数列不等式证明的几种方法

合集下载

利用导数证明数列不等式(含解析)

利用导数证明数列不等式(含解析)

利用导数证明数列不等式利用导数证明数列不等式,在高考题中能较好的考查学生灵活运用知识的能力,一方面以函数为背景让学生探寻函数的性质,另一方面体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为为有具体特征的数列,可谓一题多考,巧妙地将函数、导数、数列、不等式结合在一起,也是近年来高考的热门题型. 1、常见类型:(1)利用放缩通项公式解决数列求和中的不等问题 (2)利用递推公式处理通项公式中的不等问题 2、恒成立不等式的来源:(1)函数的最值:在前面的章节中我们提到过最值的一个作用就是提供恒成立的不等式.(2)恒成立问题的求解:此类题目往往会在前几问中进行铺垫,暗示数列放缩的方向.其中,有关恒成立问题的求解,参数范围内的值均可提供恒成立不等式. 3、常见恒成立不等式:(1) 对数→多项式 (2) 指数→多项式4、关于前项和的放缩问题:求数列前项公式往往要通过数列的通项公式来解决,高中阶段求和的方法有以下几种:(1)倒序相加:通项公式具备第项与第项的和为常数的特点.(2)错位相减:通项公式为“等差等比”的形式(例如,求和可用错位相减).(3)等比数列求和公式(4)裂项相消:通项公式可裂为两项作差的形式,且裂开的某项能够与后面项裂开的某项进行相消. 注:在放缩法处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,故优先考虑.5、大体思路:对于数列求和不等式,要谨记“求和看通项”,从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式.6、在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向.7、放缩通项公式有可能会进行多次,要注意放缩的方向:朝着可求和的通项公式进行靠拢(等比数列,裂项相消等).ln 1x x <-1x e x >+n n k 1n k -+⨯2nn a n =⋅n a8、数列不等式也可考虑利用数学归纳法进行证明(有时更容易发现所证不等式与题目条件的联系).【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈. 3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性; (2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(xf x eg x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 2.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(1)讨论函数()f x 的单调性;(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈. (1)讨论函数()f x 的单调性;(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈.(1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<.【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 【答案】(1)单调递增区间为(0,)e ,单调递减区间为(,)e +∞;(2)[1,)+∞;(3)证明见解析.【解析】(1)当2k =时,()2ln f x x x x =-,'()1ln f x x =-,由'()0f x >,解得0x e <<;由'()0f x <,解得x e >,因此函数()f x 单调递增区间为(0,)e ,单调递减区间为(,)e +∞.(2)()ln f x kx x x =-,故'()1ln f x k x --=.当1k时,因为01x <≤,所以10ln k x -≥≥,因此'()0f x ≥恒成立,即()f x 在(]0,1上单调递增,所以()(1)f x f k ≤=恒成立.当1k <时,令'()0f x =,解得1(0,1)k x e -=∈.当1(0,)k x e -∈,'()0f x >,()f x 单调递增;当1(,1)k x e -∈,'()0f x <,()f x 单调递减; 于是1(1))(k f ef k -=>,与()f x k ≤恒成立相矛盾.综上,k 的取值范围为[1,)+∞.(3)由(2)知,当01x <≤时,ln 1x x x -≤. 令x =21n *()n N ∈,则21n +22nln 1n ≤,即22ln 1n n -≤, 因此ln 1n n +≤12n -. 所以ln1ln 2ln 011(1) (2312224)n n n n n --+++≤+++=+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈.【答案】(1)见解析;(2)[1,+∞);(3)证明见解析. 【解析】(1)求导数可得2224441(2)(1)(2)a ax a y ax x ax x +-'=-=++++, 当1a 时,0y ',∴函数()()y f x g x =-在[)0+∞,上单调递增; 当01a <<时,由0y '>可得x > ∴函数在⎡⎫∞⎪⎢⎪⎣⎭上单调递增,在0⎡⎢⎣上单调递减; (2)由(1)知当1a 时,函数()()y f x g x =-在[)0+∞,上单调递增, ()()(0)(0)1f x g x f g ∴--=,即不等式()()1f x g x +在[)0x ∈+∞,时恒成立, 当01a <<时,函数在0⎡⎢⎣上单调递减,存在00x ⎡∈⎢⎣使得00()()(0)(0)1f x g x f g -<-=, 即不等式00()()1f x g x +不成立, 综上可知实数a 的取值范围为[1,)+∞;(3)由(2)得当1a 时,不等式()()1f x g x >+在(0,)x ∈+∞时恒成立, 即2(1)2x ln x x +>+,12(1)12ln k k∴+>+,*()k N ∈. 即11[(1)]122ln k lnk k <+-+, ∴11(21)32ln ln <-,11(32)52ln ln <-,11(43)72ln ln <-,11[(1)]212ln n lnn n ⋯<+-+, 将上述式子相加可得11111111(1)(1)()357212222lnn ln lnn ln n f n n +++⋯+<-=<+=+ 原不等式得证.3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 【答案】(1)答案见解析(2)证明见解析.【解析】(1)因为()x xf x e ea -'=+-,且2x x e e -+≥,所以当2a ≤时,()0f x '≥,所以()f x 在R 上为增函数,当2a >时,由()0f x '>,得0x x e e a -+->,所以2()10x xe ae -+>,所以22()124x a a e ->-,所以2x ae ->或2xa e -<,所以2xa e +>2xa e -<,所以24ln2aa x 或24ln2aa x ,由()0f x '<,得0x x e e a -+-<,解得2244ln22aa aax ,所以()f x 在ln 22a a ⎛⎫⎪ ⎪⎝⎭上递减,在,ln2a ⎛--∞ ⎪⎝⎭和ln 2a ⎛⎫++∞ ⎪ ⎪⎝⎭上递增.(2)由(1)知,当2a =时,()2xxf x e e x -=--在R 上为增函数,所以1()(ln )2ln g x f x x x x==--在(0,)+∞上为增函数, 所以当*n N ∈且2n ≥时,13()(2)22ln 2ln 422g n g ≥=--=-=32ln 04e >, 即12ln 0n n n-->,所以212211ln 1(1)(1)11n n n n n n n >==---+-+, 所以211111ln 2ln 23ln 34ln 4ln ni i i n n==++++∑ 1111111121213131414111n n >-+-+-++--+-+-+-+ 111121n n =+--+2322(1)n n n n --=+, 所以22132ln 2(1)ni n n i i n n =-->+∑.4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.【答案】(I )见解析;(II )见解析 【解析】(∈)函数()f x 可化为ln ,()ln ,0x x a x af x a x x x a --≥⎧=⎨--<<⎩,当0x a <<时,1()10f x x '=--<,从而()f x 在(0,)a 上总是递减的, 当x a ≥时,11()1x f x x x'-=-=,此时要考虑a 与1的大小.若1a ≥,则()0f x '≥,故()f x 在[,)a +∞上递增,若01a <<,则当1a x ≤<时,()0f x '<,当1x >时,()0f x '>,故()f x 在[,1)a 上递减, 在(1,)+∞上递增,而()f x 在x a =处连续,所以 当1a ≥时,()f x 在(0,)a 上递减,在[,)a +∞上递增; 当01a <<时,()f x 在(0,1)上递减,在[1,)+∞上递增.(∈)由(∈)可知当1a =,1x >时,1ln 0x x -->,即ln 1x x >-,所以ln 11x x x <-.所以 222222ln 2ln 3ln 23n n+++22211111123n <-+-+-222111123n n ⎛⎫=--+++⎪⎝⎭11112334(1)n n n ⎛⎫<--+++⎪⨯⨯+⎝⎭11121n n ⎛⎫=--- ⎪+⎝⎭1(1)2(1)n n n -=--+ 2221(1)(21)2(1)2(1)n n n n n n --+-+==++.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性;(2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---. 