概率论第四章 习题答案
概率论与数理统计第四章习题及答案

概率论与数理统计习题 第四章 随机变量的数字特征习题4-1 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以X 表示一天中调整设备的次数,试求)(X E (设诸产品是否为次品是相互独立的).解:设表示一次抽检的10件产品的次品数为ξP =P (调整设备)=P (ξ>1)=1-P (ξ≤1)= 1-[P (ξ=0)+ P (ξ=1)]查二项分布表1-=.因此X 表示一天调整设备的次数时X ~B (4, . P (X =0)=⎪⎪⎭⎫ ⎝⎛04××=.P (X =1)=⎪⎪⎭⎫ ⎝⎛14××=, P (X =2)= ⎪⎪⎭⎫⎝⎛24××=.P (X =3)=⎪⎪⎭⎫ ⎝⎛34××=, P (X =4)= ⎪⎪⎭⎫ ⎝⎛44××=. 从而E (X )=np =4×=习题4-2 设随机变量X 的分布律为Λ,2,1,323)1(1==⎭⎬⎫⎩⎨⎧-=+j j X P jjj ,说明X的数学期望不存在.解: 由于1111133322(1)((1))3j j j j j j j j j P X j j j j ∞∞∞++===-=-==∑∑∑,而级数112j j ∞=∑发散,故级数11133(1)((1))j jj j j P X j j∞++=-=-∑不绝对收敛,由数学期望的定义知,X 的数学期望不存在. 习题X-2 0 2 k p求)53(),(),(22+X E X E X E .解 E (X )=(-2)+0+2=由关于随机变量函数的数学期望的定理,知E (X 2)=(-2)2+02+22=E (3X 2+5)=[3 (-2)2+5]+[3 02+5]+[322+5]=如利用数学期望的性质,则有E (3X 2+5)=3E (X 2)+5=3+5=4.135)(3)53(,8.23.04.0)(,2.03.023.004.02)(222222)2(=+=+=⨯+⨯=-=⨯+⨯+⨯-=-X E X E X E X E习题4-4 设随机变量X 的概率密度为⎩⎨⎧≤>=-0,0,0,)(x x e x f x 求XeY X Y 2)2(;2)1(-==的数学期望.解22)(2)0(2)(2)2()()(00=-=+-=+⋅===∞-∞+-∞-+∞-∞-+∞∞-⎰⎰⎰⎰xx xx e dx e xe dx xe dx x dx x xf X E Y E I3131)()()(0303022=-==⋅==∞-∞+-∞+---⎰⎰xx x x X edx e dx e e e E Y E II 习题4-5 设),(Y X 的概率密度为⎩⎨⎧≤≤≤=其它,0,10,12),(2x y y y x f求)(),(),(),(22Y X E XY E Y E X E +.解 各数学期望均可按照⎰⎰+∞∞-+∞∞-=dxdy y x f y x g Y X g E ),(),()],([计算。
概率论何书元答案第四章

概率论何书元答案第四章1、二次函数y=3x2-4x+5的一次项系数是()。
[单选题] *34(正确答案)512、要使多项式不含的一次项,则与的关系是()[单选题] *A. 相等(正确答案)B. 互为相反数C. 互为倒数D. 乘积为13、设M=(x﹣3)(x﹣7),N=(x﹣2)(x﹣8),则M与N的关系为( ) [单选题] *A. M<NB. M>N(正确答案)C. M=ND. 不能确定4、若a=-3 ?2,b=-3?2,c=(-)?2,d=(-)?,则( ) [单选题] *A. a<d<c<bB. b<a<d<cC. a<d<c<bD. a<b<d<c(正确答案)5、10.如图是丁丁画的一张脸的示意图,如果用表示左眼,用表示右眼,那么嘴的位置可以表示成().[单选题] *A.(1,0)B(-1,0)(正确答案)C(-1,1)D(1,-1)6、已知sina<0且cota>0,则是()[单选题] *、第一象限角B、第一象限角C、第三象限角(正确答案)D、第四象限角7、7.