5.1 样本均数的抽样分布与抽样误差

合集下载

正态分布参考值抽样误差

正态分布参考值抽样误差

数值变量的参数估计
一、均数的抽样分布与抽样误差
抽样研究的目的就是要用样本信息来推断 总体特征。由于存在个体变异,样本均数 (X)往往不等于总体均数(),因此抽 样后各个样本均数也往往不等于总体均数, 且各个样本均数间也不一定都相等。这种 由抽样造成的样本均数与总体均数的差异 或各样本均数之间的差异称为抽样误差, 抽样误差是不可避免的。
100个样本均数频数分布直方图
样本均数的抽样分布具有以下特点:
1. 各样本均数未必等于总体均数;
2. 样本均数之间存在差异;
3. 样本均数的分布很有规律,围绕着总体 均数,中间多、两边少,左右基本对称, 也服从正态分布;
4. 样本均数的变异较之原变量的变异大大 缩小。
抽样,样 本量为n
总体均数为μ,标准差σ
频率密度 f(x)=(fi/n)/i
0.1
(i=0.1)
0.08
0.06
0.04
0.02
0
3.8
4 4.2 4.4 4.6 4.8
5 5.2 5.4 5.6 5.8
这条所描述的分布,便近似于我们通常所说 的正态概率分布,简称正态分布。
正态分布是自然界最常见的一 种分布,例如,测量的误差、 人体的身高、体重、许多生化 指标的值(例如血压、血红蛋 白含量、红细胞数等等)等都 属于正态分布或近似正态分布。 还有些偏态资料可经数据转换 成正态或近似正态分布,例如 抗体滴度、血铅值等。
用 X 表示,或SE、SEM。
x
n
4.09 1.29(cm) 10
由于在实际抽样研究中往往未知,通
常用某一样本标准差s来替代,得标准误
的估计值 sX (通常也简称为标准误),其计
算公式为:

样本均数的抽样误差

样本均数的抽样误差

样本均数的抽样误差均数的抽样误差:从同一总体中随机抽取若干个观察单位数相等的样本,由于抽样引起样本均数与总体均数及样本均数之间的差异称作均数的抽样误差,其大小可用均数的标准差描述,医学|教育|网搜集整理样本均数的标准差称为标准误。

抽样误差在抽样研究中不可避免。

标准误越大,均数的抽样误差就越大,说明样本均数与总体均数的差异越大。

样本均数:样本均数又称样本均值,均值是指在一组数据中所有数据之和再除以数据的个数。

它是反映数据集中趋势的一项指标,属数学领域。

均值是指在一组数据中所有数据之和再除以数据的个数。

它是反映数据集中趋势的一项指标。

例如 1、2、3、4 四个数据的均值为(1+2+3+4)/4=2.5。

样本(sample),是指从总体中抽出的一部分个体。

样本中所包含个体数目称样本容量或含量,用符号N或n表示。

总体(population)是指客观存在的,并在同一性质的基础上结合起来的许多个别单位的整体,即具有某一特性的一类事物的全体,又叫母体或全域。

简单地说,总体也就是我们所研究的性质相同个体的总和。

样本是受审查客体的反映形象或其自身的一部分。

按一定方式从总体中抽取的若干个体,用于提供总体的信息及由此对总体作统计推断。

又称子样。

例如因为人力和物力所限,不能每年对全国的人口进行普查,但可以通过抽样调查的方式来得到需要的信息。

从总体中抽取样本的过程叫抽样。

最常用的抽样方式是简单随机抽样,按这种方式抽样,总体中每个个体都有同等的机会被抽入样本,这样得到的样本称简单随机样本。

样本的平均值称样本均值,样本偏离样本均值的平方的平均值称为样本方差,在数理统计中,常常用样本均值来估计总体均值,用样本方差来估计总体方差。

5.1 样本均数的抽样分布与抽样误差

5.1 样本均数的抽样分布与抽样误差

第五章 参数估计基础一、样本均数的抽样分布与抽样误差内 容1. 抽样误差和抽样分布2. 样本均数抽样分布和抽样误差1. 抽样误差和抽样分布n误差泛指实测值和真实值之差。

