对称性与守恒定律

合集下载

物理学中的对称性与守恒定律

物理学中的对称性与守恒定律

物理学中的对称性与守恒定律对称性和守恒定律是物理学中的基本概念,它们在理解和解释自然界中各种物理现象和规律中起着重要作用。

本文将探讨物理学中的对称性和守恒定律,并探讨它们之间的密切关系。

一、对称性在物理学中的意义对称性是物理学中的重要概念,它描述了物理系统在某些变换下保持不变的性质。

在物理学中,对称性可以分为时空对称性和内禀对称性两种。

1. 时空对称性时空对称性是指物理系统在时空变换下保持不变。

在相对论物理学中,洛伦兹变换是描述时空变换的数学工具。

根据洛伦兹变换的不同类型,物理系统可以表现出平移对称性、旋转对称性和洛伦兹对称性等。

平移对称性是指物理系统在空间位置上的平移不会改变其物理性质。

例如,一个均匀介质中的物理规律在空间中的任何位置都是相同的。

旋转对称性是指物理系统在空间方向的旋转下保持不变。

例如,地球的自转周期不会影响物理规律的成立。

洛伦兹对称性是指物理系统在洛伦兹变换下保持不变,包括时间和空间的坐标变换。

相对论物理学中的基本原理就是洛伦兹对称性。

2. 内禀对称性内禀对称性是指物理系统在内部变换下保持不变。

在粒子物理学中,内禀对称性描述了粒子的基本性质。

例如,电荷共轭对称性指粒子与其反粒子具有相同的物理性质。

对称性在物理学中具有广泛的应用。

它不仅可以用于解释物理定律的成因,还可以帮助物理学家发现新的规律和预测新的物理现象。

二、守恒定律与对称性的关系守恒定律是物理学中的基本定律,描述了物理系统在某些变换下某个物理量保持不变的规律。

守恒定律与对称性之间存在着密切的关系。

以能量守恒定律为例,它描述了物理系统的能量在各种变换下保持不变。

能量守恒定律与时间平移对称性密切相关,即物理规律在时间上的平移不变性保证了能量守恒。

动量守恒定律是另一个重要的守恒定律,它描述了物理系统的总动量在某些变换下保持不变。

动量守恒定律与空间平移对称性密切相关,即物理规律在空间上的平移不变性保证了动量守恒。

角动量守恒定律和电荷守恒定律等也与对称性有着密切的联系。

05-2-对称性和守恒定律

05-2-对称性和守恒定律

Ep x1 , x2 , t t Ep x1 , x2 , t
有Ep/t = 0 体系的总能量
Ep
t 势能函数不显含时间t
t O(t )
Ep(x1, x2, t) = Ep(x1, x2)
dE dv1 dv2 Ep dx1 Ep dx2 m1v1 m2v2 dt dt dt x1 dt x2 dt
物 理 规 律 具 有 空 间 平对 移称 性 、 空 间 转 动 对性 称、 时间平移对称性。
牛顿定律具有伽利略变 换下的对称性,
而伽利略变换是近似的 ,
所以,牛顿定律也是近 似的。
内特尔定律 如果运动规律在某一不明显依赖于时间的情况下具有 不变性,必相应存在一个守恒定律。
5.7.2对称性的破缺
由于空间各向同性,系统的势能决定于两 粒子的相对位置,而与连线的方向无关。
Ep = 0 任意 AB间的力矩M = 0
L = 常量
角动量守恒定律 特定方向
7.4.3 能量守恒定律和时间平移对称性 一维低速运动的两个粒子 t时刻 势能为Ep(x1, x2, t) 经过t时间 体系的势能变为Ep(x1, x2, t+t) 体系具有时间平移对称性, Ep(x1, x2, t) = Ep(x1, x2, t+t)
旋转对称性
回文诗 如苏东坡的《题金山寺》 潮随暗浪雪山顶,远浦渔舟钓月明; 桥对寺门山径小,巷当泉眼石波清; 迢迢绿树江天晓,霭霭红霞晚日晴; 遥望四边云接水,碧峰千点数鸥轻。 轻鸥数点千峰碧,水接云边四望遥; 晴日晚霞红霭霭,晓天江树绿迢迢; 清波石眼泉当巷,小径山门寺对桥; 明月钓舟渔浦远,顶山雪浪暗随潮。
Ep(AB)=Ep(AB)
Ep(AB)=Ep(AB)fABs

