固体物理学-宏观对称性和晶格分类

合集下载

固体物理考试重点(广工版、复习资料)

固体物理考试重点(广工版、复习资料)

一、晶体宏观特征(必考其一)1.晶体的自限性(自范性):自发形成封闭几何外形的能力。

2.晶面角守恒定律:同一种晶体在相同的温度和压力下,对应晶面之间的夹角不变。

3.晶体的解理性(Cleave property):晶体受到外力作用时会沿着某一个或几个特定的晶面劈裂开的性质称为解理性。

4-晶体的各向异性(anisotropy):沿晶体内部的不同方向上有不同的物理性质。

5.晶体的均匀性(homogeneity ):内部各部分的宏观性质相同。

6.晶体的对称性(symmetry):由于内部质点有规则排列而形成的特殊性质。

7.晶体的稳定性:与同种物质的其他形态(气态、液态、非晶态、等离子态等)相比,晶体的内能最小、最稳定。

晶体具有固定的熔点,而非晶体则没有固定的熔点。

二、空间点阵(基元、原胞(primitive cell)> 晶胞(conventional cell)> B 格子、WS 原胞)1.基元:组成晶体的最小结构单元。

2.初基原胞(原胞):一个晶格最小的周期性单元,称为原胞。

3.惯用原胞(晶胞):能使原胞同时反映晶体对称性和周期性特征的重复单元,称为晶胞。

4.B格子:如果晶体只由一种原子构成,且基元是一个原子,则原子中心与阵点重合,这种晶格称为布拉菲格子,或称B格子。

5.WS原胞:WS原胞是以晶格中某一格点为中心,作其与近邻的所有格点连线的垂直平分面,这些平面所围成的以该点为中心的凸多面体即为该点的WS原胞。

作法:(1)任选一格点为原点;(2)将原点与各级近邻的格点连线,得到几组格矢;(3)作这几组格矢的中垂面,这些中垂面绕原点围成的最小区域称W-S原胞。

三、第一布里渊区(二维):从倒格子点阵的原点出发,作出它最近邻点的倒格子点阵矢量,并作出每个矢量的垂直平分面,可得到倒格子的WS原胞,称为第一布里渊区。

注:写出二维坐标系j> b P b2( b为倒格子基矢)。

四、晶体的对称性、晶系、密堆积、配位数(一至二);1.晶体的对称性:晶体经过某种对称操作后物体能自身重合的性质,2.晶系:根据晶体空间点阵中6个点阵参数之间相对关系的特点而将其分为7类,各自称一晶系。

固体物理学§1.7 晶格的对称性

固体物理学§1.7 晶格的对称性

轴—m—i
Ci
C3i
S4
正四面体
T Th Td
正八面体
O Oh
8
固体物理
固体物理学
四、晶系和空间点阵形式:
1、七个晶系:根据晶胞的类型,找相应特征对称元素,可以把 32个点群划分为七个晶系。特征对称元素中,高轴次的个 数愈多,对称性高。晶系从对称性由高到低的划分。
划分的法: 首先规定每个晶系的特征对称元素, 不是该晶系 的晶体的全部对称元素,而是一些有代表性的对称元素(该晶 系所有点群共有的对称元素).
C3 ,C3i ,C3V ,D3 ,D3d
a b c, 900 a b c, 900
1200 a b c, 900
a b c, 900
C2V ,D2 ,D2h
a b c, 900
C2 ,CS ,C2h a b c, 900 , 900
19
固体物理
固体物理学
布拉维点阵中为什么没有底心四方和面心四方?
20
固体物理
六方
单斜
固体物理学
立方
正方 正交
三角
三斜
21
固体物理
固体物理学
原子分数坐标:顶点(0,0,0)
体心(1/2,1/2,1/2)
面心(1/2,1/2,0),(1/2,0,1/2),(0,1/2,1/2)
底心(1/2,1/2,0)
晶胞参数: a,b,c; , , ; 原子分数坐标
五、空间群:七个微观对称元素(i, m, n, n,点阵,nm , )
结合十四种空间点阵形式(立方P I F,六方H,四方P I,
三方R,正交P I F C,单斜P C,三斜P)进行合理组合,得
到且只能得到230种空间群。 由俄 федаров 完成 230个空间群分布:三斜 2个,单斜 13个,正交 59个,四方 68个