按其产生原因与性质分两 大类:系统误差和随机误差。

抽样误差是一种随机误差。

n抽样误差由于生物固有的个体变异,从某一总体中随机抽取一个样 本,所得样本统计量与相应总体参数往往是有差异的,这种 差异称为抽样误差(sampling error)。

n误差产生的原因n系统误差:由受试对象、研究者、仪器设备、研究方法等确定性 原因造成,有倾向性,可避免。

n随机误差:由多种无法控制的偶然因素引起的,无倾向性,不可 避免。

n抽样误差:产生的根本原因是个体变异、产生的直接原因是抽样。

n抽样分布n由于抽样误差存在,从同一总体中随机抽取若干份样本, 所得样本统计量是不一致的,差异无法避免但其存在一定的分布规律。

n 正态分布总体样本均数抽样分布的电脑试验n假定某年某地所有13岁女生的身高服从总体均数为155.4 cm ,总 体标准差为5.3cm 的正态分布 。

用计算机从该总体中 随机抽样,每次抽取30例组成一份样本,重复抽样100次,计算 每份样本的平均身高。

() 2 155.4,5.3 N 2. 样本均数抽样分布和抽样误差n电脑试验表明,正态分布总体样本均数抽样分布具有以 下特点:n样本均数恰好等于总体均数极其罕见;n样本均数之间存在差异;n样本均数围绕总体均数,中间多、两边少,左右基本对称,呈 近似正态分布;n样本均数间的变异小于原始变量值间的变异。

PERCENT30x MIDPOINT0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 . 0 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3 . 0 3 . 1 3 . 2 3 . 3 3 . 4 3 . 5 3 . 6 3 . 7 3 . 8 3 . 9 4 . 0 4 . 1 4 . 2 4 . 3 4 . 4 4 . 5 4 . 6 4 . 7 4 . 8 4 . 9 5 . 0n 非正态分布总体样本均数抽样分布的电脑实验n图 (a ) 是正偏峰分布原始数据对应的直方图,用计算机随机抽取 样本量分别为5, 10, 30和50的样本各1000份,计算样本均数并绘 制4个直方图。

卫生统计学七版 第五章参数估计基础电子教案

卫生统计学七版 第五章参数估计基础电子教案

P0.05
第三节 总体均数及总体概率的估计
一、参数估计的基础理论
参数估计区 点间 估估 计计
对总体参数估计 称的 为范 置围 信区C间( I , co用 nfidenicneterv)al
表示,其置信1度 )为,(一般取置95信 %,度即为取 为0.05,此区
间的较小值称为 限置 ,信 较下 大值称为 限置 。信 一上 般进行双 区侧 间的估计。
卫生统计学七版 第五ຫໍສະໝຸດ 参数估 计基础第一节 抽样分布与抽样误差
一、样本均数的抽样分布与抽样误差
……
x15 .55 1 sx0.9617
样本均数的标准差越,大抽样误差就越大
样本均数的标准差称标为准误
x
n
sx
s n
sx称为标准误估计值,简也称标准误
标准误与标准差成正比 ,与样本含量成反比
标准误越大,抽样误差越大。
2、正态近似法
当已知时X: u
n
当未知但n足够大时X:u0.05
s n
X1.96 s n
或:X1.96s X
例5-3(P95) 某医生于2000年在某市随机抽取90名 19岁的健康男大学生,测量了他们的身高,得样本均数 为172.2cm,标准差为4.5cm,试估计该市2000年19岁健 康男性大学生平均身高的95%置信区间 。
对任意分布,在样本含量足够大时,其样本均数的分布都 近似正态分布,且样本均数的均数等于原分布的均数。
二、样本频率的抽样分布与抽样误差
总体率的标准误:
p
(1 )
n
率的标准误的估计值:
sp
p(1 p) n
标准误大抽样误差就大。
第二节 t分布
一、t分布的概念

