锻造工艺

合集下载

锻造工艺流程

锻造工艺流程

锻造工艺流程锻造是一种重要的金属加工方法,通过对金属材料进行加热和压力处理,使其形成所需的形状和尺寸。

锻造工艺流程是指在进行锻造加工时所需的一系列步骤和操作,下面将详细介绍锻造工艺流程的具体内容。

首先,锻造工艺流程的第一步是原料准备。

在进行锻造之前,需要准备好所需的金属材料,根据产品的要求选择合适的金属材料,并进行加热处理,使其达到适合进行锻造加工的温度。

接下来是模具设计和制造。

根据产品的要求和设计图纸,需要设计和制造相应的模具。

模具的设计和制造需要考虑产品的形状、尺寸和表面质量要求,确保模具能够满足产品的加工需求。

然后是加热处理。

将准备好的金属材料放入加热炉中进行加热处理,使其达到适合进行锻造加工的温度。

加热温度的控制对于产品的质量和性能有着重要的影响,需要严格控制加热温度和时间。

接着是锻造操作。

在金属材料达到适合的加热温度后,将其放入锻造机械设备中进行锻造操作。

通过对金属材料施加压力,使其在模具中形成所需的形状和尺寸。

锻造操作需要根据产品的要求和设计图纸进行精确控制,确保产品的加工质量。

最后是冷却和处理。

在完成锻造操作后,需要对产品进行冷却处理,使其达到室温。

冷却处理的方式和时间需要根据产品的材料和要求进行合理的选择。

在冷却后,还需要对产品进行表面处理和清洁,确保产品达到设计要求的表面质量。

总结一下,锻造工艺流程包括原料准备、模具设计和制造、加热处理、锻造操作、冷却和处理等一系列步骤和操作。

在进行锻造加工时,需要严格按照工艺流程进行操作,确保产品达到设计要求的质量和性能。

希望以上内容能对锻造工艺流程有所帮助,谢谢阅读!。

锻造工艺介绍范文

锻造工艺介绍范文

锻造工艺介绍范文锻造工艺是一种通过受控制的变形和压力施加来改变材料形状和性能的金属加工方法。

它是一种非常古老的工艺,早在公元前3000年埃及时期,人们就开始使用锤子锻造金属了。

在现代工业生产中,锻造工艺被广泛应用于汽车、航空航天、机械制造等各个行业。

在锻造工艺中,最常见的方法是通过对金属材料施加压力来改变其形状。

通常情况下,锻造过程可以分为两种主要类型:手工锻造和机械锻造。

手工锻造是最古老的锻造方法之一,它通常涉及到使用锤子、铁锩和其他类似工具来对金属进行变形。

在手工锻造过程中,操作工人需要根据设计图纸和要求,将金属材料加热至适当温度后,使用锤子不断敲击和造型,以达到所需的形状和尺寸。

机械锻造是一种使用机械力来进行金属变形的锻造方法。

它通常使用大型锻压机或冲压机来施加高压力和力量,以快速、高效地加工金属材料。

机械锻造可以进一步分为几种类型,包括冷锻、温锻和热锻。

冷锻是在室温下对金属材料进行压制和变形,常用于生产高精度和高强度的金属零件。

相比其他锻造方法,冷锻可以提供更好的表面质量和细致的尺寸控制。

在冷锻过程中,金属材料通常经过预加热,以减少冷工变形的能量消耗。

温锻是在金属材料低于其熔点,但高于室温时进行的锻造过程。

通过在适当的温度下变形金属材料,可以降低材料的加工硬度和提高其延展性。

温锻广泛应用于生产汽车零部件和航空航天部件等高性能应用。