量子力学中的对称性与守恒定律

量子力学中的对称性与守恒定律

量子力学中的对称性与守恒定律量子力学是现代物理学的一大支柱,它描述了微观世界的行为规律。

在量子力学中,对称性与守恒定律是两个非常重要的概念。

本文将深入探讨量子力学中的对称性与守恒定律,并分析它们在物理学中的应用。

首先,让我们来了解一下对称性在量子力学中的意义。

对称性是指某个系统在某种变换下保持不变的性质。

在量子力学中,对称性扮演着非常重要的角色,它不仅能够帮助我们理解物理现象,还能够简化问题的求解过程。

量子力学中常见的对称性包括平移对称性、旋转对称性和时间平移对称性等。

平移对称性是指系统在空间中的平移下保持不变。

在量子力学中,平移对称性导致了动量的守恒定律。

根据量子力学的基本原理,一个粒子的动量是与其波函数的相位相关的。

如果系统具有平移对称性,那么它的波函数在空间平移下不发生变化,从而导致动量守恒。

这一定律在许多物理现象中都得到了验证,如粒子在势场中的运动以及粒子的碰撞等。

旋转对称性是指系统在空间中的旋转下保持不变。

在量子力学中,旋转对称性导致了角动量的守恒定律。

角动量是描述物体旋转状态的物理量,它与系统的对称性密切相关。

如果系统具有旋转对称性,那么它的波函数在空间旋转下不发生变化,从而导致角动量守恒。

这一定律在原子物理学中得到了广泛应用,如电子在原子轨道中的运动以及原子核的自旋等。

时间平移对称性是指系统在时间平移下保持不变。

在量子力学中,时间平移对称性导致了能量的守恒定律。

能量是系统的重要属性,它与系统的稳定性和演化规律密切相关。

如果系统具有时间平移对称性,那么它的波函数在时间平移下不发生变化,从而导致能量守恒。

这一定律在许多物理过程中得到了验证,如粒子的衰变过程以及能量传递等。

除了上述常见的对称性与守恒定律外,量子力学中还存在一些特殊的对称性与守恒定律。

例如,粒子统计对称性与粒子数守恒定律是量子力学中的重要概念之一。

根据粒子的统计性质,量子力学将粒子分为玻色子和费米子两类。

玻色子遵循玻色-爱因斯坦统计,而费米子遵循费米-狄拉克统计。

理论物理中对称性与守恒定律的关系

理论物理中对称性与守恒定律的关系

理论物理中对称性与守恒定律的关系在理论物理中,对称性与守恒定律是两个核心概念。

对称性描述了系统在某些变换下保持不变的性质,而守恒定律则说明了系统在各种变化中某些物理量的不变性。

这两个概念之间存在着密切的关系,对称性的存在导致了守恒定律的存在,反之亦然。

本文将深入探讨对称性与守恒定律的关系。

首先,让我们来了解对称性的概念。

对称性可以简单地理解为某种变换下系统保持不变的性质。

在物理学中,常见的对称性有平移对称性、旋转对称性、时间平移对称性和粒子对称性等。

平移对称性指的是系统在空间中的平移下保持不变,旋转对称性指的是系统在空间中的旋转下保持不变,时间平移对称性指的是系统在时间上的平移下保持不变,而粒子对称性指的是系统在粒子交换下保持不变。

对称性在物理学中起着非常重要的作用。

与对称性相关联的是守恒定律。

守恒定律描述了系统在各种变化中某些物理量守恒的性质。

守恒定律可以用数学表达式表示为:某一物理量的变化率等于该物理量进入与离开系统的流量之差。

根据对称性的不同,我们可以得到不同的守恒定律。

首先,根据时间平移对称性,我们可以得到能量守恒定律。

能量守恒定律指的是系统的能量在时间上保持不变。

这是因为系统的物理规律在时间上的不变性导致的。

无论系统中发生了怎样的能量转化,总能量的变化率始终为零,能量守恒得到维持。

其次,根据空间平移对称性,我们可以得到动量守恒定律。

动量守恒定律指的是系统的动量在空间上保持不变。

这是因为系统的物理规律在空间上的不变性导致的。

无论系统中的物体如何运动,总动量的变化率始终为零,动量守恒得到维持。

此外,根据空间旋转对称性,我们可以得到角动量守恒定律。

角动量守恒定律指的是系统的角动量在空间上保持不变。

这是因为空间旋转对称性导致的。

无论系统中的物体如何旋转,总角动量的变化率始终为零,角动量守恒得到维持。

最后,根据粒子对称性,我们可以得到电荷守恒定律。

电荷守恒定律指的是系统中的总电荷量在粒子交换下保持不变。

对称性与守恒定律

对称性与守恒定律

对称性与守恒律物理规律是分层次的,有的只对某些具体事物适用,如胡克定律只适用于弹性体;有的在一定范畴内成立,如牛顿定律适用于一切低速运动的宏观物体;有的如能量、动量守恒等守恒律,则在所有领域的自然界起作用。