如图,数轴上点M表示的数可能是()[单选题] *A.5B.﹣6C.﹣6(正确答案)D.68、36.如果x2﹣kxy+9y2是一个完全平方式,那么k的值是()[单选题] * A.3B.±6(正确答案)C.6D.±39、23.将x-y-6=0改写成用含x的式子表示y的形式为()[单选题] *A. x=y+6B. y=x-6(正确答案)C. x=6-yD. y=6=x10、-230°是第()象限角?[单选题] *第一象限第二象限(正确答案)第三象限第四象限11、9.如果向东走记为,则向西走可记为() [单选题] * A+3mB+2mC-3m(正确答案)D-2m12、下列各角中,与300°终边相同的角是()[单选题] *A、420°B、421°C、-650°D、-60°(正确答案)13、按顺时针方向旋转形成的角是(). [单选题] *A. 正角B. 负角(正确答案)C. 零角D. 无法判断14、下列函数是奇函数的是()[单选题] *A、f(x)=3x(正确答案)B、f(x)=4xC、f(x)= +2x-1D、f(x)=15、11、在第二、四象限内两条坐标轴夹角平分线上的点,它们的横坐标与纵坐标是()[单选题] *A.相等B.互为相反数(正确答案)C.零D.以上结论都不对16、46、在直角三角形ABC中,,,则的三条高之和为()[单选题] *A.8.4B.9.4(正确答案)C.10.4D.11.17、已知x-y=3,x2-y2=12,那么x+y的值是( ??) [单选题] *A. 3B. 4(正确答案)C. 6D. 1218、20.已知集合A={x|x2(x的平方)-2 023x+2 022<0},B={x|x<a},若A?B,则实数a的取值范围是___. [单选题] *A a≥2022(正确答案)B a>2022C a<2022D a≥119、7.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()[单选题] *A.110°(正确答案)B.145°C.35°D.70°20、42、如图,在AB、AC上各取一点E、D,使AE=AD,连接BD、CE相交于点O,再连接AO、BC,若∠1=∠2,则图中全等三角形共有()[单选题] *A.5对(正确答案)B.6对C.7对D.8对21、5、若关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a的值是()[单选题] *A、1B、-1(正确答案)C 、1或-1D、222、3.如果两个数的和是正数,那么[单选题] *A.这两个数都是正数B.一个为正,一个为零C.这两个数一正一负,且正数的绝对值较大D.必属上面三种情况之一(正确答案)23、2.如图,BC=AB,D为AC的中点,DC=3cm,则AB的长是()[单选题] *A.4cm(正确答案)B.CmC.5cmD.cm24、以A(3,2),B(6,5),C(1,10)为顶点的三角形是()[单选题] *A、锐角三角形B、锐角三角形C、直角三角形(正确答案)D、无法判断25、44、如图,AC、BD相交于点E,AB=DC,AC=DB,则图中有全等三角形()[单选题] *A.1对B.2对C.3对(正确答案)D.4对26、17. 的计算结果为()[单选题] *A.-7B.7(正确答案)C.49D.1427、(正确答案)函数y=4x+3的定义域是()。
概率论习题及解答-第四章特征函数

ξ = a min{Y, x} − bx.
从而平均利润
∫∞ E(ξ) = aE(min{Y, x}) − bx = a min{y, x}λe−λydy − bx
(∫ x
∫∞ 0
)
=a
yλe−λydy +
xλe−λydy − bx
(0
∫x x
)
= a − xe−λx + e−λydy + xe−λx − bx
∑ ∞
∑ ∞ ∑i
E(η) = iP(η = i) =
P(η = i)
i=1
i=1 k=1
∑ ∞ ∑ ∞
∑ ∞
=
P(η = i) = P(η k).
