干货 新能源汽车整车控制器(VCUHCU)解决方案
简谈整车控制器 VCU

1.概述整车控制器VCU(Vehicle control unit)作为新能源车中央控制单元,是整个控制系统的核心。
VCU 采集电机及电池状态、加速踏板信号、制动踏板信号及其它执行器传感器控制器信号,根据驾驶员的驾驶意图综合分析并做出相应判定后,监控下层的各部件控制器的动作,它负责汽车的正常行驶、制动能量回馈、整车发动机及动力电池的能量管理、网络管理、故障诊断及处理、车辆状态监控等,从而保证整车在较好的动力性、较高经济性及可靠性状态下正常稳定的工作。
可以说整车控制器性能的优劣直接决定了新能源汽车整车性能的好坏,起到了中流砥柱的作用。
2.发展过程整车控制器可谓是起源于传统汽车,落地于新能源汽车。
传统汽车包含发动机控制器、变速箱控制器、车身控制器、底盘控制器等,各控制器是由不同的Tier1 提供,为解决各自零部件的功能及性能指标而定制设计。
比如EMS 是解决发动机燃油经济性、排放法规及热处理等。
变速箱是解决操作杆与齿轮动作的相互协调及切换。
各自独立控制车辆某一部分,无法总体考虑整车性能与功能需求。
因此部分OEM 为了实现整车定制功能、个性化设计、摆脱国外Tier1高昂的开发费及开发周期,有了整车控制器最初的概念设想。
由于国内电控技术起步晚,OEM对国外Tier1的控制力不足,直到新能汽车快速发展,混合动力迫切需要解决燃油动力系统与电池动力系统之间的有效协调,纯电动车需要解决整车动力管理,因此明确了整车控制器的概念及功能定义,奠定了VCU 获得的高速发展的基础。
传统汽车E/E 架构传统汽车E/E 架构行业分析新能源起步阶段,大概在2012-2015年诞生了第一代VCU产品。
技术来源于传统汽车电控ECU,以发动机控制器及车身控制器为主要技术来源。
行业典型产品有德尔福的HCU-2、联电的VCU、大陆的H300及普华第一代VCU-1。
VCU-1 是普华软件与国内知名OEM 合作开发,采用主从的硬件解决方案,AUTOSAR3.1.5软件平台,是国内最早自主AUTOSAR 软硬一体化的VCU 解决方案。
分层式拓扑结构整车控制器(VCU)

电动汽车整车控制系统对纯电动汽车而言,电动机驱动和制动能量回收的最大功率都受到电池放电/充电能力的制约。
对混合燃料电池轿车和燃料电池大巴而言,由于其具有两个或两个以上的动力源,增加了系统设计和控制的灵活性,使汽车可以在多种模式下工作适应不同工况下的需求,获得比传统汽车更好的燃料电池性能,降低了有害物的排放,减小对环境的污染和危害,从而达到环保和节能的双重标准。
首先要针对给定的车辆和参数的条件,选择合适的动力系统构型,完成动力系统的参数匹配和优化。
在此基础上,建立整车控制系统来协调汽车工作模式的切换和多个动力源/能量源之间的功率/能量流的在线优化控制。
整车控制系统由整车控制器、通信系统、零部件控制器以及驾驶员操纵系统构成,其主要功能是根据驾驶员的操作和当前的整车和零部件工作状况,在保证安全和动力性的前提下,选择尽可能优化的工作模式和能量分配比例,以达到最佳的燃料经济性和排放指标。
(1)整车控制系统及功能分析1)控制对象:电动汽车驱动系统包括几种不同的能量和储能元件(燃料电池,内燃机或其他热机,动力电池和/或超级电容),在实际工作过程中包括了化学能、电能和机械能之间的转化。
电动汽车动力系统能流图如图5—6所示。
2)整车控制系统结构:电动汽车动力系统的部件都有自己的控制器,为分布式分层控制提供了基础。
分布式分层控制可以实现控制系统的拓扑分离和功能分离。
拓扑分离使得物理结构上各个子系统控制系统分布在不同位置上,从而减少了电磁干扰,功能分离使得各个子部件完成相对独立的功能,从而可以减少子部件的相互影响并提高了容错能力。
电动汽车分层结构控制系统如图5-7所示。
最底层是执行层,由部件控制器和一些执行单元组成,其任务是正确执行中间层发送的指令,这些指令通过CAN总线进行交互,并且有一定的自适应和极限保护功能;中间层是协调层,也就是整车控制器(VMS),它的主要任务一方面根据驾驶员的各种操作和汽车当前的状态解释驾驶员的意图,另一方面根据执行层的当前状态,做出最优的协调控制;最高层是组织层,由驾驶员或者制动驾驶仪来实现车辆控制的闭环。
整车控制器(VCU)策略及开发流程