【答案】(1)当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明见解析 【解析】(1)解:()1ln (0)f x x a x x =-->,()1af x x'∴=-.∈若0a ,则()0f x '>,()f x ∴在(0,)+∞内单调递增;∈若0a >,则()f x '在(0,)+∞内单调递增,且()0f a '=,∴当(0,)x a ∈时,()0f x '<;当(,)x a ∈+∞时,()0f x '>,()f x ∴在(0,)a 内单调递减,在(,)a +∞内单调递增.综上所述,当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明:当1a =时,()1ln =--f x x x .由(1)知()(1)0f x f =,ln 1x x ∴-,当且仅当1x =时,等号成立, 令()*,2x n n N n =∈,ln 1n n ∴<-,33ln 1111(1)1n n n n n n n n n n -∴<==---++. 从而3ln 2112223<--, 3ln 3113334<-- …3ln 111n n n n n <--+, 累加可得333ln 2ln3ln 11223321n n n n ++⋯+<----+, 111212n -<+, 333ln 2ln3ln 122332n n n ∴++⋯+<---,证毕.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(x f x e g x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 【答案】(1)证明见解析;(2) 2.【解析】(1)令()()()1xF x f x g x e x =-=--,则()1xF x e '=-∴当(),0x ∈-∞时,()0F x '<;当()0,x ∈+∞时,()0F x '>()F x ∴在(),0-∞上单调递减;在()0,∞+上单调递增()()0min 0010F x F e ∴==--=,即()()()0F x f x g x =-≥恒成立 ()()f x g x ∴≥恒成立(2)由(1)知:13113n n e +≤221111113333332111111333n n n e e e e++⋅⋅⋅+⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤⋅⋅⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又211111111133********13nn n⎛⎫⨯- ⎪⎛⎫⎝⎭++⋅⋅⋅+==⨯-<⎪⎝⎭- 11112322111111333n n e e ⎛⎫⨯- ⎪⎝⎭⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又2111111333n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭恒成立 12m e ∴≥ m 为正整数 m ∴的最小值为:22.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 【答案】(1)()f x 单调递增区间为()3+∞,;() f x 单调递减区间为()03,;(2)43a ≥;(3)详见解析. 【解析】(1)因为()()3246x f x x ex x -=-+-,所以()()()()3332632x x f x x ex x e --=-+-='-+,令()0f x '=得3x =,当3x >时,()0f x '>,()f x 单调递增; 当03x <<时,()0f x '<,()f x 单调递减;所以函数()f x 在()0+∞,上的单调递增区间为()3+∞,,单调递减区间为()03,; (2)由(1)知()()()332x f x x e-'=-+,当3x ≥时,()0f x '≥恒成立,故()0h x ≥恒成立;当3x <时,()0f x '<,又因为()()(){}0h x max f x g x '=≥,恒成立,所以()0g x ≥在()03,上恒成立, 所以11ln 03a x x ⎛⎫---≥ ⎪⎝⎭,即11ln 3xa x+-≥在()03,上恒成立, 令()()1ln 03x F x x x +=<<,则()13max a F x -≥, 由()()221ln 1ln x xF x x x-+-'==, 令()0F x '=得1x =,易得()F x 在()01,上单调递增,在[)13,上单调递减,所以()()11max F x F ==,所以113a -≥,即43a ≥, 综上可得43a ≥.(3)证明:设()()10xm x e x x =-->,则()10xm x e '=->,所以()m x 在()0+∞,上单调递增,所以()()00m x m >=,即1x e x >+, 所以1111111111312312333112313n n n nn n n nn n n n n ee eeen n n n n++++++++++++=⋅⋅⋅⋅⋅⋅⋅>⋅⋅⋅⋅⋅⋅⋅⋅++- 123331231n n n nn n n n +++>⋅⋅⋅⋅⋅⋅⋅=++-,所以11111ln 312313n n n n n+++++>++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 【答案】(1)()f x 在区间()–1,0和()0,∞+上单调递减;(2)证明见解析. 【解析】(1)由题意得:()f x 的定义域为()()–1,00,+∞,且()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x=-++则()()21x g x x -'=+,()–1,0x ∈时,()0g x '>; ()0,x ∈+∞时,()0g x '<.即()g x 在()–1,0上单调递增,在()0,∞+上单调递减.因为()00g =,则在()–1,0和()0,∞+上()0g x <. 因为20x >,所以在()–1,0和()0,∞+上()0f x '<, 即函数()f x 在区间()–1,0和()0,∞+上单调递减. (2)由(1)可知,当02x <≤时,()()ln 322x f f =≥,即()ln 3ln 12x x +≥, 当2n ≥时,2021n <≤-,则2ln 3ln 111n n ⎛⎫+≥⎪--⎝⎭, 即()()2ln 3ln 1ln 1ln 111n n n n ⎛⎫+=+--≥ ⎪--⎝⎭, 所以()()()ln 1ln 1ln ln 2ln 4ln 2ln3ln1n n n n +--+--++-+-111ln 31122n n ⎛⎫≥++++ ⎪--⎝⎭整理得:()111ln 1ln ln 2ln1ln 31122n n n n ⎛⎫++--≥++++⎪--⎝⎭, 即2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥,不等式得证.4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 【答案】(1)见解析;(2)见解析【解析】(1)由题意可得,()'222(0,)f x ax lnx x a R =-->∈,由1x e =时,函数()f x 取得极值知12'220af e e ⎛⎫=+-= ⎪⎝⎭,所以0a =. 所以()()21,'22(0)f x xlnx f x lnx x =--=-->, 所以10x e <<时,()'0f x >;1x e>时,()'0f x <; 所以()f x 的单调增区间10e ⎛⎫ ⎪⎝⎭,,单调减区间为1e⎛⎫+∞ ⎪⎝⎭,. (2)当1a =时,()221f x x xlnx =--,所以()()'22221f x x lnx x lnx =--=--,令()ln 1g x x x =--,则()11'1x g x x x-=-=,当01x <<时,()'0g x <;当1x >时,()'0g x >,()g x 的单调减区间为()01,,单调增区间为()1+∞,, 所以()()10g x g ≥=,所以()'0f x ≥,()f x 是增函数,所以1x >时,()()22ln 110f x x x x f =-->=,所以1x >时,12ln x x x->, 令*211,21n x n N n +=>∈-,得2121212ln 212121n n n n n n +-+->-+- 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭ 所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭上式中123n =,,,…,n ,然后n 个不等式相加, 得到()11111...ln 213521221nn n n ++++>++-+ 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈. 【答案】(1) 见详解;(2)1k;(3)证明见解析.【解析】(1)()f x 的定义域为()0 +∞,,()()()221'21p x p p f x p x x x-+=+-=,当1p >时,()'0f x >,故()f x 在()0,∞+单调递增; 当0p ≤时,()'0f x <,故()f x 在()0,∞+单调递减;当10p -<<时,令()'0f x =,解得x =则当x ⎛∈ ⎝时,()'0f x >; x ⎫∈+∞⎪⎪⎭,时,()'0f x <.故()f x 在⎛ ⎝单调递增,在 ⎫+∞⎪⎪⎭,单调递减. (2)因为0x >,所以:当1p =时,()f x kx ≤恒成立11ln ln kx xx k x+⇔+≤⇔≥, 令()1ln xh x x +=,则()max k x h ≥, 因为()2ln 'xh x x-=,由()'0h x =得x =1, 且当()0,1x ∈时,()'0h x >;当()1,x ∈+∞时,()'0h x <.所以()h x 在()0,1上递增,在()1,+∞上递减,所以()()max 11h x h ==, 故1k .(3)取,则代入由题设可得,取,并将上述各不等式两边加起来可得()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈.