八年级数学上册 15.3 分式方程 第2课时 分式方程的实际应用练习 (新版)新人教版

合集下载

人教版八年级数学上册《15.3 分式方程》练习题-附带有答案

人教版八年级数学上册《15.3 分式方程》练习题-附带有答案

人教版八年级数学上册《15.3 分式方程》练习题-附带有答案一、选择题1.下列关于x 的方程:①x−12=5 ,②1x =4x−1 ,③1x (x −1)+x =1 ,④x a =1b−1 中,分式方程有( ) A .4个B .3个C .2个D .1个 2.若分式 x 3x+4 的值为1,则x 的值是( )A .1B .2C .-1D .-2 3.解方程 1+2x−1=x−5x−3 时,去分母得( )A .(x −1)(x −3)+2(x −3)=(x −5)(x −1)B .(x −1)(x −3)+2(x −3)=(x +5)C .1+2(x −3)=(x −5)(x −1)D .(x −3)+2(x −3)=x −5 4.分式方程 3x−2=1 的解是 ( )A .x =5B .x =1C .x =−1D .x =2 5.关于x 的方程 m−1x−1+x 1−x =0 有增根,则m 的值是( )A .2B .1C .0D .-1 6.若关于x 的方程2x+m x−2+x−12−x =3的解是非负数,则m 的取值范围为( ) A .m ≤-7且m ≠-3B .m ≥-7且m ≠-3C .m ≤-7D .m ≥-77.一艘轮船在两个码头之间航行,顺水航行81km 所需的时间与逆水航行69km 所需的时间相同.已知水流速度是速度2km/h ,则轮船在静水中航行的速度是( )A .25km/hB .24km/hC .23km/hD .22km/h 8.若整数a 使关于y 的不等式组{2y−53≤y −13a −y +3≥0至少有3个整数解,且使得关于x 的分式方程3x(x−1)−a 1−x =2x 的解为正数,则所有符合条件的整数a 的和为( )A .-6B .-9C .-11D .-14 二、填空题9.关于x 的方程x−a x−1=12的解是x =3,则a = .10.当x = 时,分式32−x 比x−1x−2大2.11.若关于x 的方程1x−1+2x+m 1−x =1有增根,则m 的值是 . 12.若关于x 的分式方程2x−m x+1 =3的解是负数,则字母m 的取值范围是 .13.某校要建立两个计算机教室,为此要购买相同数量的A型计算机和B型计算机.已知一台A型计算机的售价比一台B型计算机的售价便宜400元,如果购买A型计算机需要224 000元,购买B型计算机需要240 000元.求一台A型计算机和一台B型计算机的售价分别是多少元.设一台B型计算机的售价是x元,依题意列方程为.三、解答题14.解方程:(1)3x =2x−2(2)2x2x−1+51−2x=315.冬季来临,某商场预购进一批毛衣.用9600元先购进一批毛衣,面市后因供不应求,商场决定又用16800元再次购进这批毛衣,所购数量是第一批购进量的2倍,但单价便宜了10元.该商场第一次购进这批毛衣的数量是多少?16.杭州国际动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就用32000元购进了一批这种玩具,上市后很快脱销,动漫公司又用68000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?17.某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次性购进这两种家电共100台,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,一共有多少种合理的购买方案?参考答案1.C2.D3.A4.A5.A6.B7.A8.C9.210.2311.-112.m>-3且m≠-213.240000x =224000x−40014.(1)解:3x =2x−23(x-2)=2x3x-6=2x3x-2x=6x=6经检验,x=6是原方程的解.(2)解:2x2x−1+51−2x=32x-5=3(2x-1)2x-6x=5-3-4x=2x=−12.经检验,x=−12是原方程的解.15.解:设该商场第一次购进这批毛衣的数量是x件,则第二次购进这批毛衣的数量是2x件根据题意,得:9600x −168002x=10解得:x=120经检验,x=120是所列方程的解答:该商场第一次购进这批毛衣的数量是120件.16.(1)解:设动漫公司第一次购x套玩具,由题意得:=10解这个方程,x=200经检验x=200是原方程的根.∴2x+x=2×200+200=600答:动漫公司两次共购进这种玩具600套(2)解:设每套玩具的售价y元,由题意得:≥20%解这个不等式,y≥200答:每套玩具的售价至少是200元17.(1)解:设每台空调的进价为m元,每台电冰箱的进价为元.根据题意得解得经检验符合题意故每台空调进价为1600元,电冰箱进价为2000元;(2)解:设购进电冰箱x台,则进购空调台解得:∵购进空调数量不超过电冰箱数量的2倍解得∵为正整数、35、36、37、38、39、40 共有七种合理的购买方案。