注意到
P(min{ξ1, ξ2, · · · , ξn}
k=1 i=k
k) = P(ξ1 k, ξ2
k=1
k, · · · , ξn
( ∑ )n
k) =
记 µk = p0 + p1 + · · · + pk−1, νk = 1 − µk, 试证明
∑ ∞ E(min{ξ1, ξ2, · · · , ξn}) = νkn,
k=1
∑ ∞ E(max(ξ1, ξ2, · · · , ξn)) = (1 − µnk ).
k=1
4
证明: 若 η 为取非负整值随机变量, 则
得
∑ ∞
∑ ∞
E(max{ξ1, ξ2, · · · , ξn}) = P(max{ξ1, ξ2, · · · , ξn} k) = (1 − µnk ).
k=1
k=1
练习4.1.11 设随机变量 ξ, η 独立同分布, ξ ∼ N (a, σ2), 试证明
《概率论与数理统计》习题及答案第四章

·34·《概率论与数理统计》习题及答案第四章1.一个袋子中装有四个球,它们上面分别标有数字1,2,2,3,今从袋中任取一球后不放回,再从袋中任取一球,以,X Y 分别表示第一次,第二次取出的球上的标号,求(,)X Y 的分布列.解(,)X Y的分布列为12311106121112666113126其中(1,1)(1)(1|1)P X Y P X P Y X (1,2)(1)(2|P XYP X P Y X 121436余者类推。
2.将一枚硬币连掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值,试写出(,)X Y 的分布列及边缘分布列。
解一枚硬币连掷三次相当于三重贝努里试验,故1~(3,).2X B 331()(),0,1,2,32kP Xk C k,于是(,)X Y 的分布列和边缘分布为XY·35·012333610088811230088813318888jip p 其中(0,1)(0)(1|0)P X Y P X P Y X ,13313(1,1)(1)(1|1)()128P XYP XP YXC ,余者类推。
3.设(,)X Y 的概率密度为1(6),02,24,(,)8,.x y x y f x y 其它又(1){(,)|1,3}D x y x y;(2){(,)|3}Dx y xy。
求{(,)}P X Y D 解(1)1321{(,)}(6)8P x y D xy d xd x y1194368228;(2)1321{(,)}(6)8xP X Y D x y d x d y112113(1)[(3)4]82x x d xx d x524.4.设(,)X Y 的概率密度为22222(),,(,),.C Rxy xyR f x y 其他求(1)系数C ;(2)(,)X Y 落在圆222()xyr rR 内的概率.解(1)22222232001()RxyRCRxy d xd y C R Cr d rdYX xx+y=3422y·36·333233R R C RC,33CR.(2)设222{(,)|}Dx y x yr ,所求概率为2222233{(,)}()xyrP X Y D R xy d x d yR322323232133r r r R rRRR.5.已知随机变量X 和Y 的联合概率密度为4,1,01(,)0,.x y xyf x y 其它求X 和Y 的联合分布函数.解1设(,)X Y 的分布函数为(,)F x y ,则(,)(,)xyF x y f u v d u d v01001000,00,4,1,01,4,01,1,4,1,01,1,1, 1.xyxyxy uv du d v xyu yd u d y x y xvd xd v x y xy 或22220,00,,01,01,,01,1,,1,01,1,1,1.x yx y x y x xy yx y xy或解2由联合密度可见,,X Y 独立,边缘密度分别为2,1,()0,;X x xf x 其他2,01,()0,.Y y yf y 其它边缘分布函数分别为(),()X Y F x F y ,则·37·20,0,()(),01,1, 1.xX X x F x f u d u x x x 20,0,()(),01,1,1.yY Xy F y fv d v y y y设(,)X Y 的分布函数为(,)F x y ,则22220,00,,01,01(,)()(),01,1,,1,01,1,1,1.X Y x y x y x y F x y F x F y x xy y x y x y或6.设二维随机变量(,)X Y 在区域:01D x,||y x 内服从均匀分布,求边缘概率密度。
