高三数学第二轮复习重点和策略
高三数学二轮复习的应对策略

高三数学二轮复习的应对策略高三数学二轮复习必须遵循二轮复习的特点,充分挖掘高考的增长点,寻求急功近利,事半功倍,即时见效的方法和措施,是对知识进行“巩固、完善、综合、提高”的过程,绝不是旧知的简单再现。
巩固,即巩固一轮复习的成果,仍要把夯实三基放在重要位置。
完善,即针对一轮复习时学生中暴露出来的问题进行补救。
综合,即在专题复习和训练中恰当减少单一知识点试题,注重知识间的内在联系,恰当增强问题的综合性和开放性。
提高,即促进学生更深层地认知,领悟数学思想,运用数学方法,提高学生应试的综合素质,如应试心理、审题能力、答题习惯等。
一、夯实三基,巩固一轮复习成果高三一轮复习中暴露出了很多问题,主要原因是基础不扎实。
没有扎实的基础就不可能把知识内化为能力,就不可能在高考中取得好的成绩。
因此,巩固一轮复习成果,进一步夯实三基仍是二轮复习重点解决的问题。
1.提高对知识理解的深刻性和运用数学思想方法的灵活性。
知识的梳理不再是“全、细”的问题,重要的是提升对知识理解的层次性,沟通知识间的内在联系,提炼数学知识中蕴含的数学思想方法,熟悉由课本知识演变出来的常用结论等等。
2.强化运算能力的训练。
不仅要提高数与式运算的速度和准确率,更要有意识地进行运算策略等方面的训练。
3.重视基础题,主攻中档题,突破较难题,强化附加题。
如何落实“20字”方略因校制宜、因生制宜,理科附加题是重要增长点,系列4的复习基于课本题型,防止拓展过度。
4.提高专题复习课的效益(1)用好主资料。
专题复习教学案或以某套高质量的二轮复习资料为主线索,或传承前几届高三的资料,结合本届高三实际情况,对照《高考说明》和《教学要求》改编。
深入研究最近三年江苏省高考数学试题,深入研究教材,善于改编教材例题、习题。
(2)专题以知识性为主。
在深入研究《考试说明》与《教学要求》、考题与样题的基础上,精心选择二轮复习专题,专题应以知识性为主,思想方法篇前移,知识专题篇要一以贯之地渗透数学思想方法,要关注高考的重点与盲点、热点与冷点问题。
高考高三二轮复习计划策略模板(7篇)

高考高三二轮复习计划策略模板(7篇)高考高三二轮复习计划策略模板篇1一二轮复习指导思想:高三第一轮复习一般以知识技能方法的逐点扫描和梳理为主,通过第一轮复习,学生大都能掌握基本概念的性质定理及其一般应用,但知识较为零散,综合应用存在较大的问题。
而第二轮复习承上启下,是知识系统化条理化,促进灵活运用的关键时期,是促进学生素质能力发展的关键时期,因而对讲练检测等要求较高。
二二轮复习形式内容:以专题的形式,分类进行。
具体而言有以下几大专题。
(1)集合函数与导数。
此专题函数和导数应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。
每年高考中导数所占的比重都非常大,一般情况在客观题中考查的导数的几何意义和导数的计算属于容易题;二在解答题中的考查却有很高的综合性,并且与思想方法紧密结合,主要考查用导数研究函数的性质,用函数的单调性证明不等式等。
(预计5课时)(2)三角函数平面向量和解三角形。
此专题中平面向量和三角函数的图像与性质,恒等变换是重点。
近几年高考中三角函数内容的难度和比重有所降低,但仍保留一个选择题一个填空题和一个解答题的题量,难度都不大,但是解三角形的内容应用性较强,将解三角形的知识与实际问题结合起来将是今后命题的一个热点,我们可以关注。
平面向量具有几何与代数形式的“双重性”,是一个重要的只是交汇点,它与三角函数解析几何都可以整合。
(预计2课时)(3)数列。
此专题中数列是重点,同时也要注意数列与其他知识交汇问题的训练。
例如,主要是数列与方程函数不等式的结合,概率向量解析几何为点缀。