【初中数学】人教版八年级上册第2课时 列分式方程解决实际问题(练习题)

【初中数学】人教版八年级上册第2课时 列分式方程解决实际问题(练习题)

人教版八年级上册第2课时列分式方程解决实际问题(348)1.某公司在工程招标时,接到甲、乙两个工程队的投标书.甲工程队每施工一天,需付工程款1.5万元,乙工程队每施工一天,需付工程款1.1万元.工程领导小组根据甲、乙两队的投标书测算,形成下列三种施工方案:方案①:甲队单独完成此项工程刚好如期完工;方案②:乙队单独完成此项工程要比规定工期多用5天;方案③:若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工.(1)求甲、乙两队单独完成此项工程各需多少天;(2)如果工程不能如期完工,公司每天将损失3000元,如果你是公司经理,你觉得选哪一种施工方案划算?请说明理由.2.某轻轨工程指挥部,要对某轻轨路段工程进行招标,接到了甲、乙两个工程队的投标书.根据投标书知,甲队单独完成这项工程所需天数是乙队单独.若由甲队先做20天,剩下的工程再由甲、乙两队完成这项工程所需天数的23合作60天可完成.(1)求甲、乙两队单独完成这项工程各需多少天;(2)已知甲队每天的施工费用为9.2万元,乙队每天的施工费用为6.8万元.工程预算的施工费用为1000万元.若在甲、乙工程队工作效率不变的情况下使施工时间最短,那么预算的施工费用是否够用?若不够用,需追加预算多少万元?3.小明准备利用暑假从距上海2160千米的某地去“上海迪斯尼乐园”参观游览,如图是他在火车站咨询得到的信息,根据图中信息,求小明乘坐城际直达动车到上海所需的时间.4.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批新产品比乙工厂单独加工完成这批新产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.5.为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)6.“郁郁林间桑葚紫,茫茫水面稻苗青”说的就是味甜汁多,酸甜适口的水果——桑葚.4月份,水果店的小李用3000元购进了一批桑葚,随后的两天他很快以高于进价40%的价格卖出150千克,到了第三天,他发现剩余的桑葚卖相已不太好,于是果断地以低于进价20%的价格将剩余的全部售出,小李一共获利750元,设小李共购进桑葚x千克.(1)根据题意完成下表:(用含x的式子表示)(2)求小李共购进多少千克的桑葚.7.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)若每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.8.某乡镇对公路进行补修,甲工程队计划用若干天完成此项目,甲工程队单独工作了3天后,为缩短完成的时间,乙工程队加入此项目,且甲、乙两工程队每天补修的工作量相同,结果提前3天完成,则甲工程队计划完成此项目的天数是()A.6B.7C.8D.99.哈尔滨市政府欲将一块地建成湿地公园,动用了一台甲型挖土机,4天挖完了这块地的13,后又加一台乙型挖土机,两台挖土机同时工作,结果又用两天就挖完了整片地,那么乙型挖土机单独挖完这块地需要天.10.园林部门计划在一定时间内完成植树任务,甲队独做正好按期完成,乙队独做则要误期3天.现两队合作2天后,余下任务由乙队独做,正好按期完成任务.则原计划多少天完成植树任务?11.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为x km/h,则根据题意可列方程为()A.180x −180(1+50%)x=1 B.180(1+50%)x−180x=1C.180x −180(1−50%)x=1 D.180(1−50%)x−180x=112.某村电路发生断电,该地供电局组织电工进行抢修.供电局距离该村15千米,抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果他们同时到达.已知吉普车速度是抢修车速度的1.5倍,则抢修车的速度是13.为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.400x =300x−30B.400x−30=300xC.400x+30=300xD.400x=300x+3014.某校学生利用双休时间去距学校10km的炎帝故里参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.参考答案1(1)【答案】解:设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+5)天.