整车控制器(VCU)策略及开发流程一、VCU的作用与功能在电动汽车中,VCU是核心控制部件,它根据加速踏板位置、档位、制动踏板力等驾驶员的操作意图和蓄电池的荷电状态计算出运行所需要的电机输出转矩等参数,从而协调各个动力部件的运动,保障电动汽车的正常行驶。
此外,可通过行车充电和制动能量的回收等实现较高的能量效率。
在完成能量和动力控制部分控制的同时,VCU还可以与智能化的车身系统一起控制车上的用电设备,以保证驾驶的及时性和安全性。
因此,VCU的设计直接影响着汽车的动力性、经济性、可靠性和其他性能。
1、VCU主要功能1)整车能量分配及优化管理;根据驾驶员的具体操作和实际工况对车辆进行管理、优化及调整,以实现优化能量供给,延长车辆使用寿命,提高车辆运行经济性。
2)故障处理及诊断功能;对出现的异常情况进行诊断、提示和主动修复工作。
3)系统状态仪表显示;4)整车设备管理监控各设备运行状态,及时进行动态调整。
5)系统控制根据既定的操控程序对驾驶员的各项操作进行及时响应,实时与数据库进行比对,对各节点进行动态控制。
二、VCU的结构VCU为纯电动汽车的调度控制中心,负责与车辆其他部件进行通信,协调整车的运行。
VCU系统结构,如下图所示。
其主要包含电源电路、开关量输入/输出模块、模拟量输入模块及CAN通讯模块。
1)电源模块从车载12V蓄电池取电,开关量输入模块接收的信号主要有钥匙信号、挡位信号、制动开关信号等;2)开关量输出信号主要是控制继电器,其在不同整车系统中意义略有不同,一般情况下控制如水泵继电器及PTC继电器等;3)模拟量输入模块采集加速踏板和制动踏板开度信号及蓄电池电压信号等;4)CAN模块负责与整车其他设备通信,主要设备有电机控制器(MCU)、电池管理系统(BMS)及充电机等。
三、整车通信网络管理整车系统通过CAN通信网络将各个子控制系统连接在一起。
整车系统通讯网络结构如下图所示。
VCU起到协调管理整个通信网络的功能,是各个子设备的通信服务端。
电动汽车整车控制器(VCU)技术及开发流程深度剖析

电动汽车整车控制器(VCU)技术及开发流程深度剖析整车控制器(VCU),电动汽车的大脑,相当于电脑的Windows,手机的Andrio。
作为电动汽车上全部电气的运行平台,它的性能优劣,直接影响其他电气性能的发挥,是整车性能好坏的决定性因素之一。
1. 组成1.1结构组成VCU,结构上,由金属壳体和一组PCB线路板组成。
1.2硬件组成功能上由主控芯片及其周边的时钟电路、复位电路、预留接口电路和电源模块组成最小系统。
在最小系统以外,一般还配备数字信号处理电路,模拟信号处理电路,频率信号处理电路,通讯接口电路(包括CAN通讯接口和RS232通讯接口)2. 各电气与VCU之间是怎样工作的一些用于监测车体自身状态的信号或者车载部件中比较重要的开关信号、模拟信号和频率信号,由传感器直接传递给VCU,而不通过CAN总线。
电动汽车上的其他具有独立系统的电气,一般通过共用CAN总线的方式进行信息传递。
2.1直接传递的信号们开关信号包括:钥匙信号,档位信号,充电开关,制动信号等;模拟信号一般有:加速踏板信号,制动踏板信号,电池电压信号等;频率信号,比如车速传感器的电磁信号。
输出的开关量,动力电池供电回路上的接触器和预充继电器,在一些车型上,由VCU负责控制。
2.2通过CAN交互的电气单元CAN总线上的通讯参与者地位不分主从,随时随地向总线发动信息。
信息之间的先后顺序由发出信息者的优先级确定。
优先级在通讯协议中已经做出规定,每条信息里都有发信者的地址编码;通讯中的信息编码,都有相应的通讯协议予以明确规定。
谁发出什么样的代码提供哪些类型的信息,主要依据是供需双方的约定。
比如下面表格中的电气单元地址编码,就是来自一份整车厂与VCU供应商的技术协议。
CAN故障记录,是维修调试人员最好的小帮手。
下图是通讯协议中对故障代码的规定,常见的故障类型都位列其中,只要对照协议表格,大家都可以读懂故障记录了。
比较例外的是充换电相关的系统,由于通用性的强烈需求,通讯协议需要统一,有国家标准予以统一编码(下文列举了相关国标)。
电动汽车整车电子控制器VCU系统自动泊车系统路径规划与控制算法研究