《概率论与数理统计》第04章习题解答

第四章 正态分布1、解:(0,1)ZN(1){ 1.24}(1.24)0.8925P Z ∴≤=Φ={1.24 2.37}(2.37)(1.24)0.99110.89250.0986P Z <≤=Φ-Φ==-= {2.37 1.24}( 1.24)( 2.37)(1.24)(2.37)0.89250.99110.0986P Z -<≤-=Φ--Φ-=-Φ+Φ=-+=(2){}0.9147()0.9147 1.37{}0.05261()0.0526()0.9474 1.62P Z a a a P Z b b b b ≤=∴Φ==≥=-Φ=Φ==,,得,,,得2、解:(3,16)XN8343{48}()()(1.25)(0.25)0.89440.59870.295744P X --∴<≤=Φ-Φ=Φ-Φ=-= 5303{05}()()(0.5)(0.75)44(0.5)1(0.75)0.691510.77340.4649P X --<≤=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= 31(25,36){25}0.95442(3,4){}0.95X N C P X C X N C P X C -≤=>≥、()设,试确定,使;()设,试确定,使解:(1)(25,36){25}0.9544X N P X C -≤=,{2525}0.9544P C X C ∴-≤≤+=25252525()()0.954466()()2()10.9544666()0.9772,21266C C C C CC CC +---Φ-Φ=-Φ-Φ=Φ-=Φ=∴==即, (2)(3,4){}0.95XN P X C >≥,331()0.95()0.952231.6450.292C CCC ---Φ≥Φ≥-≥≤-即,,4、解:(1)2(3315,575)XN4390.2533152584.753315{2584.754390.25}()()575575(1.87)( 1.27)(1.87)1(1.27)0.969310.89800.8673P X --∴≤≤=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= (2)27193315{2719}()( 1.04)1(1.04)10.85080.1492575P X -≤=Φ=Φ-=-Φ=-=(25,0.1492)YB ∴4440{4}(0.1492)(10.1492)0.6664ii i i P Y C -=∴≤=-=∑5、解:(6.4,2.3)X N{}{}1()81(1.055)10.85540.14462.3(85}0.17615 6.451(0.923)(0.923)0.82121()2.3P X P X X P X -Φ>-Φ-∴>>======->-Φ-Φ-Φ6、解:(1)2(11.9,(0.2))XN12.311.911.711.9{11.712.3}()()(2)(1)(2)1(1)0.20.20.977210.84130.8185P X --∴<<=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= 设A ={两只电阻器的电阻值都在欧和欧之间} 则2()(0.8185)0.6699P A ==(2)设X , Y 分别是两只电阻器的电阻值,则22(11.9,(0.2))(11.9,(0.2))X N Y N ,,且X , Y 相互独立[]22212.411.9{(12.4)(12.4)}1{12.4}{12.4)}1()0.21(2.5)1(0.9938)0.0124P X Y P X P Y -⎡⎤∴>>=-≤⋅≤=-Φ⎢⎥⎣⎦=-Φ=-=7、一工厂生产的某种元件的寿命X (以小时计)服从均值160μ=,均方差为的正态分布,若要求{120200}0.80P X <<≥,允许最大为多少解:因为2(160,)XN σ由2001601201600.80{120200}()()P X σσ--≤<<=Φ-Φ从而 40402()10.80()0.9σσΦ-≥Φ≥,即,查表得401.282σ≥,故σ≤8、解:(1)2(90,(0.5))XN8990{89}()(2)1(2)10.97720.02280.5P X -∴<=Φ=Φ-=-Φ=-= (2)设2(,(0.5))X N d由808080{80}0.991()0.99()0.99 