数列与不等式的综合问题是近年来的热门问题,而数列与不等式相关的大多是数列的前n项和问题。
(预计2课时)(4)立体几何。
此专题注重几何体的三视图空间点线面的关系,用空间向量解决点线面的问题是重点(理科)。
(预计3课时)(5)解析几何。
此专题中解析几何是重点,以基本性质基本运算为目标。
直线与圆锥曲线的位置关系轨迹方程的探求以及最值范围定点定值对称问题是命题的主旋律。
2023高三数学二轮复习策略

2023高三数学二轮复习策略前言作为高三学生,数学作为一门必修科目,复习并且掌握数学知识是必不可少的。
此文档旨在为2023高三学生提供一些数学二轮复习的策略。
一、梳理知识点首先,我们需要清晰地梳理出所有数学知识点。
梳理的目的是为了归纳、整理和分类所学知识,使知识之间看起来井然有序,这可以让我们更好地理解数学知识的本质和内涵。
为了让知识点更容易理解记忆,我们可以将其分类,例如:1.解方程类–一次方程–二次方程–复合方程–参数方程2.函数类–高中必修函数–常用特殊函数–极限、连续、导数3.几何类–相似、全等–圆、锐角三角形、钝角三角形–空间几何4.概率与统计类–概率基础–统计基础5.数列类–等差数列–等比数列–通项公式和求和公式等等,以上仅供参考,同学们可以根据自己的记忆情况来具体分块。
分类整理好不同的知识点,将有助于我们在复习时对所学知识更有逻辑和系统性。
二、找准薄弱环节在梳理好知识点后,接下来的任务是找准自己的薄弱环节。
一般来说,你可以回顾上学期考试、平时测试的试卷,找到那一块分数和知识点比较薄弱的地方,然后把它专项复习。
在薄弱环节上多花点时间进行深度复习,是复习策略的一个关键点,通过集中时间来突破自己的瓶颈,更好地为高三的数学做好准备。
三、进行例题练习复习知识点后,最好能够通过例题来应用知识,以充分巩固自己的理论知识。
要注意的是,可以不盲目刷题,选择知识点集中体现的例题进行练习,并适合自己水平,规律性和挑战性相对要平衡。
同时,多思考,多理解,多思考不同解题方法和思路,以帮助加深印象和扩展思维。
四、根据历年真题复习历年真题相对于其它普通题目最大的区别在于,它们涵盖了高考所考的所有的知识点,涵盖了不同知识点之间的运用能力,在完成时也更能建立对功底的自信和应变能力。
建议将过去几年的考试题拿出,认真分析每道题的解法思路、方法,并结合自己的语言通俗化描述,让其在自己的大脑里留下深刻印象,以期达到顺利应对考试的目的。
高三数学复习计划参考模板(4篇)

高三数学复习计划参考模板你把重点放在基础题上吧,况且高考的数学有____%是基础题,能克服基础题的粗心毛病,把他做好也是不易的,但却是可以通过翌年的时间作好的。
给你一些具体方法:一.预习。
不等于浏览。
要深入了解知识内容,找出重点,难点,疑点,经过思考,标出不懂的,有益于听课抓住重点,还可以培养自学能力,有时间还可以超前学习。
二.听讲。
核心在课堂。
1.以听为主,兼顾记录。
2.注重过程,轻结论。
3.有重点。
4.提高听课效率。
三.复习。
像演电影一样把课堂复习,整理笔记,四.多做练习。
1.晚上吃饭后,坐到书桌时,看数学最适合,2.做一道数学题,每一步都要多问个别为什么,不能只满足于老师课堂上的灌输式传授和书本上的简单讲述,要想提高必须要一步一步推,一步一步想,每个过程都必不可少,3.不要粗心大意,4.做完每一道题,要想想为什么会想到这样做,大脑建立一种条件发射,关键在于每做一道题要从中得到东西,错在哪,5.解题都有固定的套路。
6还有大胆的夸奖自己,那是树立信心的关键时刻,五.总结。
1.要将所学的知识变成知识网,从大主干到分枝,清晰地深存在脑中,新题想到老题,从而一通百通。
2.建立错误集,错误多半会错上两次,在有意识改正的情况下,还有可能错下去,最有效的应该是会正确地做这道题,并在下次遇到同样情况时候有注意的意识。