电动汽车整车电子控制器VCU系统自动泊车系统路径规划与控制算法研究一、自动泊车系统概述自动泊车系统是一种由电子控制器VCU系统控制的智能停车辅助系统,能够通过车辆上的传感器获取车辆周围的环境信息,包括车位大小、障碍物位置等,并根据这些信息进行路径规划和控制,实现车辆的自动停放。
自动泊车系统的核心是路径规划与控制算法,通过优化算法能够提高系统的灵活性和精度,实现更加高效的自动停车功能。
路径规划是自动泊车系统中的一个关键环节,通过合理的路径规划能够保证车辆在停车过程中不与障碍物碰撞,并且能够高效的找到合适的停车位。
传统的路径规划算法主要是基于车辆周围环境的传感器数据,通过建立场景模型和避障算法来实现路径规划。
这种方法在复杂环境下的准确性和灵活性有限,容易受到传感器误差和环境变化的影响。
为了克服传统路径规划算法的局限性,近年来研究者们提出了一系列基于深度学习和机器学习的路径规划算法。
这些算法通过训练大量的场景数据和车辆行驶数据,能够学习到更加复杂的环境特征和行驶策略,实现了更加准确的路径规划。
深度学习算法尤其在处理复杂环境下的路径规划问题上有着明显的优势,能够有效提高自动泊车系统的性能和鲁棒性。
控制算法是自动泊车系统中的另一个关键环节,通过合理的控制算法能够实现车辆在停车过程中的精确控制和车位停放。
传统的控制算法主要是基于PID控制器和遗传算法,通过调节车辆的速度和转向角,来实现车辆的停车控制。
这种方法在复杂环境和高速停车情况下容易出现控制误差和停车不精准的问题。
四、自动泊车系统的优化和改进针对自动泊车系统中路径规划和控制算法的局限性,研究者们可以在以下方面进行系统的优化和改进:1. 智能传感器技术:通过引入更加智能和精准的传感器技术,能够提高车辆对周围环境的感知能力,从而实现更加准确和高效的路径规划和控制。
2. 多模态数据融合:通过融合多种传感器的数据,能够获取更加丰富和多样化的环境信息,实现更加准确的路径规划和控制。
纯电动汽车整车控制器(VCU)详细介绍

纯电动汽车整车控制器(VCU)详细介绍⼀、国外产品介绍:(1)丰⽥公司整车控制器丰⽥公司整车控制器的原理图如下图所⽰。
该车是后轮驱动,左后轮和右后轮分别由2个轮毂电机驱动。
其整车控制器接收驾驶员的操作信号和汽车的运动传感器信号,其中驾驶员的操作信号包括加速踏板信号、制动踏板信号、换档位置信号和转向⾓度信号,汽车的运动传感器信号包括横摆⾓速度信号、纵向加速信号、横向加速信号和4个车轮的转速信号。
整车控制器将这些信号经过控制策略计算,通过左右2组电机控制器和逆变器分别驱动左后轮和右后轮。
(2)⽇⽴公司整车控制器⽇⽴公司纯电动汽车整车控制器的原理图如下图所⽰。
图中电动汽车是四轮驱动结构,其中前轮由低速永磁同步电机通过差速器驱动,后轮由⾼速感应电机通过差速器驱动。
整车控制器的控制策略是在不同的⼯况下使⽤不同的电机驱动电动汽车,或者按照⼀定的扭矩分配⽐例,联合使⽤2台电机驱动电动汽车,使系统动⼒传动效率最⼤。
当电动汽车起步或爬坡时,由低速、⼤扭矩永磁同步电机驱动前轮。
当电动汽车⾼速⾏驶时,由⾼速感应电机驱动后轮。
(3)⽇产公司整车控制器⽇产聆风LEAF是5门5座纯电动轿车,搭载锂离⼦电池,续驶⾥程是160km。
采⽤200V家⽤交流电,⼤约需要8h可以将电池充满;快速充电需要10min,可提供其⾏驶50km的⽤电量。
⽇产聆风LEAF的整车控制器原理图如下图所⽰,它接收来⾃组合仪表的车速传感器和加速踏板位置传感器的电⼦信号,通过⼦控制器控制直流电压变换器DC/DC、车灯、除霜系统、空调、电机、发电机、动⼒电池、太阳能电池、再⽣制动系统。
(4)英飞凌新能源汽车VCU & HCU解决⽅案该控制器可兼容12V及24V两种供电环境,可⽤于新能源乘⽤车、商⽤车电控系统,作为整车控制器或混合动⼒控制器。
该控制器对新能源汽车动⼒链的各个环节进⾏管理、协调和监控,以提⾼整车能量利⽤效率,确保安全性和可靠性。
该整车控制器采集司机驾驶信号,通过CAN总线获得电机和电池系统的相关信息,进⾏分析和运算,通过CAN总线给出电机控制和电池管理指令,实现整车驱动控制、能量优化控制和制动回馈控制。
VCU总体设计方案

