1 晶体结构及其对称性(研)
晶体的对称性

对称性与人类思维方式的联系
对称性思维方式是人类认知世界的一 种重要方式。人们习惯于将事物进行 对称性的分类、比较和思考,从而更 好地理解和把握事物的本质和内在规 律。
VS
对称性思维方式在科学研究和工程技 术中也发挥着重要作用。科学家们利 用对称性原理探索自然界的奥秘,解 决各种复杂的科学问题。工程师们则 利用对称性设计各种结构,提高产品 的稳定性和可靠性。
晶体的对称性
• 对称性的基本概念 • 晶体中的对称元素 • 对称性和晶体结构 • 对称性在化学中的运用 • 对称性与生物学的关系 • 对称性的哲学思考
01
对称性的基本概念
Hale Waihona Puke 称性的定义对称性是指一个物体或图形在某种变 换下保持不变的性质。在晶体学中, 对称性是指晶体在空间变换下保持不 变的性质。
对称性可以通过对称操作来描述,对 称操作是指将晶体进行刚性旋转、平 移、反演等变换后仍能恢复原状的操 作。
对称性的分类
晶体可以根据其对称性进行分类,常 见的晶体分类包括立方晶系、四方晶 系、六方晶系等。
VS
不同晶系的晶体具有不同的对称性, 晶体的对称性与其内部原子或分子的 排列方式密切相关。
对称操作的数学表达
对称操作可以用数学矩阵来表示,通过矩阵变换可以描述晶体的对称性。
对称操作的数学表达包括旋转矩阵、平移矩阵、反演矩阵等,这些矩阵可以用来描述晶体在空间中的 变换。
02
晶体中的对称元素
点对称元素
定义
01
点对称元素是晶体中以某一点为中心的对称操作,包括旋转、
反演、反映等。
描述
02
点对称元素在晶体中起着关键作用,它们决定了晶体的空间群
对称性在生物医学中的应用
晶体结构的对称性

晶体的对称性1. 晶体的宏观和微观对称性晶体的对称性最直观地表现在其几何外形上,由于晶体外形为有限的几何图形,故晶体外形上所体现的对称性与分子一样为点对称性,称为宏观对称性。
有四种类型的对称操作和对称元素旋转旋转轴反映反映面(镜面)反演对称中心旋转反演反轴由于晶体内部结构为点阵结构,点阵结构是一种无限的几何对称图形。
故晶体结构具有这种基本的空间对称性(通过平移对称操作能使点阵结构复原),常称为晶体的微观对称性。
有三种类型的对称操作和对称元素平移点阵螺旋螺旋轴滑移滑移面2. 晶体和晶体结构对称性的有关定理晶体和晶体结构的对称元素及相应的对称操作有上述七种。
晶体中点阵与对称元素的制约关系为:对称面和对称轴的取向定理在晶体结构的空间点阵图形中,对称轴必与一组直线点阵平行,并与一组平面点阵垂直;对称面则必与一组直线点阵垂直,并与一组平面点阵平行。
(对称轴包括旋转轴、反轴和螺旋轴;对称面包括反映面、滑移面)∙对称轴的轴次定理在晶体结构中存在的对称轴,其轴次只能为1、2、3、4、6这五种。
3. 7个晶系和32个晶体点群∙根据晶体的对称性,可将晶体分为7个晶系,每个晶系有它自己的特征对称元素。
晶体特征对称元素立方晶系四个按立方体的对角线取向的3重轴六方晶系唯一的6重轴四方晶系唯一的4重轴三方晶系唯一的3重轴正交晶系三个互相垂直的2重轴或二个互相垂直的对称面单斜晶系一个2重轴或对称面三斜晶系无∙由于晶体的对称性定理,限制了对称轴的轴次只能为1、2、3、4、6;又由于反轴中只有4重反轴是独立的对称元素,所以在晶体的宏观对称性中,只能找到8个独立的对称元素:1、2、3、4、6、m、i、。
∙与分子所含的对称元素相比,晶体中所含的对称元素有限,这八个对称元素按一定的组合规则组合后只能产生32个对称类型(对称元素系),每个对称类型所具有的对称元素所对应的对称操作构成一个群。
由于晶体的宏观外形为有限图形,故各种对称元素至少要相交于一点,故称为32个晶体点群。
晶体结构的对称性-从点阵到空间群