参数估计基础

参数估计基础
p =黑球数/50 每次摸出黑球的比例p服从二项分布,表示为:
p ~ B(n,π), 给定n=50, π =0.20. 共抽取100个样本,计算黑球的比例, p1,p2,…,p100.结果见表5-3。
表5-3 从B(n=50 =0.20)抽取的100 个样本频率的频数分布
黑球比例(%) 8.010.012.014.016.018.020.022.024.026.0-
试估计:该样本频率的抽样误差。 已知:p=41.5%,n=776,代入公式(5-4)得到标准误估 计值:
S pp 1 n p 0 .4 1 5 7 1 7 6 0 .4 1 5 0 .0 1 7 7 或 1 .7 7 %
标准误的估计值较小,说明用样本患病率 41.5%估计总体患病率的可靠性较好。
组段(cm) 152.6~
153.2~ 153.8~ 154.4~ 155.0~ 155.6~ 156.2~ 156.8~ 157.4~ 158.0~158.6
合计
频数 1
4 3 19 25 23 18 4 1 2 100
频率(%) 1.0
4.0 3.0 19.0 25.0 23.0 18.0 4.0 1.0 2.0 100.0
= 时,t分布就完全等于标准正态分布。 3、标准正态分布有两个固定常数(0,1),t分 布只有一个参数 。
❖ 练习:
❖ 1、ν=10,双侧尾部面积为0.05的t界值是?
❖ 2、ν=100,单侧尾部面积为0.05的t界值是?
❖ 3、ν=∞,双测尾部面积和单侧尾部面积分别 为0.05的界值是?
❖1、t 0.05/2,10=2.228
两侧越分散; ➢ 随着 逐渐增大,t分布逐渐逼近标准正态分布;
当 趋于 时,t分布就完全成为标准正态分布。

第04章.抽样误差

第04章.抽样误差

100次抽样,可以求得100个t值,100个t
值编成频数表,可以绘制成频数分布图。
由于sx受 n的影响, 严格讲,受(n-1)的影响,
(n-1) 称为自由度。
= n-1 如下图。

t分布的图形
2. 分布的特征(与正态分布比较)
① 单峰分布,以t=0为中点,两侧对称(高峰
位置)
②样本(自由度)越小,t分布曲线峰值越低,t
的概率。
精确度:由区间的宽度反映,越窄越好。
在n确定的时,二者无法兼顾,一般95%CI更
为常用,可信度确定的情况下,增加n可减小区 间宽度,即提高精确度。
思考!
均数置信区间与参考值范围的区别
意义:95%的参考值范围指同质的总体内包括
95%的个体值范围,对于正态分பைடு நூலகம்总体,按
X±1.96S计算。
95%的CI指按95%的可信度估计总体均数
x1 x2 x3 x4 x100
映个体变异的标准差相区别)
标准误用 表示,它是说明均数抽样误差的大小
x

3.抽样误差的分布
理论上可以证明:若从正态总体 N( , 2 ) 中,反 复多次随机抽取样本含量固定为n 的样本,那么 这些样本均数 X 也服从正态分布,即 X 的总体均 数仍为,样本均数的标准差为 / n 。
2.均数的抽样误差与标准误的概念
从N(,2)的总体中做随机抽样,每次抽样样本含 量为n,样本均数为x,标准差为s。如下: 1 n x1 s1 s t1 可知:每一个样本均数与 2 n x2 s2 s t2 不一定相等,它们之差别是 3 n x3 s3 s t3 由抽样所造成的;另外,这 4 n x4 s4 s t4 100个样本均数大小也不尽 相同,它们之间的变异程度 … … … … … … 可以用样本均数的标准差来 100 n x100 s100 s t100 表示,即标准误(为了与反

样本均值的抽样分布

样本均值的抽样分布

样本均值的抽样分布在统计学中,样本均值的抽样分布是一个十分重要的概念。

它为我们理解从总体中抽取样本并计算其均值的行为提供了关键的理论基础。

想象一下,我们有一个巨大的总体,比如说一个城市中所有居民的收入。

由于实际情况的限制,我们不可能去了解每一个人的收入,所以只能从中抽取一部分人作为样本,然后计算这个样本的均值。

但问题来了,如果我们多次抽取不同的样本,这些样本的均值会呈现出怎样的规律呢?这就是样本均值的抽样分布要研究的问题。

为了更清楚地理解这个概念,我们先来谈谈什么是样本均值。

样本均值就是样本中所有数据的平均值。

假设我们抽取了一个样本,里面的数据是 10、20、30、40、50,那么这个样本的均值就是(10 + 20+ 30 + 40 + 50)÷ 5 = 30。

那抽样分布又是什么呢?简单来说,就是当我们从同一个总体中进行多次抽样,每次都计算样本均值,然后把这些样本均值的分布情况画出来,这就是抽样分布。

为什么要研究样本均值的抽样分布呢?因为它能帮助我们做出更准确的推断和预测。

比如,我们想知道这个城市居民的平均收入,但我们又不能去调查所有人,那么通过研究样本均值的抽样分布,我们就可以根据抽取的样本均值来估计总体的均值,并且知道这个估计的准确性和可靠性。