____周末再将一周做的题回头看一番,提出每道题的思路方法。
4有问题一定要问。
六.考前复习,1.前____周就要开始复习,做到心中有数,否则会影响发挥,再做一遍以前的错题是十分必要的,据说有一个同学平时只有一百零几,离高考只有一个月,把以前错题从头做一遍,最后他数学居然得了____分。
2.要重视基础,另外,听老师的话,勤学苦练不可少,成功没有捷径,要乐观,有毅力,要有决心,还要有耐心,学数学是一个很长的过程,你的努力于回报往往不能那么尽如人意的成正比,甚至会有下坡路的趋势,但只要坚持下去,那条成绩线会抬起头来,一定能看到光明。
高三数学第二轮备考方案

高三数学第二轮备考方案
二轮数学复习中,要注意六大策略:
一、注意基础知识的整合、巩固。
二轮复习要注意回归课本,课本是考试内容的载体,是高考命题的依据。
浓缩课本知识,进一步夯实基础,提高解题的准确性和速度
二、查漏补缺,保强攻弱。
在二轮复习中,对自己的薄弱环节要加强学习,平衡发展,加强各章节知识之间的横向联系,针对“一模”考试中的问题要很好的解决,根据自己的实际情况作出合理的安排。
三、提高运算能力,规范解答过程。
在高考中运算占很大比例,一定要重视运算技巧粗中有细,提高运算准确性和速度,同时,要规范解答过程及书写。
四、强化数学思维,构建知识体系。
同学们在听课时注意把重点要放到理解老师对问题思路的分析以及解法的归纳总结,以便于同学们在刷题时做到思路清晰,迅速准确。
五、解题快慢结合,改错反思。
审题制定解题方案要慢,不要急于解题,要适当地选择好的方案,一旦方法选定,解题动作要快要自信。
平时要注意积累错误,特别是易错点,寻找错误原因,及时总结。
六、重视和加强选择题的训练和研究。
对于选择题不但要答案正确,还要优化解题过程,提高速度。
灵活运用特值法、排除法、数形结合法、估算法等。
一轮看功夫,二轮学技巧,三轮振士气。
希望同学们惜时奋发,不负韶华,勇摘高考成绩桂冠!。
2024届高三数学二轮复习策略课件

1.离心率的计算 2.圆锥曲线与三角形内心、重心相关的 问题
3.圆锥曲线与内接三角形 4.圆锥曲线中常用的二级结论
专
1.函数的图像与性质 2.利用导数研究函数的性质
题 函数与导数 3.导数与恒成立问题
六
4.导数与不等关系 5.导数与函数的零点
1.抽象函数的性质 2.切线与公切线 3.以指数、对数为载体的情景题 3.导数中的构造问题 4.端点效应问题
【分析】当x 时0 , xf (x) ,f (x即) 0 [xf (x)] 0
构造函数 g(x) xf (x)
A 【例 1】(2020 新课标Ⅱ理11)若 2x 2y 3x 3y ,则 (
)
A. ln(y x 1) 0 B. ln(y x 1) 0
C. ln | x y | 0
二轮复习六大专题:
大专题
专 三角函数、 题 解三角形 一 和平面向量
专 题 数列 二
专 题 立体几何 三
子专题
微专题
1.三角恒等变换 2.三角函数的图像与性质 3.解三角形
1.平面向量数量积的求解策略 2.三角函数中与 相关的问题探究 3.三角形中的特殊线段 4.三角中的数学建模与情景题
1.数列的通项求法
【案例3】 微专题:同构式
【引例】(2015 年理12 改编)设函数 f (x) 是奇函数 f (x)(x R)的导
函数, f (1) 0 ,当 x 0 时,xf '(x) f (x) 0 ,则使得 xf (x) 0
成立的 x 的取值范围是(
)
A.,1 0,1
B.1,0 0,1
C.,1 1,0 D.0,1 1,
3.确定备考策略
