任意一个方向,则存在一个围绕此方向的环量面密度。
在这一点,有无数个方向可以选择,也因此相应的存在无数个环路面密度。
这些环量面密度之间存在确定的关系。
•旋度:是一个矢量,取矢量场某一点的环量面密度的最大值为模,并取相应的曲面法线方向。
称为矢量场在该点的旋度,记为:–旋度是矢量!•绕任一方向的环量面密度等于旋度在这一方向的投影(证明略)A K ×∇n ˆn ˆA KA K静电场矢量场原理的总结•静电场:有源、无旋场。
【电磁学】高斯定理

【电磁学】高斯定理在高中物竞以及高考物理中经常出现高斯定理(高考物理中一般可以用对称法,填补法等等解出),建议阅读时间:7分钟一、高斯定理简介高斯定理(Gauss' law)也称为高斯通量理论(Gauss' flux theorem),或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式(通常情况的高斯定理都是指该定理,也有其它同名定理)。
在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。
高斯定律(Gauss' law)表明在闭合曲面内的电荷分布与产生的电场之间的关系。
高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。
因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。
在麦克斯韦方程组中也有麦克斯韦方程组对麦克斯韦方程组有兴趣的同学可以看看这篇文章,不过以后我也会讲的给一个百度百科的解释[1]好,我们开始了二、电场线电场线密度:经过电场中任一点,作一面积元 dS 并使它与该点的场强垂直,若通过 dS 面的电场线条数为 dN ,则电场线密度为 E=\frac{dN}{dS}可见,电场线密集处电场强度大,电场线稀疏处电场强度小电场强度通量:在电场中穿过任意曲面的电场线的总条数称为穿过该面的电通量,用 \phi_{c} 表示.匀强电场: \phi_{e}=EScos\theta ;非匀强电场:d\phi_{e}=EdS \Rightarrow \phi_{e}=\int_{S}^{}E·dS(哈哈,打不来矢量,看着有点恼火)3.电通量的正负在电磁学中是这样规定:1.对于不闭合的曲面(平面)S,可以任意选取电场线穿进S产生的电通量为正或为负,也就是说完全取决于 dS 与 E 的夹角.\theta<\frac{π}{2}时, \phi_{e}>0 ;\theta>\frac{π}{2}时, \phi_{e}<02.对于闭合的曲面(如球面),规定选取电场线穿出时的电通量为正.\phi_{e}=\iint_{S}EdS三、高斯定理内容穿过一封闭曲面的电通量与封闭曲面所包围的du电荷量成正比。
高斯定理

电场与磁场的散度定理和旋度定理磁通连续性原理散度定理(高斯定理):一个矢量通过包围它的闭合面的总通量(矢量的面积分)等于该矢量的散度(和算子点乘)在该闭合面构成的体积内的体积分。
散度定理搭建了面积分与体积分之间的转换桥梁。
散度定理可用一个球图示。
散度定理是高斯定理在物理中的应用.即矢量穿过任意闭合曲面的通量等于矢量的散度对闭合面所包围的体积的积分旋度定理(斯托克斯定理):一个矢量的闭合线积分等于矢量的旋度(和算子叉乘)在该闭合线围成的开放面上的面积分。
旋度定理搭建了线积分与面积分之间的转换桥梁。
旋度定理可用一个环图示。
散度定理和旋度定理是将麦克斯韦方程从积分形式向差分形式转化的基础,而麦克方程的差分形式方才便于求解。
高斯散度定律有"两个",分别是对电通密度矢量和磁通密度矢量而言,也即分别描述电场和磁场。
高斯定律描述的是流出闭合面的电通/磁通总量与电场源/磁场源之间的对应关系。
1)对电场来说(闭合面内有电场源,对应流出闭合面的是电通总量),高斯定律描述如下:电通密度矢量D在S上的闭合面积分,等于电荷体密度在该闭合面围成的体积内的体积分。
D单位C/m^2,电荷体密度单位C/m^3。
电场高斯定律的物理意义是:流出闭合面的总电通量等于闭合面内包围的总正电荷。
也就是说,电场源是独立的,电场是一去不返的,从正电荷出发,到负电荷终止。
其微分方程如下:表示电场是有散场,这是由于自然界存在着自由电荷,因此,▽·E ≠0的地方,味着此处一定存在着净的正电荷或净的负电荷.(1)自然界存在着自由电荷,电子电荷的绝对值e 就是自由电荷的基本值.(2)静电场的场线即E 线始发于正电荷并终止于负电荷,也就是说静电场的E 线不是闭合曲线,它们没有涡旋状结构.即无旋.静电场的这种性质,反映在电场高斯定理和环路定理中.2)对磁场来说(对应流出闭合面的是磁通总量)(磁通连续性原理),高斯定律描述如下:磁通密度矢量B在S上的闭合面积分,等于0。
电磁场公式整理