2.330.50.50.5d d d P X ---≥≥∴-Φ≥Φ≥≥,,,即 从而d ≥ 9、解:22~(150,3),~(100,4)X Y X N Y N 与相互独立,且则(1)2221~(150(100,3)4)(250,5)W X Y N N =+++=()222222~2150100,(2)314(200,52)W X Y N N =+-⨯+-⨯+⨯=-22325~(125,)(125,(2.5))22X Y W N N +== (2)242.6250{242.6}()( 1.48)1(1.48)10.93060.06945P X Y -+<=Φ=Φ-=-Φ=-= 12551255125522212551251255125()1()(2)1(2)2.5 2.522(2)220.97720.0456X Y X Y X Y P P P ⎧+⎫++⎧⎫⎧⎫->=<-+>+⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭--+-=Φ+-Φ=Φ-+-Φ=-Φ=-⨯=10、解:(1)22~(10,(0.2)),~(10.5,(0.2))X N Y N X Y ,且与相互独立22~(0.5,2(0.2))(0.5,(0.282))X Y N N ∴--⨯=-0(0.5){0}()(1.77)0.96160.282P X Y ---<=Φ=Φ=(2)22~(10,(0.2)),~(10.5,)X N Y N X Y σ设,且与相互独立222~(0.5,2(0.2))(0.5,(0.2))X Y N N σ∴--⨯=-+0.90{0}P X Y ≤-<=Φ=Φ由1.28≥,故σ≤11、设某地区女子的身高(以m 计)2(1.63,(0.025))WN ,男子身高(以m 计)2(1.73,(0.05))MN ,设各人身高相互独立。
概率论第四章习题答案

第四章复习题答案一、单项选择1.设随机变量X 具有分布P{X=k}=51,k=1,2,3,4,5,则E (X )=( B ) A.2 B.3 C.4D.52.设随机变量X 与Y 相互独立,X 服从参数为2的指数分布,Y ~B (6,21),则E(X-Y)=( A )A .-1B .21C .2D .5 3.设二维随机变量(X ,Y )的协方差Cov(X ,Y )=61,且D (X )=4,D (Y )=9,则X 与Y 的相关系数XY ρ为( B )()(),XY Cov X Y D X D Y ρ=A .2161 B .361 C .61 D .1 4. 设随机变量X 和Y 独立同分布,X ~N (μ,σ2),则( B ) A.2X ~N (2μ,2σ2) B.2X -Y ~N (μ,5σ2) C.X +2Y ~N (3μ,3σ2)D.X -2Y ~N (3μ,5σ2)5.设EX 2=8,DX =4,则E (2X )=( D ) A.1 B.2 C.3 D.46.对任意两个随机变量X 和Y ,由D (X +Y )=D (X )+D (Y )可以推断( A ) A.X 和Y 不相关B.X 和Y 相互独立C.X 和Y 的相关系数等于-1D.D (XY )=D (X )D (Y )7.已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为( D ) A .-2 B .0 C .21D .2 8.设随机变量X 与Y 相互独立,且X ~B (16,0.5),Y 服从参数为9的泊松分布,则D (X -2Y +3)=( C )A.-14B.-11C.40D.439.已知随机变量X 服从参数为2的指数分布,则随机变量X 的期望为( D )A .-21B .0C .21D .2 二、填空1.设随机变量X 服从正态分布N (2,4),Y 服从均匀分布U (3,5),则E (2X-3Y )= ___-8___. 2.设随机变量X 与Y 相互独立,其分布律分别为则E (XY )=__2______.3.设X ,Y 为随机变量,已知协方差Cov(X ,Y )=3,则Cov(2X ,3Y )=____18___. 4.设X~N (0,1),Y~B (16,21),且两随机变量相互独立,则D(2X+Y)= __8______ 5.设随机变量X 的概率密度为⎩⎨⎧≤≤=,,0;10,2)(其他x x x f 则E (X )=__23______.6.已知E (X )=2,E (Y )=2,E (XY )=4,则X ,Y 的协方差Cov (X,Y )=____0_____. 