自动控制原理第三次实验报告-线性系统的频率响应分析

合集下载

《自动控制原理》实验3.线性系统的频域分析

《自动控制原理》实验3.线性系统的频域分析

《自动控制原理》实验3.线性系统的频域分析实验三线性系统的频域分析一、实验目的1.掌握用MATLAB语句绘制各种频域曲线。

2.掌握控制系统的频域分析方法。

二、基础知识及MATLAB函数频域分析法是应用频域特性研究控制系统的一种经典方法。

它是通过研究系统对正弦信号下的稳态和动态响应特性来分析系统的。

采用这种方法可直观的表达出系统的频率特性,分析方法比较简单,物理概念明确。

1.频率曲线主要包括三种:Nyquist图、Bode图和Nichols图。

1)Nyquist图的绘制与分析MATLAB中绘制系统Nyquist图的函数调用格式为:nyquist(num,den) 频率响应w的范围由软件自动设定 nyquist(num,den,w) 频率响应w的范围由人工设定[Re,Im]= nyquist(num,den) 返回奈氏曲线的实部和虚部向量,不作图2s?6例4-1:已知系统的开环传递函数为G(s)?3,试绘制Nyquists?2s2?5s?2图,并判断系统的稳定性。

num=[2 6]; den=[1 2 5 2]; nyquist(num,den)极点的显示结果及绘制的Nyquist图如图4-1所示。

由于系统的开环右根数P=0,系统的Nyquist曲线没有逆时针包围(-1,j0)点,所以闭环系统稳定。

p =-0.7666 + 1.9227i -0.7666 - 1.9227i -0.4668图4-1 开环极点的显示结果及Nyquist图若上例要求绘制??(10?2,103)间的Nyquist图,则对应的MATLAB语句为:num=[2 6]; den=[1 2 5 2];w=logspace(-1,1,100); 即在10-1和101之间,产生100个等距离的点nyquist(num,den,w)2)Bode图的绘制与分析系统的Bode图又称为系统频率特性的对数坐标图。

Bode图有两张图,分别绘制开环频率特性的幅值和相位与角频率?的关系曲线,称为对数幅频特性曲线和对数相频特性曲线。

自动控制原理实验-控制系统频率特性的测试

自动控制原理实验-控制系统频率特性的测试
图十二
(13)当ω=10.1rad/s时,2Xm= 2 2Ym=2 0.03461 = -29.21 2y0=2 0.02182ψ= 180- = 140.92°绕行方向:顺时针如下图
图十三
(14)当ω=10.2rad/s时,2Xm= 2 2Ym=2 0.03394 = -29.39 2y0=2 0.02141ψ= 180- =140.89°绕行方向:顺时针如下图
图二
(3)当ω=0.98rad/s时,2Xm= 2 2Ym=2 5.178 = 14.28 2y0=2 5.067ψ= = 78.11°绕行方向:逆时针如下图
图三
(4)当ω=0.99rad/s时,2Xm= 2 2Ym=2 4.428 = 12.92 2y0=2 4.226ψ= = 72.627°绕行方向:逆时针如下图
以下是在不同频率下李沙育图及幅频特性和相频特性的分析情况
(1)当ω=0.5rad/s时,2Xm= 2 2Ym=2 5.515Байду номын сангаас= 14.83 2y0=2 3.3ψ= = 36.75°绕行方向:逆时针如下图
图一
(2)当ω=0.7rad/s时,2Xm= 2 2Ym=2 5.727 = 15.16 2y0=2 4.879ψ= = 58.42°绕行方向:逆时针如下图
答:频率特性可以用于稳定系统也可以用于不稳定系统。频率特性也是系统数学模型的一种,可用多种形式的曲线表示,因此系统分析和控制器设计可以应用图解法进行。频率特性的物理意义明确,不仅适用于线性定常系统,还可推广至某些非线性控制系统。
5、实验总结
(1)通过本次实验认识了线性定常系统的频率特性,掌握了用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定了系统组成环节的参数。