样本均值的抽样分布具有一些重要的性质。

其中一个关键的性质是中心极限定理。

中心极限定理告诉我们,无论总体的分布是什么样子,只要样本量足够大,样本均值的抽样分布就近似服从正态分布。

这意味着什么呢?假设总体的分布是非常奇怪的,比如严重偏态或者有很多极端值,但只要我们抽取的样本数量足够多,比如几十、几百甚至上千,那么这些样本均值的分布就会变得越来越像一个正态分布,也就是我们常说的“钟形曲线”。

正态分布有很多很好的性质。

它的均值和中位数相等,而且曲线是对称的。

这使得我们在进行统计推断时非常方便。

比如说,我们可以根据正态分布的性质来计算置信区间,也就是估计总体均值可能所在的范围。

统计学中的抽样分布和抽样误差

统计学中的抽样分布和抽样误差

统计学中的抽样分布和抽样误差统计学是一门研究数据收集、处理和分析的学科,而在进行统计分析时,抽样是一项重要的技术。

抽样分布和抽样误差是统计学中关键的概念,本文将具体介绍它们的定义、特点和应用。

一、抽样分布在统计学中,抽样分布指的是从总体中抽取样本的过程中得到的样本统计量的概率分布。

样本统计量可以是样本均值、样本方差等。

抽样分布是由大量不同的样本所形成的,它们具有一定的数学特性。

抽样分布的特点有:1. 抽样分布的中心趋向于总体参数。

当样本容量足够大时,抽样分布的中心会接近总体参数的真值。

2. 抽样分布的形状可能与总体分布相同,也可能近似于正态分布。

中心极限定理是解释抽样分布接近正态分布的重要定理。

3. 样本容量越大,抽样分布的方差越小。

样本容量增大,抽样误差减小。

抽样分布在实际应用中具有重要价值。

通过了解抽样分布的性质,我们可以进行假设检验、构建置信区间以及进行参数估计等统计推断。

二、抽样误差抽样误差是指由于从总体中抽取样本而导致的估计值与总体参数值之间的差异。

它是统计推断中常见的误差来源,也是统计分析中需要控制的重要因素。

抽样误差的大小受到多个因素的影响,包括样本容量、总体变异性以及抽样方法等。

通常情况下,样本容量越大,抽样误差越小,因为更大的样本容量能够更好地代表总体。

为了降低抽样误差,我们可以采取以下策略:1. 增加样本容量。

增大样本容量可以减小抽样误差,提高估计值的准确性。

2. 采用随机抽样方法。

随机抽样可以降低抽样误差,确保样本的代表性。

3. 控制变异性。

尽量减少总体的变异性,可以减小抽样误差。

抽样误差的存在对于统计推断的可靠性有着重要的影响。

在进行数据分析和解释时,我们需要正确理解抽样误差的概念,并将其考虑在内。

总结:统计学中的抽样分布和抽样误差是进行统计推断不可或缺的概念。

抽样分布是样本统计量的概率分布,具有一定的数学特性,可以用于进行假设检验和置信区间估计。

抽样误差是由于从总体中抽取样本而导致的估计值与总体参数值之间的差异,它的大小受到多个因素的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 参数估计基础一、样本均数的抽样分布与抽样误差
内 容
1. 抽样误差和抽样分布
2. 样本均数抽样分布和抽样误差
1. 抽样误差和抽样分布
n误差泛指实测值和真实值之差。