依题意,得4x +4x+5+x−4x+5=1,解得x=20.经检验,x=20是原分式方程的解且符合题意.x+5=25.答:甲队单独完成此项工程需20天,乙队单独完成此项工程需25天.(2)【答案】解:选方案③划算.理由如下:这三种施工方案需要的工程款:方案①:1.5×20=30(万元);方案②:1.1×(20+5)+5×0.3=29(万元);方案③:1.5×4+1.1×20=28(万元).∵30>29>28,∴方案③最节省工程款.2(1)【答案】解:设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要23x天.根据题意,得2023x+60(123x+1x)=1,解得x=180.经检验,x=180是原分式方程的解且符合题意.2 3x=23×180=120.答:甲、乙两队单独完成这项工程分别需120天和180天. (2)【答案】解:设甲、乙两队合作完成这项工程需要y天.则y(1120+1180)=1,解得y=72.需要施工费用:72×(9.2+6.8)=1152(万元).∵1152>1000,∴预算的施工费用不够用,需追加预算152万元.3.【答案】:解:设小明乘坐城际直达动车到上海需要x 小时. 根据题意,得2160x=2160x+6×1.6,解得x =10.经检验,x =10是原方程的根且符合题意. 答:小明乘坐城际直达动车到上海需要10小时.4.【答案】:解:设甲工厂每天加工x 件产品,则乙工厂每天加工1.5x 件产品. 依题意得1200x−12001.5x=10,解得x =40.经检验,x =40是原方程的根,且符合题意.1.5x =60.答:甲工厂每天加工40件新产品,乙工厂每天加工60件新产品.5.【答案】:解:设例子中的A 4厚型纸每页的质量为x 克. 由题意,得400x=2×160x−0.8,解得x =4.经检验,x =4为原方程的解,且符合题意. 答:例子中的A 4厚型纸每页的质量为4克. 6(1)【答案】3000(1+40%)x;3000(1−20%)x;x −150(2)【答案】解:根据题意,得150·3000(1+40%)x+(x −150)·3000(1−20%)x−3000=750解得x =200.经检验,x =200是原方程的解且符合题意. 答:小李共购进200千克桑葚. 7(1)【答案】解:设每本软面笔记本花费x元,则每本硬面笔记本花费(x+1.2)元.由题意,得12 x =21x+1.2,解得x=1.6.此时121.6=211.6+1.2=7.5(不符合题意),所以小明和小丽不能买到相同数量的笔记本.(2)【答案】解:存在.设每本软面笔记本花费m元(1≤m≤12,且m为整数),则每本硬面笔记本花费(m+a)元.由题意,得12m =21m+a,解得a=34m.∵a为正整数,∴m=4,a=3或m=8,a=6或m=12,a=9.当m=8,a=6时,128=2114=1.5(不符合题意).∴a的值为3或9.8.【答案】:D【解析】:设甲工程队计划完成此项目的天数为x天,由题意,得x−3x +x−6x=1,解得x=9,经检验,x=9是原分式方程的根,且符合题意.故选D9.【答案】:4【解析】:∵一台甲型挖土机4天挖完了这块地的13,∴甲型挖土机12天全部挖完这块地,故甲1天完成总工作量的112,设乙型挖土机单独挖这块地需要x天,根据题意可得13+212+2x=1,解得x=4.经检验,x=4是原方程的根,且符合题意.∴乙型挖土机单独挖完这块地需要4天10.【答案】:解:设原计划x天完成植树任务,则乙队单独完成植树任务的时间是(x+3)天.由题意,得2(1x +1x+3)+x−2x+3=1,解得x=6.经检验,x=6是原方程的解且符合题意.答:原计划6天完成植树任务11.【答案】:A12.【答案】:20千米/时【解析】:设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时.由题意,得15 x −151.5x=1560,解得x=20.经检验,x=20是原方程的解且符合题意.则抢修车的速度为20千米/时13.【答案】:A14.【答案】:解:设骑车学生的速度为x km/h,则汽车的速度为2x km/h.根据题意,得10x =102x+2060,解得x=15.经检验,x=15是原方程的解且符合题意,2x=2×15=30.答:骑车学生的速度和汽车的速度分别是15km/h,30km/h.。

15.3.2分式方程的实际应用——工程、行程问题+课件+2024-2025学年人教版数学八年级上册

15.3.2分式方程的实际应用——工程、行程问题+课件+2024-2025学年人教版数学八年级上册
在规定日期内完成,问规定日期是多少天?
拓展应用
解:设规定日期为x天,根据题意,得
1
x 3
1