自控原理实验报告

自控原理实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。

2. 掌握典型环节的数学模型及其在控制系统中的应用。

3. 熟悉控制系统的时间响应和频率响应分析方法。

4. 培养实验操作技能和数据处理能力。

二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。

本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。

2. 控制系统:开环控制系统和闭环控制系统。

3. 时间响应:阶跃响应、斜坡响应、正弦响应等。

4. 频率响应:幅频特性、相频特性等。

三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用示波器观察并记录各个环节的阶跃响应曲线。

- 分析并比较各个环节的阶跃响应曲线,得出结论。

2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。

- 分析并比较各个环节的频率响应特性,得出结论。

3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。

- 使用示波器观察并记录二阶系统的阶跃响应曲线。

- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。

4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。

- 使用示波器观察并记录系统的稳态响应曲线。

- 计算并分析系统的稳态误差。

五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。

- 积分环节:K=1,阶跃响应曲线如图2所示。

自动控制原理课件:线性系统的频域分析

自动控制原理课件:线性系统的频域分析
曲线顺时针方向移动一周时,在 平面上的映射曲线按逆时针方向
包围坐标原点 − 周。
m
F (s)
K1 ( s z j )
j 1
n

i 1
( s pi )
24
• 02
基本概念
m
1 G ( s) H ( s) F ( s)
K1 ( s z j )
j 1
在 平面上的映射曲线 F 1 G ( j ) H ( j )将按逆时针方向
围绕坐标原点旋转 = − 周。
如果在s平面上,s沿着奈奎斯特回线顺时针方向移动一周时,
在 平面上的映射曲线围绕坐标原点按逆时针方向旋转 =
周,则系统为稳定的。
26
根据
( 1, j 0)
L( ) 20 lg K 20 lg 1 12 2 20 lg 1 22 2
( ) arctg 1 arctg 2
τ2
20dB / dec 1
2

L3 ( )
L2 ( )
40dB / dec
( )
0
L( )

90
A( ) 1, ( )
L ( ) 20 lg A( ) 0
L( )
jQ( )
L( ) 0
0
( )
1
0
1
P( )
1

0


30

60
16
5.3
系统开环频率特性图
设开环系统由n个典型环节串联组成
G(s ) G 1(s )G 2(s ) G n(s )
这意味着 的映射曲线 F 围绕原点运动的情况,相当于

系统频率测试实验报告(3篇)

系统频率测试实验报告(3篇)

第1篇一、实验目的1. 了解系统频率特性的基本概念和测试方法。

2. 掌握使用示波器、频谱分析仪等设备进行系统频率测试的操作技巧。

3. 分析测试结果,确定系统的主要频率成分和频率响应特性。

二、实验原理系统频率特性是指系统对正弦输入信号的响应,通常用幅频特性(A(f))和相频特性(φ(f))来描述。

幅频特性表示系统输出信号幅度与输入信号幅度之比,相频特性表示系统输出信号相位与输入信号相位之差。

频率测试实验通常包括以下步骤:1. 使用正弦信号发生器产生正弦输入信号;2. 将输入信号输入被测系统,并测量输出信号;3. 使用示波器或频谱分析仪观察和分析输出信号的频率特性。

三、实验设备1. 正弦信号发生器2. 示波器3. 频谱分析仪4. 被测系统(如放大器、滤波器等)5. 连接线四、实验步骤1. 准备实验设备,将正弦信号发生器输出端与被测系统输入端相连;2. 打开正弦信号发生器,设置合适的频率和幅度;3. 使用示波器观察输入信号和输出信号的波形,确保信号正常传输;4. 使用频谱分析仪分析输出信号的频率特性,记录幅频特性和相频特性;5. 改变输入信号的频率,重复步骤4,得到一系列频率特性曲线;6. 分析频率特性曲线,确定系统的主要频率成分和频率响应特性。