晶胞的大小和形状可以用晶胞参数来表示,即用晶胞的三个 边的长度a, b, c三个边之间的夹角a, b, g表示。
晶胞包含描述晶体结构所需的最基本结构信息。如果知道了
晶胞中全部原子的坐标,就有了晶体结构的全部信息。
一般写作:晶体结构=点阵+结构基元;但准确的描述应为:
晶体结构=点阵*结构基元 ;晶体结构=结构基元@点阵
周期性排列形成的固体物质。晶体有以下的共同
性质: 1. 均匀性; 2. 各向异性; 3. 自范性; 4. 对称性; 5.稳定性。
对称性的不同含义
物体的组成部分之间或不同物体之间特征的对应、 等价或相等的关系。(希腊字根=类似尺寸的。) 由于平衡或和谐的排列所显示的美。 形态和(在中分平面、中心或一个轴两侧的)组元 的排列构型的精确对应。
在二个C2轴之间角平分线的一个垂直平面叫作双面镜面,σ
d
( dihedral
plane )。
通过yz面的反映。
旋转倒反轴-反轴
旋转倒反轴,简称反轴 (Axis of inversion ,
Rotoinversion axis),其对称操作是先进行旋转操
作(n)后立刻再进行倒反操作,这样的复合操作称
1. 2. 3. 4.
石墨晶体结构
三维点阵和晶胞
使用矢量a、b和c 指定点阵:在所有两个点阵点之间的矢量(r) 满足关系, r = ua + vb + wc, , 其中u、v和w是整数。
指定晶体中的任意点: r = (u+x)a + (v+y)b + (w+z)c ,其中u, v, w为整数 r = (ua + vb +wc) + (xa + yb +zc)
固体物理(胡安)课后答案(可编辑)

固体物理(胡安)课后答案第一章晶体的结构及其对称性1.1石墨层中的碳原子排列成如图所示的六角网状结构,试问它是简单还是复式格子。
为什么?作出这一结构所对应的两维点阵和初基元胞。
解:石墨层中原子排成的六角网状结构是复式格子。
因为如图点A和点B的格点在晶格结构中所处的地位不同,并不完全等价,平移A→B,平移后晶格结构不能完全复原所以是复式格子。
1.2在正交直角坐标系中,若矢量,,,为单位向量。
为整数。
问下列情况属于什么点阵?(a)当为全奇或全偶时;(b)当之和为偶数时。
解:当为全奇或全偶时为面心立方结构点阵,当之和为偶数时是面心立方结构1.3 在上题中若奇数位上有负离子,偶数位上有正离子,问这一离子晶体属于什么结构?解:是离子晶体,属于氯化钠结构。
1.4 (a)分别证明,面心立方(fcc)和体心立方(bcc)点阵的惯用初基元胞三基矢间夹角相等,对fcc为,对bcc为(b)在金刚石结构中,作任意原子与其四个最近邻原子的连线。
证明任意两条线之间夹角θ均为解:(1)对于面心立方 (2)对于体心立方 (3)对于金刚石晶胞1.5 证明:在六角晶系中密勒指数为(h,k,l)的晶面族间距为证明:元胞基矢的体积倒格子基矢倒格矢:晶面间距1.6 证明:底心正交的倒点阵仍为底心正交的。
证明:简单六角点阵的第一布里渊区是一个六角正棱柱体底心正交点阵的惯用晶胞如图: 初级晶胞体积: 倒易点阵的基矢: 这组基矢确定的面是正交底心点阵1.7 证明:正点阵是其本身的倒易点阵的倒格子。
证明:倒易点阵初级元胞的体积:是初基元胞的体积而由于而或:现在证明: 又令又:代入同理 1.8 从二维平面点阵作图说明点阵不可能有七重旋转对称轴。
解: 1.9 试解释为什么:(a)四角(四方)晶系中没有底心四角和面心四角点阵。
(b)立方晶系中没有底心立方点阵。
(c)六角晶中只有简单六角点阵。
解:(a)因为四方晶系加底心,会失去4次轴。
(b)因为立方晶系加底心,将失去3次轴。
晶体的对称性理论