3

1
x x4
x4


解得:x=12.
经检验:x=12是原方程的解且符合题意.
答:规定日期为12天.
回顾反思
1. 本节课探究了分式的哪些问题?
2. 在探寻分式方程的应用时,你经历了哪些数学活动?在
(2)数字问题:在数字问题中要掌握十进制数的表示法;
(3)工程问题:基本公式: 工作量=工时×工效以及它的两个变式 ;
回顾复习
(4)顺水逆水问题:顺水速度= 轮船速度+水流速度 ,
逆水速度= 轮船速度-水流速度 ;
(5)利润问题:基本公式: 利润=售价-进价,利润率=利润÷进价.
探究新知
学生活动一 【一起探究】
的工作效率比原计划提高20%,结果提前2天完成任务.设原计
划每天铺设x米,下面所列方程正确的是( A )
720
720

2
x
( x 20%) x
720
720
C.

2
(1 20%) x
x
A.
720
720

2
(1 20%) x
x
720
720
D.

x 2 (1 20%) x
B.
拓展应用
x
x 2x
解得x=30,
经检验x=30为原方程的根且符合题意.
∴2x=60.
答:甲队单独完成这项工程需30天,乙队单独完成这项工程
需60天.
课后作业
1.课本P154 习题15.3第3,5题.

2019秋人教版八年级数学上册习题课件:第15章 15.3 第2课时 分式方程的应用

2019秋人教版八年级数学上册习题课件:第15章 15.3 第2课时 分式方程的应用

解:在不耽误工期的情况下只能选择方案(1)或(3).设工期为 x 天,则甲队 单独完成需 x 天,乙队单独完成需(x+5)天,由题意得:4x+x+x 5=1,解得 x=20,经检验 x=20 是原方程的解,且符合题意,则方案(1)需工程款 1.5×20 =30(万元),方案(3)需工程款 1.5×4+1.1×20=28(万元),∵28<30,∴在 不耽误工期的情况下,方案(3)最省工程款.
知识点三:百分率问题
3.(舟山中考)甲、乙两个机器人检测零件,甲比乙每小时多检测 20 个,甲 检测 300 个比乙检测 200 个所用的时间少 10%,若设甲每小时检测 x 个, 则根据题意,可列出方程: 3x00=x2-0020×(1-10%) .
知识点四:商品销售问题 4.(广东中考)某公司购买了一批 A、B 型芯片,其中 A 型芯片的单价比 B 型芯片的单价少 9 元,已知该公司用 3120 元购买 A 型芯片的条数与用 4200 元购买 B 型芯片的条数相等. (1)求该公司购买的 A、B 型芯片的单价各是多少元? (2)若两种芯片共购买了 200 条,且购买的总费用为 6280 元,求购买了多少 条 A 型芯片?
【规范解答】(1)设 B 型机器人每小时搬运 x 千克材料,则 A 型机器人每小 时搬运(x+30)千克材料.根据题意,得x1+00300=8x00.解得 x=120.经检验,x =120 是原方程的解,且符合题意.当 x=120 时,x+30=150.答:A 型机 器人每小时搬运 150 千克材料,B 型机器人每小时搬运 120 千克材料; (2)设购进 A 型机器人 a 台,则购进 B 型机器人(20-a)台.根据题意,得 150a +120(20-a)≥2800.解得 a≥430.∵a 是整数,∴a≥14.答:至少购进 A 型机 器人 14 台.