热锻是在金属材料高于其熔点时进行的锻造过程。

热锻通常应用于较难变形的材料,以及需要在高温下保持良好塑性的材料。

通过加热金属材料,热锻可以提高材料的塑性和变形能力,从而实现更复杂的形状和尺寸要求。

除了冷锻、温锻和热锻,还有其他特殊的锻造工艺,如精密锻造、轧制锻造和模锻。

精密锻造是一种在非常小尺寸的金属零件上进行的高精度锻造过程,以实现更精细的形状和尺寸控制。

轧制锻造是一种将金属材料通过连续轧制和锤击来改变其形状和尺寸的锻造工艺。

模锻是一种通过在金属材料中使用专门设计的模具来实现精确形状和尺寸要求的锻造过程。

锻造工艺的工艺特点

锻造工艺的工艺特点

锻造工艺的工艺特点
锻造工艺是通过对金属材料进行加热、锤击、压制等操作,使其在一定条件下产生塑性变形从而形成所需形态的工艺。

以下是锻造工艺的特点:
1. 塑性较好:锻造工艺是通过对金属材料进行加热,使其变得更加柔软、易塑性变形,因此适合于制造一些比较复杂的形状。

2. 结构均匀:由于锻造工艺的加工过程比较均匀,因此所制作的零部件或产品具有结构均匀的特点。

3. 制造范围广:锻造工艺适用于制造各种尺寸、各种材质的零部件和产品。

4. 生产效率低:与其他加工工艺相比,锻造工艺的生产效率相对比较低。

5. 制品精度较高:锻造工艺制造的零部件或产品具有较高的精度,通常可以达到毫米级或亚毫米级的精度。

6. 设备成本高:锻造工艺通常需要投入较高的设备成本,包括锤击机、压力机、冲床等设备。

7. 制造周期长:由于锻造工艺需要对材料加热、制造过程复杂,在工艺特点上相对于其他加工工艺,制造周期比较长。

综上所述,锻造工艺是一种适用范围广、加工制度和结构均匀的工艺,但由于生产效率低、设备成本高等原因,使得锻造工艺在实际应用中需要仔细考虑。

锻造工艺的概念和分类

锻造工艺的概念和分类

锻造工艺的概念和分类
锻造工艺是一种通过施加力量和热量将金属材料变形成所需形状的制造方法。

锻造工艺可以分为以下几种分类:
1. 锻造温度分类:根据输入能量的形式,可以将锻造工艺分为冷锻、热锻和半热锻三类。

冷锻是在室温下进行的锻造工艺;热锻是在高温下进行的锻造工艺,其温度通常在再结晶温度以上;半热锻是介于冷锻和热锻之间的温度下进行的锻造工艺。

2. 锻造设备分类:根据施加力量的方式和设备的类型,可以将锻造工艺分为手工锻造、机械压力锻造、液压锻造和气动锻造等几类。

3. 锻造方法分类:根据金属材料在锻造过程中的变形方式,可以将锻造工艺分为自由锻造、模锻、粉末冶金锻造和特殊锻造等几类。

自由锻造是指将金属材料置于锻模之间施加锻击力来实现变形的锻造方法;模锻是在金属材料周围设置一定形状的模具,通过挤压和压缩变形金属来实现锻造的工艺;粉末冶金锻造是通过将金属粉末和粘结剂混合后进行成型和锻造的工艺;特殊锻造是指一些特殊的锻造方法,如旋压锻、横剪锻、搓锻等。

4. 锻造产品分类:根据产品的形状和用途,可以将锻造工艺分为轴类锻件、盘类锻件、复杂形状锻件和板类锻件等几类。

轴类锻件主要是指长度大于直径的圆柱体形锻件,如轴、销、凸轮等;盘类锻件主要是指直径大于长度的扁圆形锻件,如齿轮、法兰等;复杂形状锻件主要是指形状复杂、截面变化较大的锻
件;板类锻件主要是指长宽比大于3的薄板形锻件。