第一章标量三重积: 矢量三重积方向导:梯度:计算公式:矢量线方程:通量:散度:散度计算公式: 散度定理(高斯定理): 旋度:斯托克斯定理: 拉普拉斯运算:第二章电流连续性方程微分形式:对于恒定电流场: )()()(B A C A C B C B A⨯⋅=⨯⋅=⨯⋅CB A BC A C B A )()()(⋅-⋅=⨯⨯grad nu u en∂=∂zy x x y x∂∂+∂∂+∂∂=∇e e e ),,(d ),,(d ),,(d z y x F zz y x F y z y x F x z y x ==00cos cos cos |lim M l u u u u ul lx y z αβγ∆→∂∆∂∂∂==++∂∆∂∂∂d d d n SSψψF S F e S==⋅=⋅⎰⎰⎰ττ∆⋅=⎰→∆SSd F div F lim 0z F y F x F Sd F div z y x S ⋅∇=∂∂+∂∂+∂∂=∆⋅=⎰→∆ττF lim⎰⎰⋅∇=⋅VSVF S F d dmax ]rot [F e F n n =⨯∇zy x z y xF F F z y xe e e F ∂∂∂∂∂∂=⨯∇=⎰⎰⋅⨯∇=⋅SCS F l F d d )()(2F F F ⨯∇⨯∇-⋅∇∇=∇uu 2)(∇=∇⋅∇0d ⎰=⋅SS J 、0=⋅∇JtJ ∂∂-=⋅∇ρ静电场散度:高斯定理的积分形式: 静电场旋度:毕奥萨法尔定律:任意电流回路 C 产生的磁感应强度恒定磁场散度: 恒定磁场是无散场恒定磁场旋度: 恒定磁场是有旋场,它在任意点的旋度与该点的电流密度成正比,电流是磁 场的旋涡源。
极化强度:----------电介质的电极化率电位移矢量:电介质中高斯定理的积分形式: 磁化强度矢量: 磁化电流体密度: 真空中安培环路定理推广到磁介质中: 磁场强度 :M B H-=0μ麦克斯韦方程组的微分形式传导电流和变化的电场都能产生涡旋磁场。
高斯定理的证明方法和应用

同理可得
dB dS
0 Idl y x dydz dxdz 0 4 S r 2 r2
0 Idl r 2 dS S 4 r
(c)电流元在任意闭曲面内 以此类推,在闭曲面 S 内,以电流元为球心作一辅助球面 S1,因为
dB dS dB dS 0
(2) 当电荷 Q 不包含在闭合曲面 S 内时,则
S V
r E dS dV 0
0
由此,高斯定理得证。 3、 高斯定理的另一种证明
如图所示,设有一电量为 q 孤立的正点电荷,现以点电荷所在处为球心,任意 r 为 半径作一球面为高斯面,球面上任意点的场强为
E
2 S
S
dS
4 r 2
(1)
0
(b)点电荷在任意闭曲面外 闭曲面 S 的电通量为
S
E dS q q
1 4 0
S
q r dS r3
(2)
1 xdydz ydxdz zdxdy 4 0 S r 3 1 1 1 xdydz ydxdz zdxdy 4 0 S r 3 r3 r3
(c)点电荷在任意闭曲面内 在任意闭曲面 S 内以点电荷 q 为球心作一辅助球面 S1,其法向朝内,根据(1)式可知点 电荷 q 在闭曲面 S+S1 的电通量为零,即:
E dS E dS 0
S S1
E dS E dS E dS
S S1 S2
r dS S r 2 dl
dB dS 0
S
(b)电流元 Idl 在任意闭曲面外 电流元的磁感应强度对闭曲面的磁通量为