(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<. 【答案】(1)()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单减;(2)1,2⎛⎤-∞- ⎥⎝⎦;(3)证明见解析. 【解析】()'f x a =+.(1)当0a ≥时,()'0f x ≥,所以()f x 在()1,-+∞上单调递增; 当0a <时,由()'0f x >解得21114x a -<<-, 所以()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单调递增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单调递减.(2)当0a ≥时,()()2000f x a x =+≥+=,故不合题意;当0a <时,由(∈)知()max 21104x f f a ⎛⎫=-≤ ⎪⎝⎭,211(21)(21)20141244a a f a a a a a a +-⎛⎫=-+- ⎪⎝-+=≤⎭102a a <∴≤-,综上,a 的取值范围为1,2⎛⎤-∞- ⎥⎝⎦.(3)由(2)知,取12a =-112x ≤+成立.当()1,2,3,,20482020kx k ==时,1111220204040k k =≤⨯+=⨯+,⋅⋅⋅+()11234204820484040++++++<20491024204826004040⨯=+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈. (1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 【答案】(1)见解析;(2)见解析;(3)见解析【解析】(1)函数()f x 的定义域为:()0,∞+,()'f x = 222a a x x x x++=∈当0a ≥时,()'0f x >,所以()f x 在()0,∞+上单调递增∈当0a <时,令()'0f x =,解得x =当0x <<时,220a x +<,所以()'0f x <, 所以()f x 在⎛ ⎝上单调递减;当x >220a x +>,所以()'0f x >,所以()f x 在⎫+∞⎪⎪⎭上单调递增. 综上,当0a ≥时,函数()f x 在()0,∞+上单调递增;当0a <时,函数()f x 在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增. (2)当a 1=时,()2ln f x x x =+,要证明()21f x x x ≤+-,即证ln 1x x ≤-,即证:ln 10x x -+≤. 设()g ln 1x x x =-+,则()g'x =1xx-,令()0g x '=得,1x =. 当()0,1x ∈时,()0g x '>,当()1,x ∈+∞时,()0g x '<. 所以1x =为极大值点,且()g x 在1x =处取得最大值.所以()()10g x g ≤=,即ln 10x x -+≤.故()21f x x x ≤+-.(3)证明:ln 1x x ≤-(当且仅当1x =时等号成立),即11lnx x x≤-, 则有2222ln +22222222223111111111n 132323ln lnn n n n ⎛⎫+⋯+<-+-+⋯+-=--++⋯+ ⎪⎝⎭()111n 123341n n ⎛⎫<--++⋯+ ⎪ ⎪⨯⨯+⎝⎭ ()()()12111111111n 1n 1233412121n n n n n n -+⎛⎫⎛⎫=---+-+⋯+-=---=⎪ ⎪+++⎝⎭⎝⎭, 故:2222ln +()()()22221213321n n ln lnn n n -++⋯+<+ 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 【答案】(∈)0b >;(∈)12a ≤-;(∈)证明见解析. 【解析】(∈)当0a =时,()()()ln 11f x bx x x =-+>-,()()1111bx b f x b x x --'=-=++, ∈当0b ≤时,()0f x '<,则()f x 在()1,-+∞递减,无极值; ∈当0b >时,令()1'0,11f x x b==->-, 1()0,(1,1),()f x x f x b '<∈--单调递减,1()0,(1,),()f x x f x b '>∈-+∞单调递增,所以11,()x f x b=-取得极小值.综上可知:0b >.(∈)当1b =时,()()()2ln 10f x ax x x x =+-+>,()1212011x f x ax ax x x '=+-=+≤++恒成立 121a x ⇔-≥+对一切()0,x ∈+∞恒成立, ∈11x +>,∈1011x <<+,∈21a -≥,∈12a ≤-.(∈)由(∈)知:当12a =-时,()()21ln 12f x x x x =-+-+在()0,∞+递减,∈()()00f x f ≤=,即:()2ln 12x x x -+<,令221x n =-,则()22212ln 212121n n n n +-<---, 当2n ≥时,()2222122ln 212144121n n n n n n +-<=---+- ()21114121n n n n ⎛⎫<=- ⎪--⎝⎭,∈23ln 2ln 311-=- 2511ln 13322⎛⎫-<- ⎪⎝⎭ 27111ln 55223⎛⎫-<- ⎪⎝⎭……221111ln 212121n n n n n +⎛⎫-<- ⎪---⎝⎭累加得,()11112ln 212ln 31212nk n k n =⎛⎫⋅-+<-+- ⎪-⎝⎭∑ 5153ln3ln32222n =--<-<, 当1n =时,131ln 324-<,即:1ln 32>,综上,()1113ln 212124nk n k =-+<-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 【答案】(1)答案不唯一,具体见解析;(2)[)1,+∞;(3)证明见解析. 【解析】(1)函数()()()ln 111f x x k x =---+的定义域为()1,+∞,且()11f x k x '=--. ∈当0k ≤时,()0f x '>恒成立,故函数()y f x =在()1,+∞上为增函数; ∈当0k >时,令()0f x '<,得1k x k +>时,即函数()y f x =在1,k k +⎛⎫+∞⎪⎝⎭上单调递减, 令()0f x '>,得11k x k +<<时,即函数()y f x =在11,k k +⎛⎫⎪⎝⎭上单调递增.综上:当0k ≤时,函数()y f x =在()1,+∞上为增函数; 当0k >时,函数()y f x =在11,k k +⎛⎫ ⎪⎝⎭上为增函数,在1,k k +⎛⎫+∞⎪⎝⎭上为减函数; (2)当0k ≤时,()211f k =-+≥,显然()0f x ≤不恒成立; 当0k >时,()max 11ln 0k f x f k k +⎛⎫==≤⎪⎝⎭,即1k .综上:实数k 的取值范围是[)1,+∞;(3)由(2)可知,当1k =时()0f x ≤恒成立,即()ln 12x x -<-,()ln 121x x x-∴<-, ()()22ln ln 11121212n n n n n n n --=<=+++,可得出ln 2132<,ln 3242<,,ln 112n n n -<+, ()()*1ln 2ln 3ln 121,23412224n n n n n N n n --∴+++<+++=∈≥+. 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<. 【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)∈先利用数学归纳法证明1n a <. (∈)当1n =时,1112a =<成立; (∈)假设n k =时1k a <成立,则1ln 10k k a a +=-<,11k a +∴<. 综上所述,对任意的n *∈N ,1n a <; ∈利用导数证明1x e x -≥,设()1x f x ex -=-,则()1e 1x f x -'=-,当1x <时,()0f x '<,此时函数()y f x =单调递减; 当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()0110f x f e ≥=-=,即1x e x -≥,当且仅当1x =时,等号成立.1n a <,()()10n f a f ∴>=,即1n a n e a ->,1ln 1n n a a +=-,11n a n n a e a -+∴=>,综合∈∈可知11n n a a +<<;(2)利用数学归纳法证明1n n a n ≤+. ∈当1n =时,112a =满足1n n a n ≤+;∈假设n k =时成立,即1k ka k ≤+,则由1ln 1n n a a +=-,得111111k k a k k k a eee---+++==≤,要证1112k k ek -++<+,令11,012t k ⎛⎫-=∈- ⎪+⎝⎭,则要证11012t e t t ⎛⎫<-<< ⎪-⎝⎭,21 / 21 构造()11x f x e x =+-,1,02x ⎛⎫∈- ⎪⎝⎭,()()()()22211111x x e x f x e x x --'=-=--,令()()211x h x e x =--,1,02x ⎛⎫∈- ⎪⎝⎭,则()()()()2212110x x x h x e x e x e x '=-+⋅-=-<, 所以,函数()y f x '=在1,02⎛⎫- ⎪⎝⎭上单调递减,()()00f x f ''∴>=,所以,函数()y f x =在1,02⎛⎫- ⎪⎝⎭上单调递增,()()00f x f ∴<=,即11x e x <-成立,即1112k k e k -++<+,112k k a k ++∴<+, 综上1n na n ≤+,当且仅当1n =时等号成立,由于1ln 1n n a a +=-,可知0n a >, 所以,1102a <≤,2203a <<,,2019201902020a <<,1220191232019123420202020a a a ⋅⋅⋅⋅<⨯⨯⨯⋅⋅⨯=.。