固体物理(第3课)晶格对称操作与分类

固体物理(第3课)晶格对称操作与分类

重合,则此对称操作称为旋转,轴u称为n度旋转对 称轴(n度轴),记作n。 n=1,2,3,4,6
n度旋转
=2 /4 =2 /2 /6 /1 /3
1984 年谢赫曼在二元和三元合金中发现了违反了晶体平 移对称性的五重旋转对称。 准晶具有清晰的五重衍射花样,肯定具有长程的五重旋 转对称,但不具有长程和平移对称性。 获2011年度诺贝尔化学奖。
1.7 晶体的宏观对称性与晶格结构的分类
系统的一些要素等价。
对称性使系统的描述简化。
晶体的对称操作:使晶体与自身重合的操作,操作 之后,点阵不变 。
1.7.1 晶体的对称性与对称操作
平移,旋转,镜反射, 中心反演。
1.7.2 对称操作的变换关系
(1)旋转/转动:
如果晶体绕固定轴u旋转角度=2/n后,能与自身
a=b≠c
α=β= 90º
c γ=120º
a 简单六方
a
一个6度轴
立方晶系
简单立方
体心立方
面心立方
四个3度轴和三个4度轴 a=b=c α=β=γ=90º
(100)(010)(001)完全对称,可用{100}表示,称为等效
晶面
布喇菲原胞示意图
返回
作业:
1 如果晶体中存在i和n,则晶体中必有n ;但晶 体中如果存在 n ,则未必有n和i。上述说法是否 正确,请举例说明。 2 总结像转与中心反演、旋转、镜面对称的关系。 3 总结七大晶系的对称特征及坐标轴的性质。
四个3度轴
返回
三斜晶系和单斜晶系
c
1度旋转
c b
a

2π/1

abc

a

b

固体物理_第一至第七章总复习详解

固体物理_第一至第七章总复习详解
上页 下页 返回 结束
总复习
第二章 晶体结合 一、原子的负电性
负电性=常数(电离能+亲和能) 电离能:让原子失去电子所必需消耗的能量 亲和能:处于基态的中性气态原子获得一个电子所放出的能量
负电性大的原子,易于获得电子。 负电性小的原子,易于失去电子。
二、晶体结合的基本类型及其特性
1、离子结合:正负离子之间的库仑相互作用,强键
总复习
一维单原子链
重要结论:
试探解为: xn Aei(tnaq)
色散关系:
w2 2 (1 cosqa)
m
2
m
sin( qa ) 2
m
sin( qa ) 2
中心布里渊区范围: q
a
a
振动模式数目(格波数目):N
上页 下页 返回 结束
格波
总复习
• 格波:晶体中所有原子共同参与的一种 频率相同的振 动,不同原子间有振动
总复习
第一章 晶体结构
一、晶体的宏观特性:周期性、对称性、方向性(各向异性)
二、晶体的微观结构
1. 空间点阵(布拉伐格子) 基元、布拉伐格子、格点、单式格子、复式格子 晶体结构=基元+空间点阵 布拉伐格子(B格子)=空间点阵 复式格子=晶体结构 复式格子≠B格子
2.原胞 初基原胞、基矢、威格纳-赛兹原胞(W-S原胞,对称
位相差,这种振动以波 的形式在整个
晶体中传播,称为格波
xn Aei(tnaq)
上页 下页 返回 结束
3. 一维双原子链 总 复 习
mM 2n-2
2n-1 2n
2n+1 2n+2 2n+3
Ⅰ. 体系:N个原胞,每个原胞中包括2个原子 (m1=M, m2=m, M>m)。