后者属于自然界更深层次、最为基本的规律。

而守恒律和对称性有紧密联系。

了解对称性的概念、规律及其分析方法,对于深入地认识自然有重要意义。

一、什么是对称性对称的概念日常生活中就有,如人体外部器官的左右对称,紫禁城建设布局的东西对称,不带任何标记的球的中心对称等。

对称性的定义如下。

若某个体系(研究对象)经某种操作(或称变换)后,其前后状态等价(相同),则称该体系对此操作具有对称性,相应的操作称为对称操作。

简言之,对称性就是某种变换下的不变性。

二、物理学中几种常见的(对称)变换1.空间变换1)平移:即对位矢作的变换,相应的对称性谓之平移对称性。

例如,一个不带任何标记的无限大平面,对沿平面的任意平移具有对称性,而当此平面上均匀布满方格时,则对沿平面的特定方位(如边长或对角线方位)平移某个长度的整数倍具有对称性。

2)转动:绕某定点或轴线的转动前述球的中心对称,就是指球对绕球心的任意旋转对称,通常就称之为球对称。

一圆柱体,对绕其中心轴旋转任一角度状态不变,即具有旋转轴对称……3)镜像反射(反演):俗称照镜子。

指对镜面作物像变换。

紫禁城建筑的东西对称,就是以天安门中轴面(南北竖直面)为镜面的镜像对称。

●物理矢量的镜面反射——极矢量和轴矢量按镜面反射时,矢量物像的方向之间的关系,物理矢量分两类。

一类,以位移为例,其镜像为,如图1(a)所示。

它们平行于镜面的分量方向相同,垂直于镜面的分量的方向相反,这类矢量叫极矢量。

,,等都是极矢量。

另一类矢量,如图1(b)中右侧所示一沿圆轨道运动的质点的角速度。

保持角速度方向与轨道旋向成右手关系的规定不变,则其镜像为左侧的。

和沿镜面的平行分量反向,而垂直分量方向相同。

这类矢量叫轴矢量,又称赝矢量。

量子力学中的对称性与守恒定律

量子力学中的对称性与守恒定律

量子力学中的对称性与守恒定律量子力学是描述微观世界的物理学理论,它主要研究微观粒子的行为和性质。

在量子力学中,对称性和守恒定律是十分重要的概念,它们不仅帮助我们理解微观世界的规律,还对于解释和预测自然现象都起到了关键作用。

本文将对量子力学中的对称性与守恒定律进行论述。

1. 对称性在量子力学中的作用对称性在物理学中具有重要的地位,它可以帮助我们理解自然界中的各种现象。

在量子力学中,对称性可以通过算符的变换来描述。

对称性的存在意味着系统在某些变换下保持不变,这些变换可以是平移、旋转、粒子交换等。

不同的对称性对应着不同的物理规律和守恒量。

2. 空间对称性与动量守恒定律空间平移对称性是量子力学中的重要对称性之一。

根据诺特定理,一个系统的平移不变性对应着动量的守恒,即动量守恒定律。

在量子力学中,动量被表示为动量算符,根据平移算符的性质,能量本征态同时也是动量本征态,从而推导出动量守恒的数学表达式。

3. 时间对称性与能量守恒定律时间平移对称性是量子力学中另一个重要的对称性。

根据诺特定理,一个系统的时间平移不变性对应着能量的守恒,即能量守恒定律。

在量子力学中,能量被表示为能量算符,根据时间平移算符的性质,能量本征态同时也是时间本征态,从而推导出能量守恒的数学表达式。

4. 粒子交换对称性与电荷守恒定律粒子交换对称性是量子力学中独特的对称性。

根据粒子交换的性质,不同种类的粒子在交换后会得到正负符号不同的波函数。

通过对称性的研究,我们可以得出守恒定律,例如电荷守恒定律。

在量子力学中,电荷被表示为电荷算符,根据粒子交换算符的性质,电荷守恒可以被推导出来。

5. 空间反演对称性与正负宇称守恒空间反演对称性是又一种重要的对称性。

根据空间反演的性质,物理过程在空间反演后会得到相反的结果。

通过对称性的研究,我们可以得出守恒定律,例如正负宇称守恒。

正负宇称守恒与粒子的手性和反粒子的存在有关,通过对称性的分析可以得到这一守恒定律的数学表达式。

对称性与物理学中的守恒定律

对称性与物理学中的守恒定律

对称性与物理学中的守恒定律物理学中对称性与守恒定律是一对密不可分的概念。

对称性是自然界的一种基本现象,而守恒定律则是对称性的体现。