第8讲数列不等式的证明

第8讲数列不等式的证明

第8讲 数列不等式的证明(一) ∑=><n i i n f a1)()(及)()(n f a i ><∏型不等式的证明解法突破:(1) 设∑==n i ib n f 1,)(证明i i b a <,同向相加∑∑===<⇒n i ni i i n f b a 11)( (2) 设i b n f ∏=)(证明i i b a <<0,同向同正相乘)(n f b a i i =∏<∏⇒ 例1. 求证:1)1(13121)2(2222+<++++<+n n n n n 变式1. 求证:2)2()1(32212)1(+<+++⨯+⨯<+n n n n n n 变式2. 求证:n nn 212111)11(2<+++<-+ 变式3. 求证:n n n <+++⨯+⨯)1(1321211 例2. 求证:1212414212+>+⨯⨯+⨯+n nn 变式1. 求证:12121-2n 654321+<⋅⋅⋅⋅n n 变式2. 求证:2231335623333+>⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛n n n 变式3. 求证:1122642)12(531423121-+<⨯⨯⨯⨯-⨯⨯⨯⨯++⨯⨯+n nn 练习1. 等比数列}{n a 的前n 项和为n S ,已知对*N n ∈∀,点),(n S n 均在函数)1,0(≠>+=b b r b y x (b,r 均为常数)的图像上(1) 求r 的值(2) 当2=b 时,记))(1(log 2*2N n a b n n ∈+=,求证:对*N n ∈∀,不等式11112211+>+⋅⋅+⋅+n b b b b b b nn 成立 练习2. 已知曲线),2,1(02:22: ==+-n y nx x C n ,从点)0,1(-P 向曲线n C 引切线n l ,且知其斜率为)0(>n n k k ,切点为),(n n n y x P(1) 求数列}{n x 的通项公式(2) 求证:nn n x x x x x x +-<⋅⋅⋅-1112531 练习3. 已知各项均为正数的数列}{n a 的前n 项和满足1>n S ,且*),2)(1(6N n a a S n n n ∈++=(1) 求}{n a 的通项公式(2) 设数列}{n b 满足1)12(=-⋅n bn a ,并记n T 为}{n b 的前n 项和,求证:*2),3(log 13N n a T n n ∈+>+练习4. 已知x x x f -+=)1ln()(,记)(x f 在区间)](,0[*N n n ∈上的最小值为n b ,令n n b n a -+=)1ln(,求证:1122421231423121-+<+++-n n n a a a a a a a a a a a a a 例3. 求证:*,1211)1ln(113121N n nn n ∈+++<+<++++ 变式:求证:*,)1(2)1ln(131211N n n n n n ∈+++>++++ (二) ∑=><n i i C a1)(及C a i )(><∏(C 为常数)型不等式的证明例4. 求证:12121212132<++++n )(*N n ∈ 变式1. 求证:2223222132<++++n n )(*N n ∈ 变式2. 求证:112112112112132<++++++++n )(*N n ∈ 变式3. 求证:2232322212132<++++++++n n n )(*N n ∈ 例5. 求证:)(,21)12)(12(1751531311*N n n n ∈<+-+⨯+⨯+⨯ 变式1. 求证:113121222<+++n ),2(*N n n ∈≥ 变式2. 求证:2131211222<++++n)(*N n ∈ 变式3. 求证:47131211222<++++n )(*N n ∈变式4. 求证:35131211222<++++n )(*N n ∈ 练习1. 求证:45)12(151311222<-++++n )(*N n ∈ 练习2. 已知2n )1(),1(+=+=n b n n a n ,求证:1251112211<++++++n n b a b a b a 练习3. 设数列}{n a 的前n 项和n S ,已知*211,32312,1N n n n a n S a n n ∈---==+ (1) 求1a 的值(2) 求数列}{n a 的通项公式(3) 求证:对一切整数n ,有4711121<+++n a a a 例6. 求证:232312312312313322<-++-+-+-n n )(*N n ∈ 变式1. 求证:141723123123123132<-++-+-+-n )(*N n ∈ 例7. 已知122-=n nn a ,求证:3)1(1<-∑=n i i i a a 例8. 求100131211++++= S 的整数部分 常见的裂项放缩技巧。