八年级上册数学15.3第2课时列分式方程解决实际问题

八年级上册数学15.3第2课时列分式方程解决实际问题

课堂练习
7.为进一步落实“德、智、体、美、劳”五育并举工作,某中学以 体育为突破口,准备从体育用品商场一次性购买若干个足球和篮球 ,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价 格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买 足球的数量是用900元购买篮球数量的2倍. (1)足球和篮球的单价各是多少元?
.
甲队 乙队
工作时间(月) 工作效率
1 1
1
2
3
1
1
2
x
工作总量(1)
(1 1 ) 1 23
11 2x
探索新知
知识点 列分式方程解决实际问题
等量关系: 甲队完成的工作总量+乙队完成的工作总量=“1”
(1 1 ) 1
11
23
2x
列得分式方程:1 1 1 1 1 1.
2 3 2 x
探索新知
解得 x sv
.
50
检验:由v,s都是正数,得 x sv
时,x(x+v)≠0.
50
所以,原分式方程的解为 x sv
.
50
答:提速前列车的平均速度为 sv
50
km/h.
探索新知
知识点 列分式方程解决实际问题
列分式方程解决实际问题的一般步骤 1.审:审清题意,分清题中的已知量、未知量; 2.找:找出题中的相等关系, 3.设:设出恰当的未知数,注意单位和语言的完整性; 4.列:根据题中的相等关系,正确列出分式方程; 5.解:解所列分式方程;


=30
课堂练习
6.某网店开展促销活动,其商品一律按8折销售,促销期间用400元 在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每 件多少元?

15.3+分式方程第2课时+列分式方程解决实际问题课件2024-2025学年人教版八年级数学上册++

15.3+分式方程第2课时+列分式方程解决实际问题课件2024-2025学年人教版八年级数学上册++
解: 设实际用了 天,则原计划用 天,改建的自行车道距离: , ,解得 ,经检验, 是原分式方程的解, 付给工程队的费用: (万元)答:付给工程队的费用为 万元.
能力提升
7.某工厂急需生产一批健身器械共500台,送往销售点出售.当生产150台后,接到通知,要求提前完成任务,因而接下来的时间里每天生产的台数提高到原来的1.4倍,一共用8天刚好完成任务.
4.解题方法:可概括为“321”,即3指该类问题中三量关系,如工程问题有工作效率,工作时间,工作量;2指该类问题中的“两个主人公”如甲队和乙队,或“甲单独和两队合作”;1指该问题中的一个等量关系.如工程问题中等量关系是:两个主人公工作总量之和=全部工作总量.
3.弄清基本的数量关系.如本题中的“合作的工效=甲乙两队工作效率的和”.
解:设运输公司用大货车 辆,小货车 辆,依题意 由②得 ,把④代入③得 解得 .方案一:当 时, ,费用为 元;方案二:当 时, ,费用为 元, 方案二费用最低,最低运输费用是15 900元.
中考链接
8.(2022·北部湾经济区)《千里江山图》是宋代王希孟的作品,它的局部画面装裱前是一个长为 ,宽为 的矩形,装裱后,整幅画宽与长的比是 ,且四周边衬宽度相等,则边衬的宽度应是多少米?设边衬的宽度为 ,根据题意可列方程( ) .
5.某瓶装饮料每箱价格是26元,某商店对该饮料进行“买一送三”的促销活动,即买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,该品牌饮料每瓶多少元?设该品牌饮料每瓶是 元,则可列方程为_ _____________.
6.自行车运动深受市民的喜爱.A地、B地间有一条自行车道.小明从A地出发骑行去B地,小军从B地出发骑行去A地.
(1)小明和小军相约上午8时同时从各自出发地出发,匀速骑行,到上午10时,他们相距 ,到中午12时,两人又相距 .求A,B两地间的自行车道的距离.

八年级数学上册第十五章 第3节 分式方程 训练题 (2)(含答案解析)

八年级数学上册第十五章 第3节 分式方程 训练题 (2)(含答案解析)