7.设随机变量X ~N (0,4),则E (X 2)=_____4____.8.设X ~N (0,1),Y =2X -3,则D (Y )=____4__. 三、计算1.某柜台做顾客调查,设每小时到达柜台的顾额数X 服从泊松分布,则X~P (λ),若已知P (X=1)=P (X=2),且该柜台销售情况Y (千元),满足Y=21X 2+2.试求:(1)参数λ的值;21!2!e e λλλλ--=,=2λ.(2)一小时内至少有一个顾客光临的概率;{}{}21101-P X P X e -≥=-== (3)该柜台每小时的平均销售情况E (Y ). ()==2E Y λ2. 2021年东京奥运会即将召开,某射击队有甲、乙两个射手,他们的射击技术可用下表给出。
概率论第四、五章课后习题答案

第四章 随机变量的数字特征2.某产品的次品率为0.1,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1,就去调整设备。
以X 表示一天中调整设备的次数,试求E (X )。
(设诸产品是否为次品是相互独立的。
)解:先求检验一次,决定需要调整设备的概率。
设抽检出次品件数为Y ,则Y ~b (10,0.1).记需调整设备一次的概率为p ,则2639.01.09.01109.01}1{}0{1)1(910=⨯⨯⎪⎪⎭⎫ ⎝⎛--==-=-=>=Y P Y P Y P p 又因各次检验结果相互独立,故)2639.0,4(~b X X 的分布律为于是0556.12639.0444)1(43)1(62)1(41)(43223=⨯==⨯+-⨯+-⨯+-⨯=p pp p p p p p X E以后将会知道若X ~b (n ,p ),则np X E =)(.6.(1)设随机变量X 的分布律为求)53(),(),(22+XE X E X E(2)设)(~λπX ,求)11(+X E解:(1)E (X )=(-2)⨯0.4+0⨯0.3+2⨯0.3=-0.2 由关于随机变量函数的数学期望的定理,知E (X 2)=(-2)2⨯0.4+02⨯0.3+22⨯0.3=2.8E (3X 2+5)=[3⨯ (-2)2+5]⨯0.4+[3⨯ 02+5]⨯0.3+[3⨯22+5]⨯0.3=13.4如利用数学期望的性质,则有E (3X 2+5)=3E (X 2)+5=3⨯2.8+5=13.4(2)因)(~λπX ,故!}{k ek X P k λλ-==)1(1)1()1!(!)!1()!1(}{11)11(1100λλλλλλλλλλλλλλλλ--∞=-∞=-∞=+-∞=-∞=-=-=-==+=+==+=+∑∑∑∑∑eeej ej ek ek ek X P k X E j jj jk k k k k7. (1)设随机变量X 的概率密度为⎩⎨⎧≤>=-0,00,)(x x e x f x求(I)Y =2X ;(II) Y =e -2X 的数学期望(2)设随机变量n X X X ,,2,1 相互独立,且都服从(0,1)上的均匀分布,(I)求},,max{2,1n X X X U =的数学期望;(II)求},,min{2,1n X X X V =的数学期望。
概率论第四章习题解答(全)

(0.9)10 (0.9)9 3486 0.3874 0.7361
则需要调整设备的概率
P{Y 1} 1 P{Y } 1 0.7361 0.2639
(3)求一天中调整设备的次数 X 的分布律 由于 X 取值为 0,1,2,3,4。 p 0.2369 ,则 X B (4, 0.2369) 于是
个随机变量,其概率密度为
1 x, 0 x 1500, 15002 1 f ( x) ( x 3000),1500 x 3000, 2 1500 0, 其它
求 E( X ) 解 按连续型随机变量的数学期望的定义有
0 1500
E ( X ) xf ( x)dx xf ( x)dx
X p
2
3
4
9
1 8
5 8
1 8
1 8
所以
1 5 1 1 15 E( X ) 2 3 4 9 。 8 8 8 8 4
(2)因为 Y 的取值为 2,3,4,9 当 Y 2 时,包含的字母为“O”,“N”,故
P{Y 2}
1 C2 1 ; 30 15
当 Y 3 时,包含的 3 个字母的单词共有 5 个,故
P (Ck ) P ( Ak | A1 A2 Ak 1 ) P ( Ak 1 | A1 A2 Ak 2 ) P ( A2 | A1 ) P ( A1 )
而
P{ X 1} P ( A1 )
1 2