五、实验结果与分析1. 幅频特性曲线:观察幅频特性曲线,可以发现系统存在一定频率范围内的增益峰值和谷值。

这些峰值和谷值可能对应系统中的谐振频率或截止频率。

通过分析峰值和谷值的位置,可以了解系统的带宽和选择性。

2. 相频特性曲线:观察相频特性曲线,可以发现系统在不同频率下存在相位滞后或超前。

相位滞后表示系统对输入信号的相位延迟,相位超前表示系统对输入信号的相位提前。

通过分析相位特性,可以了解系统的相位稳定性。

六、实验总结1. 通过本次实验,我们掌握了系统频率特性的基本概念和测试方法。

2. 使用示波器和频谱分析仪等设备,我们成功地分析了被测系统的频率特性。

3. 通过分析频率特性曲线,我们了解了系统的主要频率成分和频率响应特性。

自动控制原理第三次实验报告-线性系统频率响应分析离散系统稳定性分析

自动控制原理第三次实验报告-线性系统频率响应分析离散系统稳定性分析
2.线性系统的频率特性
3.频率特性的表达式
(1) 对数频率特性:
又称波特图,它包括对数幅频和对数相频两条曲线,是频率响应法中广泛使用的一组曲线。这两组曲线连同它们的坐标组成了对数坐标图。
对数频率特性图的优点:
①它把各串联环节幅值的乘除化为加减运算,简化了开环频率特性的计算与作图。
②利用渐近直线来绘制近似的对数幅频特性曲线,而且对数相频特性曲线具有奇对称于转折频率点的性质,这些可使作图大为简化。
③通过对数的表达式,可以在一张图上既能绘制出频率特性的中、高频率特性,又能清晰地画出其低频特性。
(2) 极坐标图 (或称为奈奎斯特图)
(3) 对数幅相图 (或称为尼柯尔斯图)
本次实验中,采用对数频率特性图来进行频域响应的分析研究。实验中提供了两种实验
测试方法:直接测量和间接测量。
直接频率特性的测量
用来直接测量对象的输出频率特性,适用于时域响应曲线收敛的对象(如:惯性环节)。
TD-ACS 的接线:将信号源单元的“ST”插针分别与“S”插针和“+5V”插针断开,运放的锁零控制端“ST”此时接至控制计算机单元的“DOUT0”插针处,锁零端受“DOUT0”来控制。将数模转换单元的“/CS”接至控制计算机的“/IOY1”,数模转换单元的“OUT1”,接至图 3.1-5 中的信号输入端.
(2) 测量过程中,可能会由于所测信号幅值衰减太大,信号很难读出,须放大,若放大的比例系数不合适,会导致测量误差较大。所以要适当地调整误差或反馈比例系数。
(3)用波特图可以看出在不同频率下,系统增益的大小及相位,也可以看出大小及相位随频率变化的趋势。
(4)频率响应法是应用频率特性研究自动控制系统的一种经典方法,它弥补了时域分析法的某些不足,且具有特点:应用奈奎斯特稳定判据,可以根据系统的开环频率特性研究闭环系统的稳定性,不必解出特征方程的根。频率特性与系统的参数和结构密切相关,可以用研究频率特性的方法,把系统参数和结构的变化与暂态性能指标联系起来。频率特性具有明确的物理意义,许多元、部件的特性均可用实验方法来确定,这对于难以从分析其物理规律来列写动态方程的元、部件和系统有很大的实际意义。频率响应法不仅适用于线性定常系统的分析研究,也可推广到某些非线性控制系统。

中南大学自动控制原理实验报告

中南大学自动控制原理实验报告
(3)当0 < K < 3;即R >166 KΩ时,两条根轨迹进入S左半平面,系统稳定。
上述分析表明,根轨迹与系统性能之间有密切的联系。利用根轨迹不仅能够分析闭环系统的动态性能以及参数变化对系统动态性能的影响,而且还可以根据对系统暂态特性的要求确定可变参数和调整开环零、极点位臵以及改变它们的个数。这就是说,根轨迹法可用来解决线性系统的分析和综合问题。由于它是一种图解求根的方法,比较直观,避免了求解高阶系统特征根的麻烦,所以,根轨迹在工程实践中获得了广泛的应用。
注意:在做实验前一定要进行对象整定,否则将会导致理论值和实际测量值
相差较大。
首先调节电阻使系统处于临界稳定的状态
当R>160时系统处于过阻尼状态
当R>160时,由
可知道该系统的自然频率和阻尼比均与R值大小有关,当R处于160左右处于临界阻尼状态,则R>160时阻尼比增大,系统则应处于过阻尼状态,输出波形如上图所示。
系统的开环增益为K=500KΩ/R,开环传递函数为:
绘制根轨迹
(1)由开环传递函数分母多项式S(S+1)(0.5S+1)中最高阶次n=3,故根轨迹分支数为3。开环有三个极点:p1=0,p2=-1,p3=-2。
(2)实轴上的根轨迹:
①起始于0、-1、-2,其中-2终止于无穷远处。
②起始于0和-1的两条根轨迹在实轴上相遇后分离,分离点为
信息科学与工程学院本科生实验报告
实验名称
自动控制原理实验
预定时间
实验时间
姓名学号
授课教师
实验台号
专业班级
实验一1.1典型环节的时域分析
实验目的:
1.熟悉并掌握TD-ACC+(或TD-ACS)设备的使用方法及各典型环节模拟电路的构成方法。