本文将介绍对称性与物理学中的守恒定律的基本概念及其在物理学中的应用。

对称与对称性对称是指一个物体在某个操作下仍能保持不变。

常见的对称有平移对称、旋转对称和镜像对称等。

以矩形为例,它有平移、旋转和镜像三种对称。

当你将矩形向一个方向平移一定距离时,它仍看起来一模一样;当你绕矩形中心旋转90度时,它也仍然不变;当你将矩形沿着某一直线对折时,它还是一样的。

在数学中,对称主要是通过变换来定义的。

例如,将平面上的点(x,y)绕原点旋转一个角度θ得到(x',y'),则(x,y)和(x',y')就是关于原点对称的。

物理学中的对称性是指物理现象在某种变换下仍然保持不变。

例如,物体在不同位置、不同时间、不同方向和不同状态下具有平移、时间、旋转和内禀对称性。

具体而言,平移对称意味着物理定律在位置的变换下不变;时间对称性要求物理现象在时间上前后对称;旋转对称性要求物理定律在空间旋转下不变;内禀对称性指的是物理现象在基本粒子的内部对称变换下保持不变。

对称性原理对称性原理是物理学中一个重要的基本原理。

其基本思想是,自然界的基本定律应该具有某些对称性,而这些对称性可以用来推导自然界的规律。

换言之,对称性原理是自然界中某些规律的先决条件。

在物理学中,对称性原理有多个方面。

首先,对称性原理要求物理定律在各种对称变换下不变。

例如,物体的质量在不同位置、不同方向和不同速度下应该保持不变。

这是牛顿运动定律中的一个例子。

更具体地说,在牛顿定律中,物体的运动状态不随时间、空间和速度的变化而改变。

其次,对称性原理还要求物理定律在内部对称变换下不变。

例如,在电动力学中,电场和磁场在某些线性旋转下保持不变。

最后,对称性原理还要求物理定律在粒子转换下不变。

例如,在核物理学中,电荷守恒原理要求在粒子转换时总电荷量不变。

物理中的对称性与守恒定律

物理中的对称性与守恒定律

物理中的对称性与守恒定律在物理学中,对称性与守恒定律是两个非常重要的概念,它们贯穿于整个物理学的各个领域,为我们解释世界的运行规律提供了重要的理论支撑。

对称性和守恒定律之间存在着密切的联系,它们相辅相成,相互促进,共同构成了物理学中的基本框架。

本文将从对称性和守恒定律的基本概念入手,探讨它们在物理学中的重要作用以及彼此之间的内在联系。

## 对称性的基本概念对称性在物理学中是一个非常重要的概念,它指的是系统在某种变换下保持不变的性质。

具体来说,对称性可以分为空间对称性、时间对称性和内禀对称性等多种类型。

在物理学中,对称性通常表现为物理定律在某种变换下保持不变,这种不变性为我们揭示了自然界中隐藏的规律和对称性。

空间对称性是指系统在空间变换下保持不变的性质。

例如,一个物理系统在进行平移、旋转或镜像变换后仍保持不变,那么我们就说这个系统具有相应的空间对称性。

空间对称性的存在为我们提供了研究物理系统的重要线索,帮助我们揭示物质世界的奥秘。

时间对称性是指系统在时间变换下保持不变的性质。

在经典力学中,时间是一个普遍的参量,物理定律在时间平移下保持不变,这就是时间对称性。

时间对称性的存在为我们提供了研究物理系统随时间演化的重要线索,帮助我们理解自然界中的时间规律。

内禀对称性是指系统在内部变换下保持不变的性质。

例如,电荷守恒定律要求电荷在物理过程中保持不变,这就是内禀对称性的体现。

内禀对称性揭示了物理系统内部的稳定性和规律性,为我们理解微观世界提供了重要线索。

## 守恒定律的基本概念守恒定律是物理学中的另一个重要概念,它描述了系统某些物理量在时间演化过程中保持不变的规律。

根据不同的物理量和系统,可以得到不同的守恒定律,如能量守恒定律、动量守恒定律、角动量守恒定律等。

能量守恒定律是物理学中最基本的守恒定律之一,它表明一个封闭系统中能量的总量在时间演化过程中保持不变。

能量可以在不同形式之间转化,但总能量守恒。

能量守恒定律揭示了自然界中能量转化的规律,为我们研究能量转换和利用提供了基本原则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