八年级数学上册第十五章 第3节 分式方程 训练题 (2)一、单选题1.分式方程3353112-+=--+x x x x x x 的解是( )。

A .x=-4 B .x=1 C .x 1=4,x 2=1 D .x 1=—4,x 2=12.方程21111x x x +=--的解为( ) A .2x =- B .2x = C .0x = D .12x = 3.下列四个方程中,有一个根是2x =的方程是( )A .2022x x x +=--B .2202x x x--+= C2= D0=4.从1,0,1,2,3,4,5-这7个数中随机抽取一个数,记为,a 若数a 使关于x 的不等式组1253x a x x -<⎧⎨+≤⎩无解,且使关于x 的分式方程2122x a x -=-的解为非负数,那么这7个数中所有满足条件的a 的值之积是( )A .6B .24C .30D .1205.2019年2月,全球首个5G 火车站在上海虹桥火车站启动.虹桥火车站中5G 网络峰值速率为4G 网络峰值速率的10倍.在峰值速率下传输8千兆数据,5G 网络比4G 网络快720秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 千兆数据,依题意,可列方程为( )A .8810720x x -=+B .8810720x x -=-C .8872010x x-= D .8872010x x -= 6.用换元法解分式方程251x x +21x x+-+1=0,如果设21x x +=y ,那么原方程可以化为( )A .2+y y -5=0B .2y -5y+1=0C .25y y 10++=D .25y 10y +-=7.若关于x 的不等式组1123236x x x a x+-⎧≤+⎪⎨⎪-≤-⎩的解集为x≤1,且使关于y 的分式方程2111a y y y---=++的解为非正数,则符合条件的所有整数a 的和为( ) A .﹣3B .﹣6C .﹣7D .﹣10 8.方程32x +=11x +的解为( )A .x =45B .x =-12C .x =-2D .无解 9.解分式方程:2311x x x-=--,去分母得( ) A .3(1)2x x --=- B .3(1)2x x --= C .332x x --=-D .332x x -+= 10.方程1y+1+1y−1−y+1y 2−1=0的解是( ) A .±1 B .1C .-1D .无解 11.某工程限期完成,甲队独做正好按期完成,乙队独做则要延期3天完成.现两队先合做2天,再由乙队独做,也正好按期完成.如果设规定的期限为x 天,那么根据题意可列出方程:①223x x ++=1;②1122()133x x x x -++=++;③213x x x +=+;④233x x =+.其中正确的个数为( ).A .1B .2C .3D .4 12.若252x x --的值为-1,则x 等于( ) A .-53 B .53 C .73D .-73 二、填空题 13.关于x 的方程1233x k x x -=+--有增根,则k 的值是__________. 14.关于的分式方程214242k x x x -=--+有增根x =—2,那么k =________________ 15.方程33122x x x-+=--的解是__________. 16.关于x 的分式方程211111x x x-=-+-的解是_____. 17.定义运算“※”:,,,.a a b a b a b b a b b a ⎧>⎪⎪-=⎨⎪<⎪-⎩※ 则:①23m m =※______()0m >;②若52x =※,则x 的值为______.18.有五张正面分别标有数-7,0,1,2,5的不透明卡片,它们除数字不同外其余全部相同。

第2课时 分式方程的实际应用——工程、行程问题【课课练】八年级上册人教版数学

第2课时 分式方程的实际应用——工程、行程问题【课课练】八年级上册人教版数学
1
2
3
4
22.5 m.
解:设甲队每天修路 x m,


依题意,得




……
1
2
3
4
,x
第2课时 分式方程的实际应用——
工程、行程问题
知识梳理
课时学业质量评价
4. 某市政府切实为残疾人办实事,在区道路改造中为盲人修建一条长3
000 m的盲道,根据规划设计和要求,该市工程队在实际施工时增加了




C. -


.




D.
- =
.


1
2
3
4
第2课时 分式方程的实际应用——
工程、行程问题
知识梳理
课时学业质量评价
3. 有一道题:“甲队修路150 m与乙队修路100 m所用天数相同,
若……,求甲队每天修路多少米?”根据图中的解题过程,省略号
“……”表示的条件应是