23晶体的对称性和分类

23晶体的对称性和分类
晶体的对称性可以从晶体外形的规则性上反映 出来,如sc、bcc、fcc结构的立方晶体,绕晶胞的任 一基矢轴旋转π/2或π/2的整数倍的操作,都能使晶 体的外形保持不变,这就是晶体的对称性.
操作前后晶体保持自身重合的操作,称为对称 操作.
晶体借以进行对称操作的轴、平面或点.称为对 称元素(简称对称素).
6)表示纯转动对称操作(或转动轴);i表示中心反演
(或对称中心);m表示镜面反映(或对称镜面)。
这种表示方法属于国际符号(International
notation)标记法,是海尔曼(Hermann)和毛衮
(Mauguin)制订的,在晶体结构分析中经常使用。
还有一套标记法,是固体物理中惯用的标记, 是熊夫利(Schoenflies)制订的,因此称为熊夫利 符号(Schoenflies notation). 熊夫利符号中Cn 表 示旋转轴;Sn 表示旋转反演轴;Ci 表示中心反 演;Cs 表示镜面反映。
x x
y
y
cos
z
sin
z
y
sin
z
cos
x 1 0 0 x
y0 cos siny z 0 sin cos z
所以,绕x轴旋转的变换矩阵为:
1 0
0
Ax
0
cos
sin
0 sin cos
同理可得绕y轴和绕z轴的变换矩阵
cos 0 sin
Ay
0
1
0
sin 0 cos
cos sin 0
晶体中允许的转动对称轴只能是1、2、3、4和6次轴, 称为晶体的对称性定律
晶体的对称性定律的证明 B
A
如图,A为格点,B为离A最近的 格点之一,则与 平A 行B 的格点

固体物理总结

固体物理总结

4.当电子(或光子)与晶格振动相互作用时,交换能量以
为单位。
晶体热容
1.固体比热的实验规律 (1)在高温时,晶体的比热为3NkB; (2)在低温时,绝缘体的比热按T3趋于零。
2.模式密度
定义:
D(
)
lim
0
n
m D()d3N 0
计算:D3 n12 V π c3
ds
s qq
3.晶体比热的爱因斯坦模型和德拜模型
2.线缺陷
当晶格周期性的破坏是发生在晶体内部一条线的周围近邻,
这种缺陷称为线缺陷。位错就是线缺陷。
位错
刃型位错:刃型位错的位错线与滑移方向垂直。 螺旋位错:螺旋位错的位错线与滑移方向平行。
位错缺陷的滑移
刃位错:刃位错的滑移方向与晶体受力方向平行。
螺位错:螺位错的滑移方向与晶体受力方向垂直。
第 五 章 能带理论 总结
Kn
(k
Kn 2
)
0
紧束缚近似
1.模型
晶体中的电子在某个原子附近时主要受该原子势场V(rR n)
的作用,其他原子的作用视为微扰来处理,以孤立原子的电子
态作为零级近似。
2.势场
1.晶体的结合能 晶体的结合能就是自由的粒子结合成晶体时所释放的能量, 或者把晶体拆散成一个个自由粒子所需要的能量。
EbU(r0)U(r0)
2.原子间相互作用势能
u(r)rAm rBn A、B、m、n>0
其中第一项表示吸引能,第二项表示排斥能。
3.原子晶体、金属晶体和氢键晶体
(1)原子晶体
结构:第Ⅳ族、第Ⅴ族、第Ⅵ族、第Ⅶ族元素都可以形成
k
r
e ik r
uk
r

固体物理各章节知识点详细总结

固体物理各章节知识点详细总结

3.1 一维晶格的振动
3.1.1 一维单原子链的振动
1. 振动方程及其解 (1)模型:一维无限长的单原子链,原子间距(晶格常量)为
a,原子质量为m。
模型 运动方程
试探解
色散关系
波矢q范围 B--K条件
波矢q取值
一维无限长原子链,m,a,
n-2 n-1 n mm
n+1 n+2
a
..
m x n x n x n 1 x n x n 1
x M 2 n x 2 n 1 x 2 n 1 2 x 2 n
..
x m 2n1 x 2 n 2 x 2 n 2 x 2 n 1
x
Aei2n1aqt
2 n1
x
Bei2naqt
2n
相隔一个晶格常数2a的同种原子,相位差为2aq。
色散关系
2co as q A M 22B0 m 22A 2co as q B0
a h12 h22 h32

2π Kh
d h1h2h3

d K 得: h1h2h3
h1h2h3
简立方:a 1 a i,a 2 aj,a 3 a k ,
b12πa2a3 2πi
Ω
a
b22πa3a1 2πj
Ω
a
b32πa1a2 2πk
Ω
a
b1 2π i a
b2 2π j a
2π b3 k
2n-1
2n
2n+1
2n+2
M
m
质量为M的原子编号为2n-2 、2n、2n+2、···
质量为m的原子编号为2n-1 、2n+1、2n+3、···