按其产生原因与性质分两 大类:系统误差和随机误差。

抽样误差是一种随机误差。

n抽样误差
由于生物固有的个体变异,从某一总体中随机抽取一个样 本,所得样本统计量与相应总体参数往往是有差异的,这种 差异称为抽样误差(sampling error)。

n误差产生的原因
n系统误差:由受试对象、研究者、仪器设备、研究方法等确定性 原因造成,有倾向性,可避免。

n随机误差:由多种无法控制的偶然因素引起的,无倾向性,不可 避免。

n抽样误差:产生的根本原因是个体变异、产生的直接原因是抽
样。

n抽样分布
n由于抽样误差存在,从同一总体中随机抽取若干份样本, 所得样本统计量是不一致的,差异无法避免但其存在一定
的分布规律。

n 正态分布总体样本均数抽样分布的电脑试验
n
假定某年某地所有13岁女生的身高服从总体均数为155.4 cm ,总 体标准差为5.3cm 的正态分布 。

用计算机从该总体中 随机抽样,每次抽取30例组成一份样本,重复抽样100次,计算 每份样本的平均身高。

(
) 2 155.4,5.3 N 2. 样本均数抽样分布和抽样误差
n电脑试验表明,正态分布总体样本均数抽样分布具有以 下特点:
n样本均数恰好等于总体均数极其罕见;
n样本均数之间存在差异;
n样本均数围绕总体均数,中间多、两边少,左右基本对称,呈 近似正态分布;
n样本均数间的变异小于原始变量值间的变异。

PERCENT
30
x MIDPOINT
0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 . 0 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3 . 0 3 . 1 3 . 2 3 . 3 3 . 4 3 . 5 3 . 6 3 . 7 3 . 8 3 . 9 4 . 0 4 . 1 4 . 2 4 . 3 4 . 4 4 . 5 4 . 6 4 . 7 4 . 8 4 . 9 5 . 0
n 非正态分布总体样本均数抽样分布的电脑实验
n
图 (a ) 是正偏峰分布原始数据对应的直方图,用计算机随机抽取 样本量分别为5, 10, 30和50的样本各1000份,计算样本均数并绘 制4个直方图。

(a ) 原始数据
n =5
P E RC E N T
30
m m MI D P O I NT
0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 . 0 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3 . 0 3 . 1 3 . 2 3 . 3 3 . 4 3 . 5 3 . 6 3 . 7 3 . 8 3 . 9 4 . 0 4 . 1 4 . 2 4 . 3 4 . 4 4 . 5 4 . 6 4 . 7 4 . 8 4 . 9 5 . 0
n=10
PERCENT
30
mm MIDPOINT
0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 . 0 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3 . 0 3 . 1 3 . 2 3 . 3 3 . 4 3 . 5 3 . 6 3 . 7 3 . 8 3 . 9 4 . 0 4 . 1 4 . 2 4 . 3 4 . 4 4 . 5 4 . 6 4 . 7 4 . 8 4 . 9 5 . 0
n=30
PERCENT
30
mm MIDPOINT
0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 . 0 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3 . 0 3 . 1 3 . 2 3 . 3 3 . 4 3 . 5 3 . 6 3 . 7 3 . 8 3 . 9 4 . 0 4 . 1 4 . 2 4 . 3 4 . 4 4 . 5 4 . 6 4 . 7 4 . 8 4 . 9 5 . 0
n=50
PERCENT
30
mm MIDPOINT
0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 . 0 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3 . 0 3 . 1 3 . 2 3 . 3 3 . 4 3 . 5 3 . 6 3 . 7 3 . 8 3 . 9 4 . 0 4 . 1 4 . 2 4 . 3 4 . 4 4 . 5 4 . 6 4 . 7 4 . 8 4 . 9 5 . 0
(d ) n =30 (e ) n =50
(b ) n =5 (c ) n =10
n 中心极限定理表明
n
从正态总体 中随机抽取例数为 n 的多个样本,样本均数
服从正态分布;即使是从偏态总体中随机抽样,当 n 足够大时(如 n >30),样本均数也近似正态分布,且样本均数的均数等于原分 布的均数。

( ) 2
, N m s
n均数抽样误差
n由固然存在的个体变异和抽样造成的样本均数与样本均数 及样本均数与总体均数之间的差异称为均数的抽样误差。

小 结
1. 抽样分布和抽样误差
n样本统计量抽样分布
n误差含义及误差产生原因
2. 样本均数抽样分布和抽样误差
n正态分布总体样本均数抽样分布规律
n非正态分布总体样本均数抽样分布规律。

相关文档
最新文档