求解数列不等式证明问题的方法

求解数列不等式证明问题的方法

解题宝典证明数列不等式问题是一类综合性较强且难度较大的问题,不仅考查了数列知识,还考查了证明不等式的技巧.本文主要介绍三种证明数列不等式问题的方法,以供大家参考.一、利用数列的单调性我们知道,数列具有单调性.因此在证明数列不等式问题时,我们可以利用数列的单调性来讨论数列的变化趋势,进而证明不等式.利用数列的单调性解题的关键在于观察数列的特征,通过作差、作商等方法,构造出新数列,利用数列的单调性证明结论.例1.已知数列{}a n各项均为正数,前n项和S1>1,满足关系式6S n=(a n+1)(a n+2),n∈N*.设数列{}bn满足关系式an(2b n-1)=1,令T n为数列{}b n的前n项和,求证:3T n+1>log2(a n+3),n∈N*.证明:根据前n项和关系式可得a n=3n-1,将其代入到an(2b n-1)=1中可得b n=log23n3n-1,Tn=b1+b2+⋯+b n=log2(32×65×⋯×3n3n-1),则3T n+1-log2(a n+3)=log2éë(32×65×⋯×3n3n-1)3ùû×23n+2.设f(n)=(32×65×⋯×3n3n-1)3×23n+2,则f(n+1)f(n)=(3n+3)3(3n+5)(3n+2)2,变形得(3n+3)3-(3n+5)(3n+2)2=9n+7>0,则数列{}f(n)单调递增.因此f(n)≥f(1)>1,则3T n+1-log2(a n+3)=log2f(n)>0,所以3T n+1>log2(a n+3).本题的难度较大,欲证明此题,首先需要从结论出发,构造数列f(n),然后根据新数列的形式,利用作差法、作商法证明数列具有单调性,再利用其单调性证明结论.很多时候,我们并不能直接发现数列的单调性,往往需要对数列的递推式进行多次转换、变形,构造出新数列才能发现其单调性.二、放缩法放缩法是解答不等式问题的基本方法之一.在运用放缩法证明数列不等式问题时,我们必须紧紧围绕着放缩目标,掌握好放缩的尺度,灵活运用不等式的传递性证明不等式.常见的放缩技巧有添加或删除某些项、先放缩再求和(先求和再放缩)、先裂项再放缩(先放缩再裂项)等.但无论运用哪种放缩技巧,都需要把控放缩的尺度,否则容易得出错误的答案.例2.已知数列{}a n满足条件:a1=1,a n+1=2a n+1(n∈N*),试证明:n2-13<a1a2+a2a3+⋯+a n an+1<n2.证明:由a n+1=2a n+1,(n∈N*),可得a n=2n-1,则akak+1=2k-12k+1-1=2k-12(2k-12)<2k-12(2k-1)=12,所以a1a2+a2a3+⋯+anan+1<12+12+⋯+12=n2.故akak+1=2k-12k+1-1=12·2k+1-22k+1-1=12(1-12k+1-1)=12-13×2k+2k-2≥12-13×12k(k=1,2,3,⋯),即a1a2+a2a3+⋯+anan+1≥12-13(12+122+⋯+12n)=n2-13(1-12n)>n2-13.综合上述分析,即可证明不等式n2-13<a1a2+a2a3+⋯+a n a n+1<n2成立.本题主要运用了放缩法,首先结合数列不等式的表达式,对不等式进行缩放,构造出anan+1,再借助不等式的传递性证明了结论.三、导数法对于综合性较强的数列不等式问题,我们往往采用导数法来求解.首先结合不等式构造出函数模型,对函数求导,通过研究其导函数得到函数的单调性、最储文海42解题宝典值,进而证明不等式成立.例3:试证明12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1(n ∈N*).证明:令a n =1n +1、b n =1n ,于是当n ≥2时,S n -1=ln n 、S n =ln(n +1).则S n -S n -1=ln(n -1)-ln n =ln n +1n.欲证明原不等式成立,需要证明1n +1<ln n +1n<1n ,即证明1x +1<ln x +1x <1x ,x ≥1.设函数f (x )=ln x +1x -1x +1,对其进行求导可得到f ′(x )=1x +1-1x +1(x +1)2=-1x (x +1)2<0.令x +1x =t ,则1x =t -1,t -1t<ln t <t -1,(t >1).设函数h (t )=ln t -t -1t ,则h ′(t )=t -1t2>0,则函数h (t )在(1,+∞)单调递增,所以h (t )>h (1)=0,h (t )=ln t -t -1t>0,即是ln t >t -1t.同理可以证得ln t <t -1,即是ln t +1t <1t.综上可得,1t +1<ln t +1t <1t ,当t 分别取1,2,3,…,n -1时,12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1.运用导数法的根本目的是判断数列的单调性,求得数列的最值.这里首先构造出两个数列以及两个数列的和式,然后结合目标不等式的形式构造出函数模型,通过分析导函数确定函数的单调性,从而证明不等式.从上述分析我们不难看出,证明数列不等式问题的难度系数较大.在解答此类问题时,我们需要仔细分析数列不等式的特点,将其进行适当的变形、转化,并要学会联想,将其与不等式的性质、重要结论以及函数、导数的性质关联起来,才能将难题破解.(作者单位:江苏省华罗庚中学)立体几何是高考数学考查的重点.解答立体几何问题常用的方法是几何法和向量法.这两种方法是分别从几何和代数两个角度入手的,有着各自的优势.本文重点探讨这两种方法在解题中的应用.一、几何法几何法是指运用几何知识解答问题的方法.在解答立体几何问题时,我们需要根据题意绘制相应的图形,探寻空间中点、线、面之间的位置关系,通过延长线段,平移、变换、旋转图形,添加辅助线等方式,建立结论与已有条件之间的联系,灵活运用各种定理、定义、性质,对条件进行转化,顺利解答问题.例1.如图1,在三棱台ABC-DEF 中,已知平面BCEF ⊥平面ABC ,∠ACB -90°,BE =EF =FC =1,BC =2,AC =3,(1)求证:BF ⊥平面ACFD (2)求二面角B -AD -C 的余弦值.李鹏飞图143。