(1)对数列的概念及表示方法的理解和应用; (2)等差数列、等比数列的性质、通项公式、递推公式、前项和公式中基本量的运算或者利用它们之 间的关系式通过多角度观察所给条件的结构,深入剖析其特征,利用其规律进行恰当变形与转化求解 数列的问题; (3)会利用等差、等比数列的定义判断或证明数列问题; (4)通过转化与化归思想利用错位相减、裂项相消、分组求和等方法求数列的前项和; (5)数列与不等式、函数等的交汇问题; (6)关注数学课本中有关数列的阅读与思考、探究与发现的学习材料,有意识地培养学生的阅读能力 和符号使用能力,也包括网络资料中与数列有关的数学文化问题,与实际生活有关的数列的应用问题; (7)关注结构不良试题、举例问题等创新题型。
《高三数学二轮复习备考策略 高三数学第二轮复习的几点建议》

高三数学二轮复习备考策略--------高三数学第二轮复习的几点建议高三数学第二轮复习,一般安排在3月到4月底。
第二轮复习承上启下,是知识系统化、条理化、促进灵活运用的关键时期,也是促进学生素质、能力发展的关键时期。
因而对讲练、检测等要求较高,故有“二轮看水平”之说。
怎样搞好二轮复习效果比较显著呢?“二轮看水平”概括了二轮复习的思路、目标和要求。
具体讲:一、看教师对《考试说明》、《考题》理解是否深透。
二、看教师讲解、学生练习是否体现阶段性、层次性和渐进性,做到减少重复,重点突出,让大部分学生学有新意,学有收获,学有发展。
三、看知识讲解、练习检测等内容科学性、针对性是否强,使模糊的清晰起来,缺漏的填补起来,杂乱的条理起来,孤立的联系起来,让学生形成系统化、条理化的知识框架。
四、看练习检测与高考是否对路,不拔高,不降低,难度适宜。
重在基础的灵活运用和掌握分析解决问题的思维方法。
?我结合自己工作的实际谈几点建议:一、明确“主体”、突出重点第二轮复习,教师必须明确重点,对高考“考什么”、“怎样考”,应了若指掌。
只有这样,才能讲深讲透,讲练到位。
象函数、不等式与导数的结合;三角与向量的结合;立体几何、解析几何与向量的结合;导数与定积分的结合;排列组合、二项式定理与概率统计的结合;数列的灵活应用等都是考察的重点。
特别是新旧教材交叉点更是重中之重。
二、研究高考,科学安排近几年,高考数学试题稳中有变,变中求新。
其特点是:稳以基础为主体,变以选拔为导向,能力寓“灵活”之中。
鉴于此,复习安排要做到:“二个加强三个突出”。
1.客观题要加强速度和正确率的强化训练高考采取了客观题(选择与填空)减少运算量、降低难度,让学生有更多的时间完成解答题,充分发挥选择功能的做法。
这就需要第二轮复习要在速度、准确率上下功夫,定时定量训练。
每周至少1次,总量不得少于3次,达到大部分学生一节课完成,“优秀生”用30~35分钟完成,失分不多于2个题目分的目标。
高考数学二轮复习教案

高考数学二轮复习教案【篇一:高考数学二轮专题复习教案共23讲精品专题】专题一集合、简单逻辑用语、函数、不等式、导数及应用第1讲集合与简单逻辑用语1. 理解集合中元素的意义是解决集合问题的关键:弄清元素是函数关系式中自变量的取值?还是因变量的取值?还是曲线上的点??2. 数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决.3. 已知集合a、b,当a∩b=?时,你是否注意到“极端”情况:a=?或b=??求集合的子集时是否忘记??分类讨论思想的建立在集合这节内容学习中要得到强化.4. 对于含有n个元素的有限集合m, 其子集、真子集、非空子集、非空真子集的个数依次为2n,2n-1,2n-1,2n-2.5. ?是任何集合的子集,是任何非空集合的真子集.2. 已知命题p:n∈n,2n>1 000,则p为________.3. 条件p:a∈m={x|x2-x0},条件q:a∈n={x||x|2},p是q的______________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)4. 