固体物理第二章第二节对称性和布拉维格子的分类

固体物理第二章第二节对称性和布拉维格子的分类
对于点对称操作的类型,固体物理中惯用熊夫利符号 (Schoenflies notation)标记;晶体学家惯用国际符号 (Schoenflies notation)标记.在晶体结构分析中,常用后者.
P28-29表2.1给出了32个晶体学点群,为了 便于大家看懂,下面给出符号的说明
Cn C1, C2 , C3, C4 , C6
900 1200
900
7个晶系(crystal system)相应的点群 S1, C2h , D2h , D4h , D3d , D6h , Oh
即:Ai G,i 1, 2,3 ,G {Ai}
必须满足下列条件: 1). 封闭性(closure property) 按照给定的乘法规则,群G中任何两个元素 相乘,得到的还是该群的一个元素。
Ai Aj Ak ,i j or i j
2). 群中一定包含一个不变元素(单位元素) E
E G, EAi Ai E Ai
我们这里要讨论的主要是晶格(或点阵)的对 称性(symmetry of lattice).
在晶格这个物理系统中,一种对称性是指某些 要素互相等价,而用来描述晶格的要素,无非就 是:点、线、面。而保持这些要素等价的操作---对称操作有三种:平移、旋转、镜反射。假设 在某一个操作过后,点阵保持不变,也就是每个 格点的位置都得到重复,那么这个相应的平移、 旋转或镜反射操作就叫作一个点阵对称操作。其 中的点、线、面分别叫做对称中心、对称轴、对 称面----称为对称元素
比如:绕x轴的旋转,设转角为θ,则有:
x x
y
y
cos
z sin
z
y
sin
z
cos
a11 a12 a13 1 0
0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ε xy ε yy
ε ε
xz yz
⎤ ⎥ ⎥
⎣⎢ε zx ε zy ε zz ⎥⎦
立方对称晶体:
⎡ε0 0 0 ⎤
ε
=
⎢ ⎢
0
ε0
0
⎥ ⎥
⎣⎢ 0 0 ε0 ⎥⎦
六方对称晶体:
⎡ε ⊥ 0 0 ⎤
ε
=
⎢ ⎢
0
ε⊥
0
⎥ ⎥
⎣⎢ 0 0 ε // ⎥⎦
11
晶体宏观对称性及其分类
• 宏观对称性 • 点群 • 空间群 • 晶体结构分类
群为一组“元素”的集合,G≡(E, A, B, C, …),且这些“元素”在定义 一定的“乘法法则”下(不等价于数学乘法),满足下列性质: 1. 闭合性--- 集合内任意两元素“乘积”仍为集合元素
A, B ∈ G, 则AB=C ∈ G 2. 单元性---存在单位元素E,使得所有元素A:
AE= A 3. 可逆性---任意元素A存在逆元素A-1 满足
4
立方对称(sc、bcc、fcc)操作
(a)
(b)
(c)
•沿图(a)立方轴转动π/2、 π、 3π/2,有3个立方轴,共9个对称操作。 •沿图(b)面对角线转动π,有6条面对角线,共6个对称操作。 •沿图(c)体对角线转动2π/3、 4π/3,有4个体对角线,共8个对称操作。 •不动为一个对称操作。 •以上共24个对称操作,以上操作再加上反演为新的对称操作。 •共48个对称操作。
5
正四面体对称操作
•沿立方轴转动 π,有3个立方轴,共3个对称操作。 •沿图(c)体对角线转动2π/3、 4π/3,有4个体对角线,共8个对称操作。 •不动为一个对称操作。以上共12个对称操作。 •相对立方对称,少去的12个对称操作,即绕立方轴转π/2、3π/2以及绕 面对角线转动π,再加上中心反演为正四面体的对称操作。 •共24个对称操作。
晶格的周期性排列,还使其具有宏观对称性:例如立方晶胞。 当绕任一晶轴旋转90oC及其倍数或对任一原子作反演,晶格复 原。宏观对称性又称点对称性,因为进行此类对称操作时,晶 体至少一点不动,即未做平移。
晶体的宏观对称性产生于晶体中原子的周期排列,因此受到 晶体平移对称性的制约。
晶体的宏观对称性不仅反映在几何外形上,更重要的反映在 物理性质上,同时对晶格的分类起着重要作用。