1 1 P{ X 2} P ( A1 A2 ) P ( A2 | A1 ) P ( A1 ) 3 2 1 2 1 1 1 P ( A2 | A1 A2 ) P ( A2 | A1 ) P ( A1 ) , 4 3 2 4 3 一般地,若当 X k 时,盒中共有 k 1 只球,其中只有一只白球,故 P ( X k ) P ( A1 A2 Ak 1 Ak ) P ( Ak | A1 A2 Ak 1 ) P ( Ak 1 | A1 A2 Ak 2 ) P ( A2 | A1 ) P ( A1 ) 1 k 1 k 2 1 2 1 1 1 k 1 k k 1 4 3 2 k k
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 ⎛2⎞ 1 DX = EX − ( EX ) = − ⎜ ⎟ = . 2 ⎝ 3 ⎠ 18 1 2 DZ = 4 DX = 4 × = . 18 9
【解毕】
9.在一次拍卖中,两人竞买一幅名画,拍卖以暗标的形式进行,并以最高价成交.设两人 的出价相互独立且均服从(1,2)上的均匀分布,求这幅画的期望成交价. 解:设两人的出价分别为随机变量 X , Y ,则这幅画的期望成交价为 Z = max { X , Y } 由题意知, X 与Y 独立,且 X ∼ U (1, 2); Y ∼ U (1, 2) 先求 Z 的分布函数 当 1 < z < 2 时, F ( z ) = P ( Z £ z ) = P (max { X , Y } £ z ) = P ( X £ z ,Y £ z )
= P( X £ z ) P (Y £ z ) = ( z -1)2
当 z £ 1 时, F ( z ) = 0 ;当 z ³ 2 时, F ( z ) = 1 于是 Z 的密度函数为 f ( z ) = ï í
ì2( z -1),1 < z < 2 ï ï 0, 其它 ï î 5 3
EZ = ò
+¥
3 X .求: ( 1)常数 a, b, c; (2) Ee . 4
【解】 (1)由概率密度的性质知,有
+∞ 2 4
1=
又因为
−∞
∫
f ( x )dx = ∫ axdx + ∫ ( cx + b )dx = 2a + 6c + 2b.
0 2
+∞
2
4
2 = EX =
−∞
∫ xf ( x )dx = ∫ xiaxdx + ∫ x ( cx + b )dx
1
x
1 4
设二维随机变量 ( X , Y ) 在区域 G =
{( x, y ) : 0 < x < 1, y < x} 内服从均匀分布,求随
机变量 Z = 2 X + 1 的方差 DZ .
【解】 由方差的性质得知
DZ = D ( 2 X + 1) = 4 DX
又由于 X 的边缘密度为
+∞
fX ( x) =
−1 0 0
1 6
【解毕】
1 2 DX = EX 2 − ( EX ) = . 6 5. 已知连续型随机变量 X 的密度函数为
f ( x) =
求 EX 与 DX .
1 − x2 + 2 x −1 e , π
-∞ <x<+∞ .
(1987 年考研题) 【解】 (方法 1)直接法. 由数学期望与方差的定义知
试确定常数 k ,并求 E ( XY ) . 解: 1 =
ò
+¥
-¥
ò ∫
+¥
-¥
1 x 1 f ( x, y )dxdy = ò dx ò kdy = k 0 0 2
于是 k = 2
E ( XY ) = ∫
8.
+∞
+∞
−∞
−∞
xyf (x , y )dxdy = 2∫ xdx ∫ ydy =
0 0
Ee
从而
−2 X
=
−∞
∫e
f ( x ) dx =
∫e
0
−2 x
1 ie− x dx = , 3
【解毕】
1 4 E ( X + e−2 X ) = EX + Ee −2 X = 1 + = . 3 3
7.设随机变量 ( X , Y ) 的概率密度函数为
⎧k , 0 < x < 1; 0 < y < x f ( x, y ) = ⎨ ⎩ 0, 其它
2 2 2 E (3 X 2 + 2) = ⎡3 × ( −1) + 2 ⎤ × 0.4 + ⎡ ⎣3 × 0 + 2⎤ ⎦ × 0.4 + ⎡ ⎣ 3 × 1 + 2⎤ ⎦ × 0.2 = 3.6 ⎣ ⎦
2
2.
一台设备由三大部件构成,在设备运转中各部件需要调整的概率相应为 0.10,0.20 和
0.30,假设各部件的状态相互独立,以 X 表示同时需要调整的部件数,试求 X 的数学期望
P ( X = k ) = 0.1k −1 × 0.9, k = 1, 2,3, 4.