导数数列型不等式证明问题

导数数列型不等式证明问题

导数数列型不等式的证明涉及到导数的概念、性质和运算,通常需要运用放缩、构造辅助函数、微分中值定理等方法。

以下是一些常见的导数数列型不等式的证明方法:
放缩法:通过放缩不等式,使得不等式的证明变得更加容易。

例如,可以利用导数的性质,将原不等式转化为容易证明的等式或不等式。

构造辅助函数法:根据导数的性质,构造出一个辅助函数,通过研究该函数的性质,证明不等式。

例如,可以构造一个函数,使其在指定区间上单调递增或递减,从而证明不等式。

微分中值定理法:利用微分中值定理,将不等式转化为一个容易证明的等式或不等式。

例如,可以根据微分中值定理,将原不等式转化为一个关于某个变量的函数,然后对该函数求导,证明其单调性,从而证明不等式。

需要注意的是,在证明导数数列型不等式时,需要充分理解导数的性质和运算规则,并能够灵活运用。

同时,还需要注重证明过程中的严谨性和准确性,避免出现错误。

证明数列不等式的三种策略分析

证明数列不等式的三种策略分析

㊀㊀㊀解题技巧与方法155㊀㊀证明数列不等式的三种策略分析证明数列不等式的三种策略分析Һ董元君㊀(甘肃省镇原县第二中学,甘肃㊀庆阳㊀744500)㊀㊀ʌ摘要ɔ数列不等式的证明是高考中的一个难点,因解题的方法灵活㊁技巧性强,很多考生望而生畏.文章总结了三种经典的证明策略,策略一是弱化放缩,构造递推不等式;策略二是分奇偶项讨论,利用相邻两项之和放缩;策略三是根据递推结构,构造函数,再用归纳法,以期为教师提供一些数列教学上的参考.ʌ关键词ɔ数列不等式;放缩;归纳法;证明策略证明数列不等式,主要的策略就是放缩法和归纳法.归纳法好理解,也具有极强的操作性,但放缩法却灵活多样,没有定法.下文结合具体实例,谈谈在证明数列不等式中如何恰当地使用放缩法.一㊁策略一:弱化放缩,构造递推不等式例1㊀设数列{an}满足a1ȡ3,an+1=a2n-nan+1(nȡ2,nɪN+),求证:11+a1+11+a2+ +11+an<12.分析㊀由已知递推关系an+1=a2n-nan+1求数列{an}的通项公式并非易事,即使求出了{an}的通项公式,再继续求数列11+an{}的前n项和,最后证明不等式也很困难,因此试一试不等变形:a1ȡ3,a2=a21-a1+1=a1(a1-1)+1ȡ3ˑ2+1=7,a3=a22-2a2+1=a2(a2-2)+1ȡ7ˑ5+1=36, .由于{an}增长速度很快,因此11+an{}下降速度很快.改成 弱 一些的结果,目的是使最后求11+a1+11+a2+ +11+an的不等变形更容易些.猜想一个 弱 化结论:akȡk+2(kɪN+).证明㊀先证明 akȡk+2对一切kɪN+均成立 .(ⅰ)当k=1时,a1ȡ3=1+2,故k=1时命题成立.(ⅱ)设akȡk+2,则有ak+1=a2k-kak+1=akak-k()+1ȡ(k+2)[(k+2)-k]+1=2k+5>(k+1)+2.这表明akȡk+2对一切kɪN+均成立.则有ak+1=a2k-kak+1=ak(ak-k)+1ȡak[(k+2)-k]+1=2ak+1.而当kȡ2,kɪN+时,有11+akɤ12(1+ak-1)ɤ122(1+ak-2)ɤ ɤ12k-1(1+a1)ɤ12k+1,所以11+a1+11+a2+11+a3+ +11+anɤ11+a1+123+124+ +12n+1æèçöø÷ɤ11+3+1231-121-12æèçöø÷n-1éëêêùûúú<12.问题得证.点评㊀①一个很弱的不等变形 akȡk+2 ,使求和后的式子拉近了与待证不等式右端12的关系,其中很重要的因素是由 akȡk+2 推出的不等式:11+akɤ12(1+ak-1)ɤ122(1+ak-2)ɤ ɤ12k-1(1+a1)ɤ㊀㊀解题技巧与方法㊀㊀156㊀12k+1(2ɤkɤn).由一个不等式引发了递推不等式是解题的亮点.读者对递推求和消去化简比较熟悉,构造递推不等式也应引起重视.②也许读者会有个疑问:怎么就猜出了 弱 化不等式akȡk+2呢?原因是ak=a2k-1-(k-1)ak-1+1在 akȡk+2 的帮助下能得出递推不等式akȡ2ak-1+1(kȡ2).③实际上,11+a1+11+a2+ +11+an<12在nɪN+下都成立,不必要求nȡ2.二㊁策略二:分奇偶项讨论,利用相邻两项之和放缩例2㊀已知数列{an}满足a1=1,an=2an-1+2(-1)n-1(nȡ2),求证:1a4+1a5+1a6+ +1an<78(nȡ4,nɪN+).证明㊀先利用待定系数法求数列{an}的通项公式.设an=2an-1+2(-1)n-1可写成an+A(-1)n=2[an-1+A(-1)n-1],数列{an+A(-1)n}是以2为公比的等比数列,且由2A(-1)n-1-A(-1)n=2(-1)n-1,得A=23.所以an+23(-1)n=a1-23æèçöø÷㊃2n-1=13㊃2n-1,即an=13㊃2n-1-23(-1)n(nȡ2).验证后知n=1时也成立,故数列{an}的通项公式为an=13㊃2n-1-23(-1)n,因此a4=2.当kȡ6,k为偶数时,1ak-1+1ak=32k-2-2(-1)k-1+32k-1-2(-1)k=32k-2+2+32k-1-2=3(2k-1+2k-2)22k-3+2k-1-4<3(2k-1+2k-2)22k-3=312k-2+12k-1æèçöø÷.所以当n为偶数(nȡ6)时,1a4+1a5+1a6æèçöø÷+1a7+1a8æèçöø÷+ +1an-1+1anæèçöø÷<12+3124+125æèçöø÷+3126+127æèçöø÷+ +312n-2+12n-1æèçöø÷=12+3124+125+126+127+ +12n-2+12n-1æèçöø÷=12+3㊃1241-121-12n-4æèçöø÷<12+38=78.又当n=4时,1a4=12<78,所以对一切nȡ4,当n为偶数时,1a4+1a5+1a6+ +1an<78.当n为奇数(nȡ5)时,1a4+1a5+1a6+ +1an<1a4+1a5+1a6+ +1an+1an+1.由于n+1为偶数,故由前面已证结论知1a4+1a5+1a6+ +1an+1<78,更有1a4+1a5+ +1an<78.综上所述,对任意nȡ4,总有1a4+1a5+1a6+ +1an<78.点评:①利用通项公式an=13㊃2n-1-23(-1)n实现了相邻两项之和的放大:1a5+1a6<3124+125æèçöø÷,1a7+1a8<3126+127æèçöø÷,1a2k+1+1a2k+2<3122k+122k+1æèçöø÷.②对n为奇数㊁偶数(nȡ4)进行讨论时,先解决了n为偶数时不等式成立的问题,再利用偶数成立的结果证出n为奇数时不等式也成立.③单独处理1a4=12可以减少讨论过程.㊀㊀㊀解题技巧与方法157㊀㊀三㊁策略三:根据递推结构,构造函数,再用归纳法例3㊀已知数列{an}满足a1ɪ(0,1),an+1=an-anlnan.(1)证明:an<an+1<1.(2)给定b>a1,证明:对任意kȡa1-ba1lnb(kɪN+),都有ak+1>b.证明㊀(1)设函数f(x)=x-xlnx,xɪ(0,1).易知fᶄ(x)=1-(lnx+1)=-lnx>0,所以f(x)在(0,1)上单调递增,故f(x)<f(1)=1.又因为-xlnx>0,所以f(x)>x.这表明对任意xɪ(0,1),总有0<x<f(x)<1.下证an<an+1<1.(ⅰ)当n=1时,因为0<a1<1,且0<a1<f(a1)<1,即0<a1<a2<1,所以n=1时命题成立.(ⅱ)设当n=k(kɪN+)时,0<ak<ak+1<1,则有0<ak+1<f(ak+1)<1,即0<ak+1<ak+2<1,所以n=k+1时命题也成立.由(ⅰ)(ⅱ)可知,对一切nɪN+,总有0<an<an+1<1.(2)对于给定的b>a1,kȡa1-ba1lnb,kɪN+,如果0<a1<bɤak<1,则利用 0<an<an+1<1 ,知bɤak<ak+1,即ak+1>b,如果0<a1ɤak<b<1,则仍利用 0<an<an+1<1 ,知0<a1<a2< <ak<b<1,所以a1lna1<a1lnba2lna2<a1lna2<a1lnba3lna3<a1lna3<a1lnb aklnak<a1lnak<a1lnb.因此a1lna1+a2lna2+ +aklnak<ka1lnb.(1)又注意到ak+1=ak-aklnak=(ak-1-ak-1lnak-1)-aklnak=(ak-2-ak-2lnak-2)-ak-1lnak-1-aklnak=a1-(a1lna1+a2lna2+ +aklnak),(2)故由(1)(2)两式得ak+1>a1-ka1lnb.根据kȡa1-ba1lnb,lnb<0,b>a1,可知ak+1>a1+(b-a1)=b.点评㊀①构造函数f(x)=x-xlnx,xɪ(0,1)是受题干条件an+1=an-anlnan的启发.利用函数f(x)的单调递增证出了0<x<f(x)<1,这个结果可称为0<an<an+1<1的 背景函数不等式 .②利用第(1)问所得的结论推出不等式aklnak<a1lnb后,借助 中介值 Sk=a1lna1+a2lna2+ +aklnak,实现了ak+1>b.③讨论ak时,分0<a1<bɤak<1和0<a1ɤak<b<1两种情况十分必要.结㊀语有些中学生一见到数列题就先套用公式,这是不正确的,只有在最简单的等差数列㊁等比数列中才有公式,如通项公式㊁前n项和公式㊁中项公式等.即便是最简单的等差数列㊁等比数列问题,也要充分利用题目条件对具体问题进行具体分析,而不是用公式一套了之.数列的本质特征是顺序性㊁确定性㊁递推性.研究给定数列的位置标n与数列性质的关系才是数列问题的重点.数列不等式的证明,方法灵活多变,技巧性强,只有真正理解了数列,熟悉放缩法的常见策略,才能灵活应对.ʌ参考文献ɔ[1]许国会,王涵,匡佳佳.浅谈不等式证明中常用的放缩技巧[J].数学学习与研究,2018(11):116.[2]江士彦. 缩放法 在数列不等式证明中的应用[J].数学学习与研究,2015(23):117-118.[3]曹莹,李鸿昌.一道数列最值问题的解法探究[J].高中数学教与学,2019(19):15-16.[4]李鸿昌,徐章韬.关于对数平均的一个不等式的推广[J].数学通报,2023,62(8):50-52.。