自动控制原理实验报告

自动控制原理实验报告

3.1 线性系统的时域分析3.1.1 典型环节的模拟研究一. 实验目的1. 了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式2. 观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响二.实验内容及步骤观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响.。

改变被测环节的各项电路参数,画出模拟电路图,阶跃响应曲线,观测结果,填入实验报告。

1).观察比例环节的阶跃响应曲线典型比例环节模拟电路如图3-1-1所示。

图3-1-1 典型比例环节模拟电路传递函数:01(S)(S)(S)R R K KU U G i O ===;单位阶跃响应:K )t (U = 实验步骤:注:‘S ST ’用短路套短接! (1)将函数发生器(B5)所产生的周期性矩形波信号(OUT ),作为系统的信号输入(Ui );该信号为零输出时,将自动对模拟电路锁零。

(2)构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下:(a )安置短路套(b )测孔联线(3打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮(0→+4V 阶跃),观测A5B 输出端(Uo )的实际响应曲线。

示波器的截图详见虚拟示波器的使用。

实验数据纪录:2).观察惯性环节的阶跃响应曲线典型惯性环节模拟电路如图3-1-2所示。

图3-1-2 典型惯性环节模拟电路传递函数:C R T R R K TSKU U G i O 1011(S)(S)(S)==+==单位阶跃响应:)1()(0Tte K t U --=实验步骤:注:‘S ST ’用短路套短接! (1)将函数发生器(B5)所产生的周期性矩形波信号(OUT ),作为系统的信号输入(Ui ); (1)该信号为零输出时,将自动对模拟电路锁零。