以上是常见的锻造工艺的分类,根据具体情况和需求,还可以进一步细分和分类。

锻造工艺要求

锻造工艺要求

锻造工艺要求
锻造是一种金属加工工艺,通过对金属坯料进行加热、锤击或压力加工,使其形成所需的形状和尺寸。

锻造工艺要求包括以下几个方面:
1. 材料要求:锻造工艺需要使用适合的金属材料,通常包括低碳钢、合金钢、铝合金等。

这些材料具有较好的可锻性和可塑性,能够在锻造过程中形成所需的形状和尺寸。

2. 坯料要求:锻造工艺需要准备适当的坯料,通常采用圆钢、板材、棒材等。

坯料的尺寸和形状需要符合锻造工艺的要求,以便在锻造过程中形成所需的形状和尺寸。

3. 加热要求:锻造工艺需要将坯料加热到适当的温度,以便使其具有良好的可塑性。

加热温度的选择需要考虑材料的性质和锻造工艺的要求,通常需要在金属材料的相变温度范围内进行加热。

4. 锻造要求:锻造工艺需要使用适当的锻造设备和工具,如锻造机、锤击机等。

锻造工艺需要按照规定的锻造程序进行操作,以确保锻造出的零件具有所需的形状、尺寸和力学性能。

5. 后处理要求:锻造工艺需要进行后处理,如去毛刺、切割、热处理等,以确保锻造出的零件符合要求。

后处理的方法和工艺需要根据具体的锻造零件的要求进行选择和调
整。

总之,锻造工艺需要综合考虑材料、坯料、加热、锻造和后处理等多个方面的要求,以确保锻造出的零件具有所需的形状、尺寸和力学性能。

锻造工艺技术

锻造工艺技术

锻造工艺技术锻造是一种通过在金属材料上施加力量来改变其形状和性能的工艺技术。

它是制造业中最常见和最重要的工艺之一。

锻造工艺技术广泛应用于各个领域,包括航空航天、汽车制造、机械制造和建筑等。

在锻造工艺技术中,常用的材料包括铁、钢、铝、钛等金属材料。

根据所需的产品形状和性能,可以选择不同的锻造方法。

常见的锻造方法包括锻炼、顶锻、挤压、轧制和冷锻等。

在锻造过程中,首先需要选取合适的金属材料和模具。

金属材料的选择要考虑到所需的性能和用途,以及成本和可用性等因素。

模具的设计和制造要考虑到所需产品的形状和尺寸等要求。

锻造工艺技术的关键在于控制锻造过程中的温度、压力和速度等参数。

温度的控制对于材料的形状和性能具有重要影响。

较高的温度可以使金属变得柔软,有利于形状的变化,但过高的温度会导致金属的氧化和烧坏。

压力和速度的控制则决定了金属材料的变形和强度。

为了确保产品的质量,锻造过程中还需要进行材料检测和质量控制。

常见的检测方法包括金相检测、力学性能测试和无损检测等。

质量控制包括从材料的选择、模具的设计和制造、锻造过程的控制和产品的检测等各个环节。

随着科技的发展,锻造工艺技术也在不断革新和进步。

新的材料和工艺方法的应用,使得锻造工艺技术能够应对更加复杂和高要求的产品制造。

例如,精密锻造技术可以制造出形状复杂、尺寸精确的零部件;超塑性锻造技术可以在高温下实现大变形,制造出超精密的产品。

总之,锻造工艺技术在现代制造业中发挥着重要作用。

它不仅能够实现金属材料的形状和性能的改变,还可以保证产品的质量和性能。

随着技术的进步,锻造工艺技术将继续发展,为各个行业带来更多创新和突破。

锻造——锻造方法与工艺

锻造——锻造方法与工艺

锻造——锻造方法与工艺锻造是通过对金属材料进行加热和塑性变形的一种加工方法,通过锻造可以改变金属材料的形状和性能。

锻造方法和工艺是指在具体的锻造过程中,采取的各种技术措施和操作方法。

下面将详细介绍锻造的方法和工艺。

锻造方法主要分为手工锻造、机械锻造和液压锻造。

1.手工锻造:手工锻造是最早发展的锻造方法,也是最基本的锻造方法。

手工锻造主要是通过人工操作来完成金属材料的加工。

操作方法包括用锤子敲打、弯曲、拉伸和压缩等。

手工锻造的优点是操作简单、灵活性好,适用于小批量的生产,缺点是劳动强度大、生产效率低。

2.机械锻造:机械锻造是在锻造过程中使用机械设备来完成金属材料的加工。

机械锻造主要包括压力机锻造、冲击锻造和旋转锻造等。

压力机锻造是利用压力机的运动和压力来完成金属材料的塑性变形。

冲击锻造是利用冲击力瞬间使金属材料发生塑性变形。

旋转锻造是将金属材料固定在旋转工作台上,通过旋转工作台和切削刀具的相对运动,使金属材料发生塑性变形。

机械锻造的优点是生产效率高、加工精度高,适用于大批量的生产,缺点是设备投资大、工艺复杂。

3.液压锻造:液压锻造是利用液压力来完成金属材料的塑性变形。