若命题“?x∈r,x2+(a-1)x+10”是假命题,则实数a的取值范围为________.【例1】已知集合a={x|x2-3x-10≤0},集合b={x|p+1≤x≤2p-1}.若b?a,求实数p的取值范围.【例2】设a={(x,y)|y2-x-1=0},b={(x,y)|4x2+2x-2y+5=0},c={(x,y)|y=kx+b},是否存在k、b∈n,使得(a∪b)∩c =??若存在,求出k,b的值;若不存在,请说明理由.则下列结论恒成立的是________.a. t,v中至少有一个关于乘法封闭b. t,v中至多有一个关于乘法封闭 c. t,v中有且只有一个关于乘法封闭 d. t,v中每一个关于乘法封闭【例4】已知a0,函数f(x)=ax-bx2.(1) 当b0时,若?x∈r,都有f(x)≤1,证明:0a≤b; (2) 当b1时,证明:?x∈[0,1],|f(x)|≤1的充要条件是b-1≤a≤b.①2 011∈[1];②-3∈[3];③z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.其中,正确结论的个数是________个.1解:由f(x)为二次函数知a≠0,令f(x)=0解得其两根为x1=a12+a由此可知x10,x20,(3分)①当a0时,a={x|xx1}∪{x|xx2},(5分) 1a∩b≠?的充要条件是x2<3,即a②当a0时, a={x|x1xx2},(10分) 1a∩b≠?的充要条件是x21,即+a2+1,解得a-2,(13分) a62+3,解得a(9分) a712,x2=+aa6?.(14分) 综上,使a∩b≠?成立的实数a的取值范围为(-∞,-2)∪??7?一集合、简单逻辑用语、函数、不等式、导数及应用第1讲集合与简单逻辑用语a. 57b. 56c. 49d. 8【答案】 b 解析:集合a的所有子集共有26=64个,其中不含4,5,6,7的子集有23=8个,所以集合s共有56个.故选b.m2y≤2m+1,x,y∈r}, 若a∩b≠?,则实数m的取值范围是________.1m12+2? 解析:由a∩b≠?得,a≠?,所以m2≥,m≥m≤0.【答案】 ??2?22|2-2m||2-2m-1|2当m≤0=22m>-m,且=2m>-m,又2+0=2>2m222|2-2m|1+1,所以集合a表示的区域和集合b表示的区域无公共部分;当m≥时,只要≤m22|2-2m-1|22或m,解得22≤m≤2+2或1-m≤1,所以实数m的取值范围222122?. 是??2?点评:解决此类问题要挖掘问题的条件,并适当转化,画出必要的图形,得出求解实数m的取值范围的相关条件.基础训练1. (-∞,3) 解析:a=(-∞,0]∪[3,+∞),b=(0,+∞),a∪b=(-∞,+∞),a∩b=[3,+∞).2. ?n∈n,2n≤1 0003. 充分不必要解析:m=(0,1)?n=(-2,2).例1 解:由x2-3x-10≤0得-2≤x≤5. ∴ a=[-2,5].①当b≠?时,即p+1≤2p-1?p≥2.由b?a得-2≤p+1且2p-1≤5.得-3≤p≤3.∴ 2≤p≤3.②当b=?时,即p+12p-1?p<2.b?a成立.综上得p≤3.点评:从以上解答应看到:解决有关a∩b=?,a∪b=a,a∪b=b 或a?b等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中全方位、多角度审视问题.变式训练设不等式x2-2ax+a+2≤0的解集为m,如果m?[1,4],求实数a的取值范围.??f?1?≥0且f?4?≥0,[x1,x2],m?[1,4]?1≤x1<x2≤4??-a+3≥0,??18-7a≥0,即?1≤a≤4,??a<-1或a>2,1818-1. 