若数学上提供一种数学变换(对称〕
物理上 寻找 相应的守恒定律
或反之。
2、对称性提供更深层次的认识
以普遍的对称性为指引,去探索和解决未知的
物理世界 大统一; 新的发现。
15
根据对称性,
物理学的各个分支逐渐走向统一
万有引力
天上的 19世纪末,爱因斯坦想 力学 把万有引力和电磁学统
所以,一种对称性的发现比一种 特定的现象的发现意义还大。
18
对称性与美
作者: 刘凤英 陈惟蓉 制作: 刘凤英 秦联华 清华大学
生物有机分子的 各种对称性
出版社
98.11
19
3
三、介绍几种对称操作
1、空间对称操作--- 空间变换 1)平移 2、时间变换 1)时间平移 2)时间反演 2)旋转 3)镜象反射 4)空间反演
3、时空联合操作 伽利略变换--- 力学定律具有不变性 洛仑兹变换---物理定律具有不变性
4

文学创作中的镜象对称
回文词 纳兰性德
暮天遥对寒窗雾 鸦啼正落花
对称性是统治物理规律的规律
二、对称性的定义
生活中的例子
对中心对称
操作
状态A 绕中心旋 任意角 状态B
状态A与状态B相同或等价
2
定义:若某一研究对象(体系、事物;物理规律)
对其状态进行某种操作,使其状态由A到B。若 两状态等价(相同),就说该研究对象对该操作 具有对称性。
讨论:1、关键词 2、对称性就是不可分辨
Q
径向
E
10
例 2、
根据对称性原理论证在有心力场作用下, 质点必在同一平面内运动。
v
f
原因:有心力和初速
对板面有镜像对称性
结果: 质点的轨道也一定在板面内
11
例3、已知:R 1
求: R AB
利用:
置换对称 节点电流关系
I A I1
I I1
解 : 节 点
C
R D
B
I I1
I1 B
3 I1 I 5
13
五、对称性与守恒定律(简说〕
物理规律的某一种对称性(不变性〕 通常都属于一种守恒定律
由分析力学、量子力学 严格证明:
空间平移不变性 动量守恒定律 空间转动不变性 角动量守恒定律 时间平移不变性 能量守恒定律 等等
14
六、物理规律的对称性在物理学中的重要性
1、对称性对应着守恒定律
阴阳图
8
四、对称性原理
原因中的对称性必然反映在结果中,结果中的对 称性至少和原因中的对称性一样多; 结果中的不对称性必然出自原因中的不对称性, 原因中的不对称性至少和结果中的不对称性一样多。
对称性原理是凌驾于物理规律之上的自然界的一 条基本规律。
9
例 1、
均匀带电球面电场的分布 原因--- 球对称性 E 结果---至少具有球对称性 r
I
与 A 对称,设电流如图所示。
I I 1 I I 1
同样 节 点 D 与
I 1 I I 1 2I1 I
C 对称,C D 的电流为
12
I
A
I1
R
C
I I1
D
B
由 U AD 得出下式
2 RI I1 RI1 R2 I1 I
U AB I1 R I I1 2 R RAB I I 7 方便 RAB R 5
夭折了 一起来的尝试,由于当
地上的
声学
时不知道还有强作用和 电学
热学
光学
弱作用。
磁学
16
万有引力 天上的 地上的 声学 热学 光学 放射性 核动力 电学 磁学 弱 强
20世纪
向大统一
力学
超弦
的行进
是最程是对称的,预言了 正电子的存在。
对反粒子 反物质的探索
平行于镜面的分 量方向相反,
垂直于镜面的分 LM 量方向相同。
6
时间反演
(t -t) 相当于时间倒流 物理上:运动方向反向 即: 速度对时间反演变号 牛顿第二定律 对保守系统-时间反演不变 如 无阻尼的单摆
7
非保守系统 不具有时间
武打片
动作的真实性
反演不变性 联合操作
紧身衣
真实
大袍
不真实
对称性与守恒定律
symmetry and conservation Lsw
一、问题的提出 我们已知: 牛力有局限性; 但, 又知: 由牛顿定律得出的动量守恒定律 和角动量守恒定律 却具有普遍性
这说明: 守恒定律超越力学理论
我们有理由提出问题:
守恒定律比力学理论具有更深厚的基础吗 ?
1
回答是:守恒定律与宇宙中某种对称性相联系
雾窗寒对遥天暮 花落正啼鸦
袖罗垂影瘦
风剪一丝红
瘦影垂罗袖
红丝一剪风
5
物理矢量的镜面反射
极矢量 轴矢量
M
r r
M
r
r r


r







平行于镜面的分 量方向相同,
垂直于镜面的分 量方向相反。 v a F
相关文档
最新文档