液压锻造主要包括液压锤锻造和液压机锻造。

液压锤锻造是通过液压锤的冲击力来完成金属材料的塑性变形。

液压机锻造是通过液压机的压力来完成金属材料的塑性变形。

液压锻造的优点是操作简单、加工精度高,适用于对形状复杂的金属零件进行加工,缺点是生产效率低。

在锻造过程中,通常还需要采用以下几项工艺措施来提高锻造质量和合格率。

1.加热工艺:金属材料在进行锻造前需要通过加热来改变其组织结构和提高其塑性。

加热工艺包括预热和锻造温度的控制。

预热是在金属材料进行锻造前对其进行加热,预热可以减少金属材料的冷作硬化程度和塑性降低程度,使其更易于塑性变形。

锻造温度的控制是根据金属材料的熔点和塑性变形温度范围来确定,过低的温度会影响塑性变形,过高的温度会导致烧结和变形不均匀。

锻造工艺学(完整版)课件

锻造工艺学(完整版)课件
确保原材料质量符合要求,减 少缺陷的产生。
控制锻造工艺参数
如温度、压力、时间等,以获 得最佳的锻造效果。
制定检验标准
对锻造产品进行严格的质量检 验,确保产品符合标准。
持续改进
根据质量反馈,不断优化锻造 工艺和质量控制措施。
质量检测方法
目视检测
通过肉眼或低倍放大镜观察产品表面和内部 质量。
无损检测
利用X射线、超声波等无损检测技术对产品 内部进行检测。
有色金属
复合材料
如铜、铝、锌等,具有良好的导热性和塑 性,适用于制造要求轻量化和美观的零件 。
由两种或多种材料组成,具有优异的性能 ,如高强度、高刚性和轻量化,适用于航 空、航天等高科技领域。
锻造工具
锻锤
是最常用的锻造工具之 一,通过敲击使材料变 形,达到锻造的目的。
压力机
通过施加压力使材料变 形,适用于大型和重型
提高材料利用率和降低成本
通过合理的锻造工艺,可以减少材料浪费,降低生产成本。
锻造工艺的历史与发展
古代锻造工艺
现代锻造工艺
人类早期的锻造工艺主要采用简单的 锤击和砧打方式,用于制作工具和武 器。
随着科技的不断进步,锻造工艺在材 料、设备、工艺控制等方面取得了重 大突破,广泛应用于航空、航天、汽 车、能源等领域。
分类
锻造工艺学根据不同的分类标准可以 分为多种类型,如按变形温度可分为 热锻、温锻和冷锻;按变形程度可分 为自由锻、模锻和精密锻造等。
锻造工艺的重要性
提高金属材料的力学性能
通过塑性变形消除金属内部的缺陷,提高其力学性能,如强度、 韧性等。
实现复杂形状零件的成形
锻造工艺能够将金属材料加工成具有复杂形状和尺寸要求的零件, 满足各种工程应用需求。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、自由锻
只用简单的通用性工具,或在锻造设备上、下砧间直接使坯料变形而获得所需的几何形状及内部质量的锻件,称为自由锻。

1、基本工序可分为拔长、镦粗、冲孔、弯曲等。

拔长:也称为延伸,它是使坯料横断面积减小、长度增加的锻造工序。

镦粗:是使毛坯高度减小,横断面积增大的锻造工序。

冲孔:是利用冲头在镦粗后的坯料上冲出透也或不透孔的锻造方法。

弯曲:采用一定的工模具将毛坯弯成所规定的外形的锻造工序。

2、自由锻的特点及应用
特点:工艺灵活性较大,生产准备的时间较短;
生产率低,锻件精度不高,不能锻造形状复杂的锻件。

应用:自由锻是大型锻件的主要生产方法。

这是因为自由锻可以击碎钢锭中粗大的铸造组织,锻合钢锭内部气孔、缩松等空洞,并使流线状组织沿锻件外形合理分布。

二、胎模锻
胎模锻是在自由锻设备上使用可移动模具(胎模)生产模锻件的一种锻造方法。

特点:与自由锻相比较优点
①由于坯料在模膛内成形,所以锻件尺寸比较精确,表面比较光洁,流线组织的分布比较合理,所以质量较高。

②由于锻件形状由模膛控制,所以坯料成形较快,生产率比自由锻高1~5倍。

③胎模锻能锻出形状比较复杂的锻件。

④锻件余块少,因而加工余量较小,既可节省金属材料,又能减少机加工工时。

缺点:需要吨位较大的锻锤;只能生产小型锻件;胎模的使用寿命较低;工作时一般要靠人力搬动胎模,因而劳动强度较大。

应用:胎模锻用于生产中、小批量的锻件。

三、锤上模锻
简称模锻,它是在模锻外向锤上利用模具(锻模)使毛坯变形而获得锻件的锻造方法。

特点:与自由锻、胎模锻比较有如下优点
①生产效高
②表面质量高,加工余量小,余块少甚至没有,尺寸准确,锻件公差比自由锻小2/3~3/4,可节省大量金属材料和机械加工工时。