整车控制系统总体设计方案一.整车控制器系统架构及流程1. 整车控制器(VCU)是车辆整车控制系统的主控制器,通过传感器和其他控制器将整车的运行信息反馈到整车控制器(VCU),并根据车辆行驶要求向二级控制器及有关执行器发出指令。
(二级控制器由驱动电机控制器(MCU)、电池管理系统(BMS)、整车组合仪表等组成。
)整车控制器VCU,负责控制动力总成唤醒、电源(强电与弱电)、停机、驱动、能量回馈、能量管理、安全、故障诊断与失效控制等主要功能。
VCU通过CAN总线及必要的模拟信号线与其它控制器通讯,以传递信息及控制指令。
VCU可由PC 机上的标定程序进行在线标定。
标定与监测系统,主要用于对VCU的标定与监测,用于在线监测VCU的运行参数以及对VCU的控制参数进行在线标定优化。
2. 整车控制器开发流程—模式现代的开发流程是采用计算机辅助工具来进行的,可以支持从需求定义直到最终产品的全过程。
下图是简化模式—V模式。
自顶向下,开发逐渐细化最终形成开发的VCU原型;从下向上,通过测试形成与最初设想一致的产品;经过对国外汽车著名开发商如: Audi, AVL, BMW, Bosch, Ricardo Engineering, Siemens, Ford等的了解,他们普遍采用现代的设计开发流程:离线功能仿真—快速控制原型—自动代码生成—硬件在回路仿真—参数标定所构成的“V模式”新的开发流程符合国际汽车行业标准(ASAM/ASAP)二.整车控制系统控制策略整车控制流程主要包含两部分,一部分是主程序流程,另一部分是中断服务程序流程。
主控流程是对各个功能模块程序的有效集成,使其按照一定顺序运行以完成对车辆各种控制功能的实现。
中断服务流程则是对控制部分实时性要求较高的部分进行时间触发控制,一方面保证程序的实时性,另一方面减少CPU 资源的浪费。
在主控流程中主要包括功能初始化模块,CAN 数据解析模块,充电控制模块,上电控制模块,故障诊断模块、驱动电机控制模块、CAN数据打包模块。
纯电动汽车整车控制器(VCU)设计方案

纯电动车辆以整车控制器为主节点、基于高速 CAN 总线的分布式动力系统 控制网络,通过该网络,整车控制器可以对纯电动车辆动力链的各个环节进行管 理、协调和监控,提高整车能量利用效率,确保车辆安全性和可靠性。整车控制 器的功能如下: 1) 车辆驾驶:采集司机的驾驶需求,管理车辆的动力。 2) 网络管理:监控通信网络,信息调度,信息汇总,网关。 3) 故障诊断处理:诊断传感器、执行器和系统其他部件的故障,并进行相应的
纯电动汽车整车控制器 设计方案书
目录
1 整车控制器控制功能和原理 ................................................................................................................... 1 2 电动汽车动力总成分布式网络架构 ....................................................................................................... 2 3 整车控制器开发流程 ............................................................................................................................... 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
产品功能 车辆模式判断 整车驱动(扭矩管理) 能量回收控制 高压上下电控制 高压安全监控 整车能量管理 整车热管理 充电监控 定速巡航 附件控制 整车故障诊断及应对 整车状态监控与显示 车辆防盗 车辆防溜坡控制 续航里程计算 车辆蠕行控制 升级和标定 其他整车自定义功能
干货 | 新能源汽车整车控制器(VCU\HCU)解决方案
随着环境污染和能源危机的加剧,绿色环保的概念逐渐被人们重视,各国政府也在推进新 能源汽车的发展。新能源汽车根据其动力源可分为纯电动汽车(EV) 和混合动力车 (HEV\PHEV)。混合动力汽车又包含増程式混合动力系统、插电式混合动力系统、BSG 系统等。 整车控制器是新能源汽车的核心控制部件,主要功能是解析驾驶员需求,监控汽车行驶状态, 协调控制单元如 BMS、MCU、EMS、TCU 等的工作,实现整车的上下电、驱动控制、能量回收、 附件控制和故障诊断等功能。