解得:2<a≤,综上实数a的取值范围是?7?7例2 解:∵ (a∪b)∩c=?,∵a∩c=?且b∩c=?,2??y=x+1,由 ? 得k2x2+(2bk-1)x+b2-1=0, ?y=kx+b?∴ 4k2-4bk+10,此不等式有解,其充要条件是16b2-160,即b21,①2??4x+2x-2y+5=0,∵ ? ?y=kx+b,?∴ 4x2+(2-2k)x+(5-2b)=0,∴ k2-2k+8b-190, 从而8b20,即b2.5,②?4k2-8k+1<0,??2 ?k-2k-3<0,?∴ k=1,故存在自然数k=1,b=2,使得(a∪b)∩c=?.点评:把集合所表示的意义读懂,分辨出所考查的知识点,进而解决问题.???1-y=3变式训练已知集合a=??x,y???x+1?????,b={(x,y)|y=kx+3},若a∩b=?,??求实数k的取值范围.解:集合a表示直线y=-3x-2上除去点(-1,1)外所有点的集合,集合b表示直线y=kx+3上所有点的集合,a∩b=?,所以两直线平行或直线y=kx+3过点(-1,1),所以k=2或k=-3.例3 【答案】 a 解析:由于t∪v=z,故整数1一定在t,v两个集合中的一个中,不妨设1∈t,则?a,b∈t,另一方面,当t={非负整数},v={负整数}时,t关于乘法封闭,v关于乘法不封闭,故d不对;当t={奇数},v={偶数}时,t,v显然关于乘法都是封闭的,故b,c不对.从而本题就选a.例4 证明:(1) ax-bx2≤1对x∈r恒成立,又b>0, ∴a2-4b≤0,∴ 0<a≤b. (2) 必要性,∵ ?x∈[0,1],|f(x)|≤1恒成立,∴ bx2-ax≤1且bx2-ax≥-1,显然x=0时成立,111对x∈(0,1]时a≥bx-且a≤bx+f(x)=bxx∈(0,1]上单调增,f(x)最大值xxxf(1)=b-1.1111函数g(x)=bx+在?0,?上单调减,在?1?上单调增,函数g(x)的最小值为g?x?b????b?=2,∴ b-1≤a≤2b,故必要性成立;a2a2aa1122b4b2b2a2f(x)max=1,又f(x)是开口向下的抛物线,f(0)=0,f(1)=a-b,4bf(x)的最小值从f(0)=0,f(1)=a-b中取最小的,又a-b≥-1,∴-1≤f(x)≤1,故充分性成立;综上命题得证.变式训练命题甲:方程x2+mx+1=0有两个相异负根;命题乙:方程4x2+4(m-2)x+1=0无实根,这两个命题有且只有一个成立,求实数m的取值范围.2解:使命题甲成立的条件是: ??m>2.?x1+x2=-m<0?∴集合a={m|m2}.【篇二:高三数学二轮复习教案】高三数学二轮复习教案学校:寿县迎河中学汇编:龙如山第一部分:三角问题的题型与方法一、考试内容1.理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学第二轮复习重点和策略
发表时间:2012-04-27T09:02:32.983Z 来源:《少年智力开发报》2012年第27期供稿作者:张良武
[导读] 高考数学第二轮复习重在知识和方法专题的复习。
在知识专题复习中可以进一步巩固第一轮复习的成果,加强各知识板块的综合。
作者:张良武地址:广东省高州市第三中学
高三第一轮复习一般以知识、技能、方法的逐点扫描和梳理为主。
通过第一轮复习,学生大都能掌握基本概念的性质、定理及其一般应用。
但知识较为零散,综合应用存在较大的问题,因此第二轮复习的首要任务是把整个高中基础知识有机地结合在一起,构建出高中数学知识的“树形图”。
同时第二轮复习承上启下,是促进知识灵活运用的关键时期,是促进学生素质、能力发展的关键时期,因而对讲、练、检测要求较高。
如何才能在第二轮的复习中提高复习效率,取得满意效果呢?