(2)构造模拟电路:按图3-1-4安置短路套及测孔联线,表如下: (a(3)运行、观察、记录:打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮时(0→+4V 阶跃),观测A5B输出端(Uo)响应曲线,等待完整波形出来后,移动虚拟示波器横游标到输出稳态值×0.632处,得到与输出曲线的交点,再移动虚拟示波器两根纵游标,从阶跃开始到输出曲线的交点,量得惯性环节模拟电路时间常数T。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TD-ACS 的接线:将信号源单元的“ST”插针分别与“S”插针和“+5V”插针断开,运放的锁零控制端“ST”此时接至控制计算机单元的“DOUT0”插针处,锁零端受“DOUT0”来控制。将数模转换单元的“/CS”接至控制计算机的“/IOY1”,数模转换单元的“OUT1”,接至图 3.1-5 中的信号输入端.
1. 实验对象的结构框图
2. 模拟电路图
(二)实验步骤
此次实验,采用直接测量方法测量对象的闭环频率特性及间接测量方法测量对象的频率特性。
1. 实验接线:按模拟电路图 3.1-5 接线,
TD-ACC+的接线:将信号源单元的“ST”插针分别与“S”插针和“+5V”插针断开,运放的锁零控制端“ST”此时接至示波器单元的“SL”插针处,锁零端受“SL”来控制。将示波器单元的“SIN”接至图 3.1-5 中的信号输入端,
六、数据处理
1.直接测量方法 (测对象的闭环频率特性)
测各参数下时域波形(部分)
测得波特图如下:
测得对象的闭环极坐标图:
2.间接测量方法:(测对象的开环频率特性)
测各参数下时域波形(部分)
测得波特图如下:
测得对象的闭环极坐标图:
七、分析讨论
(1) 测量过程中要去除运放本身的反相的作用,即保持两路测量点的相位关系与运放无关,所以在测量过程中可能要适当加入反相器,滤除由运放所导致的相位问题。
③ 理论依据
④ 测量方式:实验中采用间接方式,只须用两路表笔CH1和CH2来测量图 3.1-1 中的反馈测量点和误差测量点,通过移动游标,确定两路信号和输入信号之间的相位和幅值关系,即可间接得出积分环节的波特图。
(2) 直接频率特性测量方法
只要环节的时域响应曲线收敛就不用构成闭环系统而采用直接测量法直接测量输入、输出信号的幅值和相位关系,就可得出环节的频率特性。
④ 测量方式:实验中选择直接测量方式,用 CH1 路表笔测输出测量端,通过移动游标,测得输出与信号源的幅值和相位关系,直接得出一阶惯性环节的频率特性。
三、仪器设备
PC 机一台,TD-ACC+(或 TD-ACS)教学实验系统一套。
四、线路示图( 见模拟电路图 )
五、内容步骤
(一).实验内容
本次实验利用教学实验系统提供的频率特性测试虚拟仪器进行测试,画出对象波特图和极坐标图。
③通过对数的表达式,可以在一张图上既能绘制出频率特性的中、高频率特性,又能清晰地画出其低频特性。
(2) 极坐标图 (或称为奈奎斯特图)
(3) 对数幅相图 (或称为尼柯尔斯图)
本次实验中,采用对数频率特性图来进行频域响应的分析研究。实验中提供了两种实验
测试方法:直接测量和间接测量。
直接频率特性的测量
用来直接测量对象的输出频率特性,适用于时域响应曲线收敛的对象(如:惯性环节)。
(3) 确认设臵的各项参数后,点击 按钮,发送一组参数,待测试完毕,显示时域波形,此时需要用户自行移动游标,将两路游标同时放臵在两路信号的相邻的波峰(波谷)处,或零点处,来确定两路信号的相位移。两路信号的幅值系统将自动读出。重复操作(3),直到所有参数测量完毕。
(4) 待所有参数测量完毕后,点击 按钮,弹出波特图窗口,观察所测得的波特图,该图由若干点构成,幅频和相频上同一角频率下两个点对应一组参数下的测量结果。
点击极坐标图按钮 ,可以得到对象的闭环极坐标。
(5) 根据所测图形可适当修改正弦波信号的角频率和幅值重新测量,达到满意的效果。
3. 间接测量方法:(测对象的开环频率特性)
将示波器的“CH1”接至 3#运放的输出端,“CH2”接至 1#运放的输出端。按直接测量的参数将参数设臵好,将测量方式改为“间接”测量。此时相位差是反馈信号和误差信号的相位差,应将两根游标放在反馈和误差信号上。测对象的开环波特图与对象的开环极坐标图。
2.直接测量方法 (测对象的闭环频率特性)
(1) “CH1”路表笔插至图 3.1-5 中的 4#运放的输出端。
(2) 打开集成软件中的频率特性测量界面,弹出时域窗口,点击 按钮,在弹出的窗口中根据需要设臵好几组正弦波信号的角频率和幅值,选择测量方式为“直接”测量,每组参数应选择合适的波形比例系数,具体如下图所示:
信息科学与工程学院本科生实验报告
实验名称
线性系统的频率响应分析
预定时间
实验时间
姓名学号
授课教师
黄挚雄黎群辉
实验台号
专业班级
一、目的要求
1.掌握波特图的绘ห้องสมุดไป่ตู้方法及由波特图来确定系统开环传函。
2.掌握实验方法测量系统的波特图。
二、原理简述
(一).实验原理
1.频率特性
当输入正弦信号时,线性系统的稳态响应具有随频率 ( ω 由0变至 ∞)而变化的特性。频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。因此,制系统对正弦输入信号的响应,可推算出系统在任意周期信号或非周期信号作用下的运动情况。
4.举例说明间接和直接频率特性测量方法的使用。
(1) 间接频率特性测量方法
① 对象为积分环节:1/0.1S
由于积分环节的开环时域响应曲线不收敛,稳态幅值无法测出,我们采用间接测量方法,将其构成闭环,根据闭环时的反馈及误差的相互关系,得出积分环节的频率特性。
② 将积分环节构成单位负反馈,模拟电路构成如图 3.1-1 所示。
该方法在时域曲线窗口将信号源和被测系统的响应曲线显示出来,直接测量对象输出与信号源的相位差及幅值衰减情况,就可得到对象的频率特性。
间接频率特性的测量
用来测量闭环系统的开环特性,因为有些线性系统的开环时域响应曲线发散,幅值不易测量,可将其构成闭环负反馈稳定系统后,通过测量信号源、反馈信号、误差信号的关系,从而推导出对象的开环频率特性。
2.线性系统的频率特性
3.频率特性的表达式
(1) 对数频率特性:
又称波特图,它包括对数幅频和对数相频两条曲线,是频率响应法中广泛使用的一组曲线。这两组曲线连同它们的坐标组成了对数坐标图。
对数频率特性图的优点:
①它把各串联环节幅值的乘除化为加减运算,简化了开环频率特性的计算与作图。
②利用渐近直线来绘制近似的对数幅频特性曲线,而且对数相频特性曲线具有奇对称于转折频率点的性质,这些可使作图大为简化。
相关文档
最新文档