而
P ( X = 5 ) = 1 − P ( X = 1) − P ( X = 2 ) − P ( X = 3) X = 4
=1 −0.9 −0.09 −0.009 −0.0009 = 0.0001
从而
5
EX = ∑ kP ( X = k ) = 1× 0.9 + 2 × 0.09 + 3 × 0.009 + 4 × 0.0009 + 5 × 0.0001
+∞
EX =
−∞
∫
xf ( x )dx =
+∞
2
1 π
+∞
−∞
∫
xe −( x −1) dx =
2
1 π
+∞
−∞
− ( x −1) ∫ e dx +
2
1 π
+∞
−∞
∫ ( x − 1) e
−( x −1)
2
dx
1 = π
−∞
−( x −1) ∫ e dx = 1. +∞ +∞ 2 2
DX = E ( X − EX ) =
第4章
1.设随机变量 X 的分布律为
习题祥解
X P
-1 0.4
0 0.4
1 0.2
求 E ( X ), E ( X 2 ), E (3 X 2 + 2) 。 解: E ( X ) = −1× 0.4 + 0 × 0.4 + 1× 0.2 = −0.2
E ( X 2 ) = ( −1) × 0.4 + 02 × 0.4 + 12 × 0.2 = 0.6
i
= 0.820.
故
DX = EX 2 − ( EX ) = 0.820 − 0.62 = 0.46.
【解毕】 设 X 表示 10 次独立重复射击中命中目标的次数,每次射中目标的概率为 0.4,求 (1995 年考研题)
2
3.
EX 2 .
【解】 由题意知 X ~ B (10, 0.4 ) 于是
EX = 10 × 0.4 = 4, DX = 10 × 0.4 × (1 − 0.4 ) = 2.4.
k =1
= 1.1111
(2)由题意知, Y = 5 − X .故
EY = 5 − EX = 5 − 1.1111 = 3.8889
11. 设随机变量 X 的概率密度为
⎧ ax, ⎪ f ( x ) = ⎨cx + b, ⎪ 0, ⎩
已知 EX = 2, P (1 < X < 3) =
0 < x < 2, 2 ≤ x ≤ 4, 其他.
= 0.092;
于是 X 的分布律为 X 0 P 0.504
(
)
1 0.398
2 0.092
3 0.006
从而
EX = ∑ xi pi = 0 × 0.504 + 1× 0.398 + 2 × 0.092 + 3 × 0.006
i
= 0.6,
EX 2 = ∑ xi 2 pi = 02 × 0.504 + 12 × 0.398 + 22 × 0.092 + 32 × 0.006
由 DX = EX − ( EX ) 可推知
2 2
EX 2 = DX + ( EX ) = 2.4 + 42 = 18.4.
4. 设 X 是一随机变量,其概率密度为
2
⎧1 + x, − 1 ≤ x ≤ 0, ⎪ f ( x ) = ⎨ 1 − x, 0 < x ≤ 1, ⎪ 0, 其他. ⎩
求 DX . (1995 年考研题) 【解】
−∞
∫
⎧x ⎪ 1dy , f ( x , y )dy = ⎨ −∫x ⎪ 0, ⎩ 0 < x <1 其他.
0 < x <1 其他.
⎧ 2 x, =⎨ ⎩ 0,
于是
1 2 EX = ∫ x i2 xdx = , 3 0 2 2
1 1 EX 2 = ∫ x 2 i2 xdx = , 2 0 2
因此 ,
= 1 π
+∞
2
−∞
∫ ( x − 1) f ( x ) dx = ∫ ( x − 1)
−∞
1 −( x −1)2 e dx π
−∞
∫t e
2 −t2
dt 分部积分
1 2 π
+∞
−∞
∫e
−t2
1 dt = . 2
( x − µ )2
2σ 2
(方法 2) 利用正态分布定义.
1 − 由于期望为 µ ,方差为 σ 的正态分布的概率密度为 e 2 π
得
a=
1 1 b = 1, c = − 4, 4
(2)
x ⎛ x⎞ Ee = ∫ e f ( x ) dx = ∫ e i dx + ∫ e x ⎜ 1 − ⎟ dx 4 ⎝ 4⎠ −∞ 0 2
X x x
+∞
2
4
1 1 1 = e4 − e2 + . 4 2 4
【解毕】 12. 袋中装有 N 只球,但其中白球数为随机变量,只知道其数学期望为 A ,试求从该袋 中摸一球得到白球的概率. 【解】 记 X 为袋中的白球数,则由题设知