乙队每天修路比甲队的2倍少30 m
及三个量的关系.如:工作时间=
工作总量
工作效率
,时间=
路程
速度
.
第2课时 分式方程的实际应用——
工程、行程问题
测评等级(在对应方格中画“√”)
易错题记录
知识梳理
A□
B□
课时学业质量评价
C□
D□
第2课时 分式方程的实际应用——
工程、行程问题
知识梳理
课时学业质量评价
1. 某单位盖一座楼房,如果由建筑一队单独施工,那么180天可盖成;
第十五章
15.3
第2课时
分式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 分式方程的实际应用
基础题
知识点1 列分式方程解决工程问题
1.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路x m .依题意,下面所列方程正确的是( )
A.120x =100x -10
B.120x =100x +10
C.120
x -10=100x D.120x +10=100x
2.某村计划新修水渠3 600米,为了让水渠尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成任务,若设原计划每天修水渠x 米,则下面所列方程正确的是( )
A.3 600x =3 6001.8x
B.3 6001.8x -20=3 600x
C.3 600x -3 6001.8x =20
D.3 600x +3 6001.8x
=20 3.甲、乙承包一项任务,若甲、乙合作,5天能完成,若单独做,甲比乙少用4天,设甲单独做x 天能完成此项任务,则可列出方程________________.
4.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,求每天应多做多少件?
知识点2 列分式方程解决行程问题
5.(乐山中考)甲、乙两队同时分别从A 、B 两地沿同一条公路骑自行车到C 地,已知A 、C 两地间的距离为110千米,B 、C 两地间的距离为100千米,甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C 地,求两人的平均速度.为解决此问题,设乙骑自行车的平均速度为x 千米/时,由题意列出方程,其中正确的是( )
A.110x +2=100x
B.110x =100x +2
C.110
x -2=100x D.110x =100x -2
6.轮船顺水航行40千米所需的时间与逆水航行30千米所需的时间相同.已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,可列方程为________________.
7.(襄阳中考)甲、乙两座城市的中心火车站A ,B 两站相距360 km.一列动车与一列特快列车分别从A ,B 两站同时出发相向而行,动车的平均速度比特快列车快54 km/h ,当动车到达B 站时,特快列车恰好到达距离A 站135 km 处的C 站.求动车和特快列车的平均速度各是多少?
中档题
8.某市今年起调整居民用水价格,每立方米水费上涨20%,小方家去年12月份的水费是26元,而今年5月份的水费是50元.已知小方家今年5月份的用水量比去年12月份多8立方米,设去年居民用水价格为x 元/立方米,则所列方程为________________.
9.中国地大物博,过去由于交通不便,一些地区的经济发展受到了制约,自从“高铁网络”在全国陆续延伸以后,许多地区的经济和旅游发生了翻天覆地的变化,高铁列车也成为人们外出旅行的重要交通工具.李老师从北京到某地去旅游,从北京到该地普快列车行驶的路程约为1 352 km ,高铁列车比普快列车行驶的路程少52 km ,高铁列车比普快列车行驶的时间少8 h .已知高铁列车的平均时速是普快列车平均时速的2.5倍,求高铁列车的平均时速.
10.有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?
11.(安徽中考)某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2 000元要多,多出的部分能购买25副乒乓球拍.(1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用;
(2)若购买的两种球拍数一样,求x.
综合题
12.(娄底中考)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4 800元.已知甲、乙两车单独运完此垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.
(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?
(2)若单独租用一台车,租用哪台车合算?
参考答案
1.A
2.C
3.1x +1x +4=15
4.设每天应多做x 件,则72048+x +5=72048
, 解得x =24.
经检验,x =24是原方程的解.
答:每天应多做24件.
5.A
6.40x +3=30
x -3
7.设特快列车的平均速度为x km/h ,则动车的速度为(x +54)km/h.
根据题意,得360x +54=360-135x
, 解得x =90.
经检验,x =90是这个分式方程的解.
x +54=144.
答:特快列车的平均速度为90 km/h ,动车的速度为144 km/h.
8.50(1+20%)x -26x
=8 9.设普快列车的平均时速为x km/h ,则高铁列车的平均时速为2.5x km/h.
根据题意,得1 352x -1 352-522.5x =8.
解得x =104.
经检验x =104是原分式方程的解.
则2.5x =260.
答:高铁列车的平均时速为260 km/h.
10.设工作总量为1,规定日期为x 天,则若单独做,甲队需x 天,乙队需(x +3)天,
根据题意,得2(1
x +3+1x )+x -2x +3
=1, 解得x =6.
经检验x =6是分式方程的解.
答:规定日期是6天.
11.(1)2 000+(2 000+25x)=4 000+25x(元).
(2)根据题意,得2 000x =2 000+25x x +20
. 解得x =±40.
经检验,x =±40都是原方程的解,但x =-40不合题意,应舍去,只取x =40.
12.(1)设甲车单独运完此堆垃圾需运x 趟,
则依题意,得12x +122x
=1. 解得x =18.
经检验,x =18是原方程的解.
∴2x =36.
答:甲车单独运完此堆垃圾需18趟,乙车需36趟.
(2)设甲车每趟需运费a 元,
则依题意,得12a +12(a -200)=4 800.
解得a =300.∴a -200=100.
∴单独租用甲车的费用=300×18=5 400(元),
单独租用乙车的费用=100×36=3 600(元).∵5 400>3 600,
∴单独租用乙车合算.。

相关文档
最新文档