3
宏观对称性的描述---对称操作
描述一个晶体具有的宏观对称性,最简单的办法就是列举 出所具有的全部对称操作。 一个物体在某种几何变换下不变,我们称此几何变换为其 对称操作。
三维晶体的对称操作包括:
•绕某一轴旋转角度θ •对某中心的反演 •以上二者的组合 •特殊的对称操作:不动
宏观对称操作是一个非平移操作,又称为点对称操作。 一个晶体具有的对称操作越多,表明它的对称性越高。
B’
θHale Waihona Puke AA’−θ
B
A' B' = m AB (m为整数)
A'B' = AB+ 2ABcos(1800 −θ) = AB(1−2cosθ)
13
所以 m = 1 − 2 cosθ
(m为整数)
m cosθ
θ
‐1
1
0 (2π)
0
1/2 2π/6
1
0 2π/4
2
‐1/2 2π/3
3
‐1 2π/2
因此宏观对称可能的对称素只有以下10种 (非完全独立):
第二讲 固体结构
一些晶格实例(自己看) 简单与复式晶格 晶格周期性的几何描述 晶列和晶面 晶体宏观对称性及其结构分类 倒点阵
1
晶体宏观对称性及其结构分类
• 宏观对称性 • 点群 • 空间群 • 晶体结构分类
2
宏观对称性
对称性是指在一定几何操作下,物体保持不变的特性。
晶体的显著特点是具有平移对称性:原子周期排列。平移Rl, 晶格复原。
AA-1= E 4. 结合律:
A(BC)= (AB)C
9
宏观对称性的描述---对称操作群
•一个物体的全部对称操作的集合,也满足群的定义,称为对 称操作群。
• “乘法法则”:连续操作。 • 单位元素:不动操作。 • 存在逆元素:中心反演的逆为其自身,转θ的逆为转-θ。 • 显然满足结合律。 • 闭合性:两个对称操作的“乘积”仍是物体的对称操作。
C P T’
O
A
T S
B
•描述物体的对称性只需找出其 对应的对称操作群。晶体对称 性的系统理论就是建立在“群” 的数学理论的基础上。
10
晶体宏观对称性与宏观物理性质
Neumann定理:晶体的任一宏观物理性质具有其晶 格所具有的全部对称性。
介电常数一般形式:
D = εε0E
ε
=
⎡ε ⎢⎢ε
xx yx
6
宏观对称性的描述---对称素
为简便起见,描述宏观对称性可以不用一一列举其对称 操作,而是指出其所具有的对称素。对称素就是一个物 体借以进行对称操作的一根轴、一个平面或者一个点。
I. 如果一个物体绕某轴旋转2π/n及其倍数不变,称该 轴为n次旋转轴,记为n。
II. 如果一个物体对某点反演不变,称这个点为对称心, 记为i。
12
宏观对称性破缺
晶体的宏观对称性不同于几何图形。晶体内部原子的周期排 列会对晶体点对称的对称素和对称素的组合产生严格限制。 因此,晶体的点对称素或者对称素之间的组合都是有限的和 一定的,称为宏观对称性破缺。
绕A点旋转θ角,B→B’ 绕B点旋转-θ角,A→A’
B' A' // AB
同族晶列格点的周期性要求
不动操作
回转群(只含 一个旋转轴)
双面群(一个n 重旋转轴和n个 垂直的二重轴)
熊夫利符号
C1 C2 C3 C4 C6 D2(V) D3 D4 D6 Ci(S1) Cs (S2)
III. 如果一个物体绕某轴旋转2π/n后再反演不变,称该
轴为n次旋转反演轴,记为 n
7
立方对称的对称素:
•三条4次旋转轴4和旋转-反演轴4 •六条2次旋转轴2和旋转-反演轴 2 •四条3次旋转轴3和旋转-反演轴 3 •中心反演:i •不动:1次旋转轴1或E
8
宏观对称性的描述---对称操作群
数学补充:群
1(E) 2 3 4 6 1(i) 2(m) 3 4 6
1次旋转轴即为不动(E). 1次旋转反演轴即为反演(i) 2次旋转反演轴等价晶面(m)
晶体内不可能由5重轴、7重轴、十重轴…..等等对称元素(原因?)
14
32种点群
•由于晶体平移对称性对其宏观对称性的限制,晶体只可能有上述10种对称 素,且对称素的组合也受到严格限制,10种对称素只能组成32种对称操作 群,称为点群。 •也就是说,晶体的宏观对称性只有32中类型,由32个点群来概括:
相关文档
最新文档