不等式的常见证明方法

不等式的常见证明方法

不等式常见的三种证明方法渠县中学 刘业毅一用基本不等式证明设c b a ,,都是正数。

求证:.c b a cab b ac a bc ++≥++ 证明:.22c bac a bc b ac a bc =•≥+ .22b cab a bc c ab a bc =•≥+ .22a cab b ac c ab b ac =•≥+ ).(2)(2c b a cab b ac a bc ++≥++ .c b a cab b ac a bc ++≥++ 点评:可用综合法分析乘积形式运用不等式可以转化为所求。

思维训练:设c b a ,,都是正数。

求证:.222c b a c b a a c b ++≥++ 二 放缩法证明不等式已知,对于任意的n 为正整数,求证: 1+221+321+ +n 21<47 分析:通过变形将数列{n 21}放缩为可求数列。

解: n 21=n n •1<)1(1-n n =11-n —n1(n ≥2) ∴1+221+321+ +n 21<1+221+231⨯+341⨯+ +)1(1-n n =1+41+(21—31+31—41+ +11-n —n1) =45+21—n1 =47—n 1 点评:放缩为可求和数列或公式是高考重要思想方法。

思维训练:设c b a ,,都是正数,a+b>c,求证:a a +1+b b +1>cc +1三 构造函数法证明 证明不等式3ln 3121112ln <+++++<nn n (n 为正整数) 分析:显然要构造一个含n 的不等式,然后用叠加法证明。

我们构造一个函数,1)(',ln 1)(2xx x f x x x x f -=+-=可得这个函数在x=1时取得最小值0.及对x>0有不等式x x 11ln -≥,如果令x=k k 1+,则有111ln +>+k k k ,如果令x=1+k k ,则kk k ->+11ln ,即kk k k 1ln )1ln(11<-+<+,然后叠加不等式即可。

例谈证明数列不等式问题的三种途径

例谈证明数列不等式问题的三种途径
数列不等式问题,常需采用数学归纳法和构造函数
法来进行求证,但这两种方法较为繁琐,且运算量
较大.
(作者单位:山东省聊城市东阿县实验高中)
Copyright©博看网. All Rights Reserved.
∴不等式1 +
n
2
3
1
通过观察发现,该数列的通项公式为
,很难
n
1
1 <
求 得 数 列 的 和 ,于 是 先 将
进行放缩:
n
n
∴1+
)
n - n - 1 ,然后再进行求和,这样数列中的部分
放缩方式.
= 2 k + 1,
= 2 n,
(
Hale Waihona Puke 项便会相互抵消,化简所得的结果,即可证明不等式
c1 + c 2 + ⋯ + c k + c k + 1 < 2 k +
又 ∵∠CEF = 90° ,
即 EF ⊥ CE ,
∴PB ⊥ CE ,PB ⊥ 平面 PAC ,
∴ 正三棱锥 P - ABC 的三条侧棱两两互相垂直,
把三棱锥补形为正方体,则正方体的外接球即为
半径为 6 ,
2
公式进行求解.
三棱锥的外接球,
其直径为 D = PA2 + PB2 + PC 2 = 6 ,
∴ 三棱锥 P - ABC 为正三
棱锥,
∴顶点 P 在底面的射影
O1 为底面三角形的中心,连接
图8
BO1 交 AC 于 G ,
∴AC ⊥ BG ,
又 PO1 ⊥ AC ,PO1 ⋂ BG = O1 ,
∴AC ⊥ 平面 PBG ,∴PB ⊥ AC ,