③操作简单,劳动强度比自由锻和胎模锻都低。

缺点:
①模锻件的重量受到一般模锻设备能力的限制,大多在50~70kg以下;
②锻模需要贵重的模具钢,加上模膛的加工比较困难,所以锻模的制造周期长、成本高;
③模锻设备的投资费用比自由锻大。

应用:一般用于生产大批量锻件。

锻造是利用锻压机械对金属坯料施加压力,使其产生塑性变形,以获得具有一定机械性能、一定形状和尺寸的锻件的加工方法。

锻造和冲压同属塑性加工性质,统称锻压。

锻造是机械制造中常用的成形方法。

通过锻造能消除金属的铸态疏松、焊合孔洞,锻件的机械性能一般优于同样材料的铸件。

机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。

锻造按坯料在加工时的温度可分为冷锻和热锻。

冷锻一般是在室温下加工,热锻是在高于坯料金属的再结晶温度上加工。

有时还将处于加热状态,但温度不超过再结晶温度时进行的锻造称为温锻。

不过这种划分在生产中并不完全统一。

钢的再结晶温度约为460℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。

锻造按成形方法则可分为自由锻、模锻、冷镦、径向锻造、挤压、成形轧制、辊锻、辗扩等。

坯料在压力下产生的变形基本不受外部限制的称自由锻,也称开式锻造;其他锻造方法的坯料变形都受到模具的限制,称为闭模式锻造。

成形轧制、辊锻、辗扩等的成形工具与坯料之间有相对的旋转运动,对坯料进行逐点、渐近的加压和成形,故又称为旋转锻造。

锻造用料主要是各种成分的碳素钢和合金钢,其次是铝、镁、铜、钛等及其合金。

材料的原始状态有棒料、铸锭、金属粉末和液态金属。

一般的中小型锻件都用圆形或方形棒料作为坯料。

棒料的晶粒组织和机械性能均匀、良好,形状和尺寸准确,表面质量好,便于组织批量生产。

只要合理控制加热温度和变形条件,不需要大的锻造变形就能锻出性能优良的锻件。

铸锭仅用于大型锻件。

铸锭是铸态组织,有较大的柱状晶和疏松的中心。

因此必须通过大的塑性变形,将柱状晶破碎为细晶粒,将疏松压实,才能获得优良的金属组织和机械性能。

经压制和烧结成的粉末冶金预制坯,在热态下经无飞边模锻可制成粉末锻件。

锻件粉末接近于一般模锻件的密度,具有良好的机械性能,并且精度高,可减少后续的切削加工。

粉末锻件内部组织均匀,没有偏析,可用于制造小型齿轮等工件。

但粉末的价格远高于一般棒材的价格,在生产中的应用受到一定限制。

对浇注在模膛的液态金属施加静压力,使其在压力作用下凝固、结晶、流动、塑性变形和成形,就可获得所需形状和性能的模锻件。

液态金属模锻是介于压铸和模锻间的成形方法,特别适用于一般模锻难于成形的复杂薄壁件。

不同的锻造方法有不同的流程,其中以热模锻的工艺流程最长,一般顺序为:锻坯下料;锻坯加热;辊锻备坯;模锻成形;切边;中间检验,检验锻件的尺寸和表面缺陷;锻件热处理,用以消除锻造应力,改善金属切削性能;清理,主要是去除表面氧化皮;矫正;检查,一般锻件要经过外观和硬度检查,重要锻件还要经过化学成分分析、机械性能、残余应力等检验和无损探伤。