一、抓《考试说明》与信息研究
第二轮复习中,不可能再面面俱到。
要在复习中做到既有针对性又避免做无用功,既减轻学生负担,又提高复习效率,就必须认真研究《考试说明》,吃透精神实质,抓住考试内容和能力要求,同时还应关注近三年的高考试题以及对试题的评价报告,捕捉高考信息,吸收新课中的新思想、新理念,从而转化为课堂教学的具体内容,使复习有的放矢,事半功倍。
二、突出对课本基础知识的再挖掘
近几年高考数学试题坚持新题不难,难题不怪的命题方向。
强调对通性通法的考查,并且一些高考试题能在课本中找到“原型”。
尽管剩下的复习时间不多,但仍要注意回归课本,只有透彻理解课本例题,习题所涵盖的数学知识和解题方法,才能以不变应万变。
当然回归课本不是死记硬背,而是抓纲悟本,引导学生对着课本目录回忆和梳理知识,对典型问题进行引申,推广发挥其应有的作用。
三、抓好专题复习,领会数学思想
高考数学第二轮复习重在知识和方法专题的复习。
在知识专题复习中可以进一步巩固第一轮复习的成果,加强各知识板块的综合。
尤其注意知识的交叉点和结合点,进行必要的针对性专题复习。
例如以函数为主干,不等式、导数、方程、数列与函数的综合;再如平面向量与三角函数,平向向量与解析几何的综合等。
在复习中,以这些重点知识的综合性题目为载体,渗透对数学思想和方法的系统介绍。
专题复习对备课的要求很高,通过对例习题的精选、精讲、精练,力求归纳出知识模块形成体系,同时也要能提炼出数学思想层次的东西。
例如对分式、根式、绝对值的处理、角度、线段长度的处理、方程、不等式恒成问题的研究。
大小比较二元函数问题、递推公式的应用、图象的应用、解析几何中对称问题、轨迹问题等,在教师的指导下,学生对知识的再现、整合过程中,可以伴随一系列思维活动,如分析、综合、比较、类比、归纳、概括等,这一过程也是逻辑思维综合训练的过程。
经过这一过程可以加深对知识的理解,强化记忆,同时也可以发现问题,纠正错误,查漏补缺,学生对解题规律的探究、发现、归纳和应用过程中掌握数学基本方法,达到举一反三的目的,才能将所学知识转化为解决问题的能力。
四、抓规范训练,提高解题速度与准确率
计算能力是高考四大能力之一,也是学生的薄弱环节之一。
第二轮复习要通过让学生动手、动脑做题,培养学生正确应用知识、寻求合理、简捷的运算途径的能力,还要能根据要求对数字进行估算和近似的计算,在解题中提高计算能力。
每次练习要求学生做到熟练、准确、简捷、迅速。
选择题、填空题在考试中比例较大,分值较高,对高考成绩占有举足轻重的地位,其正确率和速度都直接影响高考成绩。
因此,在第二轮复习中有必要强化对解答选择题、填空题的方法指导,即如何利用排除法、特例法、估算法、图象法、递推验证等方法准确、快速地解选择题和填空题。
在这一阶段,除正常布置每天作业外,每周安排一次以选择题、填空题为主的课堂定时练习和一次综合练习,并做到及时评讲。
高考复习学生需要大量练习,为了赶时间,他们往往只注重解题思路的寻找,不按规定格式解题,导出会而不对,对而不全。
因此,作为教师要以身作则,严格要求,可通过对试卷的分析、评讲、示范表述给出评分标准,引导学生规范答题踩准得分点,减少过失性失分。
总之,高三复习夯实基础是根本,掌握规律是方向,提高能力是关键。
无论是参加全国统考还是各省自主命题考试,我们都须“以纲为纲”,明晰考试要求,以不变应万变,才可能利用有限时间,取得满意效果。