关于和式的数列不等式证明方法

关于和式的数列不等式证明方法

关于“和式”的数列不等式证明方法方法:先求和,再放缩例1、设数列{}n a 满足10a =且,na n ≠1121n n n a a a ++=+ ,*nN ∈,(Ⅰ)求{}n a 的通项公式;(Ⅱ)设1, 1.nn n k n k b b S ===<∑记S 证明:【解析】:(Ⅰ)由1111.11n n a a +-=--得11n a ⎧⎫⎨⎬-⎩⎭为等差数列,前项为1111,1,1(1)111n d n n a a ===+-⨯=--于是,111,1n na a n n∴-==-(Ⅱ)n b ====-1nn kk S b ===+++∑ 11=-< 练习:数列{}n a 为等差数列,n a 为正整数,其前n 项和为n S ,数列{}n b 为等比数列,且113,1a b ==,数列{}n a b 是公比为64的等比数列,2264b S =.(1)求,n n a b ; (2)求证1211134n S S S +++< . 解:(1)设{}n a 的公差为d ,{}n b 的公比为q ,则d 为正整数,3(1)n a n d =+-,1n n b q -=依题意有1363(1)22642(6)64n n nd a d n d a b q q b q S b d q +++-⎧====⎪⎨⎪=+=⎩①由(6)64d q +=知q 为正有理数,故d 为6的因子1,2,3,6之一, 解①得2,8d q ==故132(1)21,8n n n a n n b -=+-=+=(2)35(21)(2)n S n n n =++++=+ ∴121111111132435(2)n S S S n n +++=++++⨯⨯⨯+ 11111111(1)2324352n n =-+-+-++-+ 11113(1)22124n n =+--<++方法:先放缩,再求和 例1、(放缩之后裂项求和)(辽宁卷21).在数列||n a ,||n b 中,a 1=2,b 1=4,且1n n n a b a +,,成等差数列,11n n n b a b ++,,成等比数列(n ∈*N )(Ⅰ)求a 2,a 3,a 4及b 2,b 3,b 4,由此猜测||n a ,||n b 的通项公式,并证明你的结论; (Ⅱ)证明:1122111512n n a b a b a b +++<+++…. 本小题主要考查等差数列,等比数列,数学归纳法,不等式等基础知识,考查综合运用数学知识进行归纳、总结、推理、论证等能力.满分12分. 解:(Ⅰ)由条件得21112n n n n n n b a a a b b +++=+=, 由此可得2233446912162025a b a b a b ======,,,,,. ···················································· 2分猜测2(1)(1)n n a n n b n =+=+,. ······················································································· 4分 用数学归纳法证明:①当n =1时,由上可得结论成立. ②假设当n =k 时,结论成立,即2(1)(1)k k a k k b k =+=+,,那么当n =k +1时,22221122(1)(1)(1)(2)(2)kk k k k ka ab a k k k k k b k b +++=-=+-+=++==+,.所以当n =k +1时,结论也成立.由①②,可知2(1)(1)n n a n n b n =++,对一切正整数都成立. ·········································· 7分 (Ⅱ)11115612a b =<+.n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n +=++>+. ·············································· 9分 故112211111111622334(1)n n a b a b a b n n ⎛⎫+++<++++ ⎪+++⨯⨯+⎝⎭…… 111111116223341n n ⎛⎫=+-+-++- ⎪+⎝⎭ (111111562216412)n ⎛⎫=+-<+= ⎪+⎝⎭ 综上,原不等式成立. ··································································································· 12分(例2、(放缩之后等比求和)(06福建)已知数列{}n a 满足*111,21().n n a a a n N +==+∈(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)证明:*122311...()232n n a a a n nn N a a a +-<+++<∈(III ).设(1)n n n b a a =+,数列{}n b 的前n 项和为n s ,令2nn nT s =,(i )求证:123n T T T T n +++< ;(ii )求证:12332n T T T T +++< ;本小题主要考查数列、不等式等基本知识,考查化归的数学思想方法,考查综合解题能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列不等式证明的几种方法
一、巧妙构造,利用数列的单调性
例1. 对任意自然数n,求证:。

证明:构造数列。

所以,即为单调递增数列。

所以,即。

点评:某些问题所给条件隐含数列因素或证明与自然数有关的不等式问题,均可构造数列,通过数列的单调性解决。

二、放缩自然,顺理成章
例2. 已知函数,数列的首项,以后每项按如下方
式取定:曲线处的切线与经过(0,0)和两点的直线平行。

求证:当时:
(1);
(2)。

证明:(1)因为,所以曲线处的切线斜率为。

又因为过点(0,0)和两点的斜率为,所以结论成立。

(2)因为函数

所以,即,因此

又因为。

令,且。

所以
因此,
所以
三、导数引入
例3. 求证:
证明:令,且当时,,所以。

要证明原不等式,只须证。

设,
所以。

令,
所以。

设,
所以上为增函数
所以,即
所以
同理可证
所以。

对上式中的n分别取1,2,3,…,
,得。

四、裂项求和
例4. 设是数列的前n项和,且
(1)求数列的首项,及通项;
(2)设,证明。

解:(1)首项(过程略)。

(2)证明:将,
得,

点评:本题通过对的变形,利用裂项求和法化为“连续相差”形式,从而达到证题目的
五、独辟蹊径,灵活变通
独辟蹊径指处事有独创的新方法,对问题不局限于一种思路和方法,而是善于灵活变通,独自开辟新思路、新方法。

例5. 已知函数。

设数列,数列满足
(1)求证:;
(2)求证:。

证明:(1)证法1:由
令,则只须证;易知,只须证。

由分析法:。

因为,,
所以,得证。

证法2:由于的两个不动点为。

又,所以
所以
所以

由上可求得,
因此只需证,
即证:

(2)由(1)知,
所以
故对任意。

点评:本题(1)中法1通过构造新数列,将复杂的问题转化为证数列为递减数列,进而用分析法展示出证明思路的魅力;法2则是独辟蹊径利用“不动点”,求出通项公式,借助二项式定理放缩给出证明。

相关文档
最新文档