锻压是锻造和冲压的合称,是利用锻压机械的锤头、砧块、冲头或通过模具对坯料施加压力,使之产生塑性变形,从而获得所需形状和尺寸的制件的成形加工方法。

在锻造加工中,坯料整体发生明显的塑性变形,有较大量的塑性流动;在冲压加工中,坯料主要通过改变各部位面积的空间位置而成形,其内部不出现较大距离的塑性流动。

锻压主要用于加工金属制件,也可用于加工某些非金属,如工程塑料、橡胶、陶瓷坯、砖坯以及复合材料的成形等。

锻压和冶金工业中的轧制、拔制等都属于塑性加工,或称压力加工,但锻压主要用于生产金属制件,而轧制、拔制等主要用于生产板材、带材、管材、型材和线材等通用性金属材料。

锻压主要按成形方式和变形温度进行分类。

按成形方式锻压可分为锻造和冲压两大类;按变形温度锻压可分为热锻压、冷锻压、温锻压和等温锻压等。

热锻压是在金属再结晶温度以上进行的锻压。

提高温度能改善金属的塑性,有利于提高工件的内在质量,使之不易开裂。

高温度还能减小金属的变形抗力,降低所需锻压机械的吨位。

但热锻压工序多,工件精度差,表面不光洁,锻件容易产生氧化、脱碳和烧损。

冷锻压是在低于金属再结晶温度下进行的锻压,通常所说的冷锻压多专指在常温下的锻压,而将在高于常温、但又不超过再结晶温度下的锻压称为温锻压。

温锻压的精度较高,表面较光洁而变形抗力不大。

在常温下冷锻压成形的工件,其形状和尺寸精度高,表面光洁,加工工序少,便于自动化生产。

许多冷锻、冷冲压件可以直接用作零件或制品,而不再需要切削加工。

但冷锻时,因金属的塑性低,变形时易产生开裂,变形抗力大,需要大吨位的锻压机械。

等温锻压是在整个成形过程中坯料温度保持恒定值。

等温锻压是为了充分利用某些金属在等一温度下所具有的高塑性,或是为了获得特定的组织和性能。

等温锻压需要将模具和坯料一起保持恒温,所需费用较高,仅用于特殊的锻压工艺,如超塑成形。

锻压可以改变金属组织,提高金属性能。

铸锭经过热锻压后,原来的铸态疏松、孔隙、微裂等被压实或焊合;原来的枝状结晶被打碎,使晶粒变细;同时改变原来的碳化物偏析和不均匀分布,使组织均匀,从而获得内部密实、均匀、细
微、综合性能好、使用可靠的锻件。

锻件经热锻变形后,金属是纤维组织;经冷锻变形后,金属晶体呈有序性。

锻压是使金属进行塑性流动而制成所需形状的工件。

金属受外力产生塑性流动后体积不变,而且金属总是向阻力最小的部分流动。

生产中,常根据这些规律控制工件形状,实现镦粗拔长、扩孔、弯曲、拉深等变形。

锻压出的工件尺寸精确、有利于组织批量生产。

模锻、挤压、冲压等应用模具成形的尺寸精确、稳定。

可采用高效锻压机械和自动锻压生产线,组织专业化大批量或大量生产。

锻压的生产过程包括成形前的锻坯下料、锻坯加热和预处理;成形后工件的热处理、清理、校正和检验。

常用的锻压机械有锻锤、液压机和机械压力机。

锻锤具有较大的冲击速度,利于金属塑性流动,但会产生震动;液压机用静力锻造,有利于锻透金属和改善组织,工作平稳,但生产率低;机械压力机行程固定,易于实现机械化和自动化。

未来锻压工艺将向提高锻压件的内在质量、发展精密锻造和精密冲压技术、研制生产率和自动化程度更高的锻压设备和锻压生产线、发展柔性锻压成形系统、发展新型锻压材料和锻压加工方法等方面发展。

提高锻压件的内在质量,主要是提高它们的机械性能(强度、塑性、韧性、疲劳强度)和可靠度。

这需要更好地应用金属塑性变形理论;应用内在质量更好的材料;正确进行锻前加热和锻造热处理;更严格和更广泛地对锻压件进行无损探伤。

少、无切削加工是机械工业提高材料利用率、提高劳动生产率和降低能源消耗的最重要的措施和方向。

锻坯少、无氧化加热,以及高硬、耐磨、长寿模具材料和表面处理方法的发展,将有利于精密锻造、精密冲压的扩大应用。

相关文档
最新文档