7
2、反映面——反映 对称要素:反映面,符号:m 对称动作:反映, 符号:M 阶次:2 一个面不动,反映能使左右手重合,一次反映不 能使相等的图形重合 特点:两个等同图形中相应点连线⊥反映面
30
问题:八种宏观对称要素之间究竟存在着多少种组 合方式?即晶体的宏观对称类型有多少种呢? 组合要符合如下条件: (1)对称要素间是相互作用的,两个对称要素相组 合,必然产生新的对称要素来; (2)对称要素间的组合不是任意的,需要满足: A- 参加组合的对称要素必须至少相交于一点。 这是因为晶体的外形是有限的、封闭的多 面体。 B- 晶体是一种点阵结构,对称要素的组合结果 不容许产生与点阵结构不相容的对称要素 来。(5、7····等)
5、反轴 == 旋转+倒反(点在线上)
对称要素:反轴, 符 号:n 复合对称动作:旋转+倒反 (点在线上)又称旋转倒反 阶 次: 如果旋转轴的轴次n是偶数,那么反轴的阶次=n 如果旋转轴的轴次n是奇数,那么反轴的阶次=2n 旋转倒反动作只能使左右手重合,不能使相等图 形重合。
11
12
6、螺旋轴-旋转+平移
21
(3)对称轴、反映面、对称中心、反轴,对应的对 称动作是点动作,在动作中至少有一点不动, 既存在于无限结构中,又存在于有限晶体外形 的结构中; 点阵、螺旋轴、滑移面,对应的对称动作 是空间动作,每一点都移动了只能存在于无限 结构中,而不能存在于有限晶体外形的结构 中。 旋转轴、螺旋轴→统称对称轴; 反映面、滑移面→统称对称面。
晶体对称性

晶体对称性晶体对称性是晶体学研究的一个重要组成部分,它是晶体结构的关键,可以解释晶体的外观、性质以及界面问题。
其中,最常见的是空间群,它用数学表示法确定变换的形式。
接下来,让我们来更多地了解晶体对称性:一、空间群1. 什么是空间群:空间群是一种变换群,也是对称性理论的基础,可以描述物体在特定坐标系中的集合子空间上的空间操作。
举个例子,如果一个物体只可以在空间系中做180°旋转,那么它就只具有一种(即旋转)拓扑群。
2. 空间群划分:空间群可以根据对称性来划分,主要包括有限对称群、无限对称群和单调对称群三类。
其中,有限对称群表示法子群的形状、大小或空间构造不变;无限对称群指的是无限种变换,其轴心、空间点或空间构造不变;而单调的对称群是单一的元素组成的,在该空间群中任何对称性都不变。
二、对称性1. 什么是对称性:对称性是空间群的基础,一般来说,它表示物体在某种坐标下有特定形状和空间操作的属性,也可以用数学表示法来表达这种特征。
2. 对称性的类型:对称性的类型可以分为四大类,分别是正交对称性、立体对称性、平面对称性和点对称性。
其中,正交对称性主要涉及空间中的空间坐标变换,立体对称性是指物体在立体坐标系下的操作,而平面对称性是指物体在平面坐标系下的操作,而点对称性则是指物体在特定空间构造下的操作。
三、晶体对称性1. 晶体对称性是什么:晶体对称性是晶体学研究的一个重要组成部分,它涉及到晶体结构的外观、性质以及界面问题的解释。
2. 晶体对称性的应用:晶体对称性可以用来研究和设计多种材料,如金属、半导体、有机分子晶体、生物晶体等,它们是将材料化学性质同物理性质关联起来,从而更好地理解材料的特性。
此外,晶体对称性也可用于分类、指导结构分析以及材料的设计和合成等。
四、总结从上文可以看出,晶体对称性是一个非常重要的概念,它不仅仅可以用来描述物体的形状、大小和空间结构,而且可以应用于许多不同的领域,如材料的研究与设计等。
晶体的对称性和分类

2
4
2 4
晶体中独立的宏观对称操作 (或对称元素)只有8种,
即:1、2、3、4、6、i、4m、 。其中数字n(1、2、
3、4、6)表示纯转动对称操作(或转动轴);i表示中心
反演(或对称中心);m表示镜面反映(或对称镜
面这)。种表示方法属于国际符号(International not
ation)标记法,是海尔曼(Hermann)和毛衮(Ma
晶体结构可以用布拉维格子或布拉维点阵来描 述,这样以来,晶体变为无限大的空间点阵.从而, 晶体具有了平移对称性,借助于点阵平移矢量,晶 格能够完全复位.我们把考虑平移后的对称性称 为晶体的微观对称性.
由于晶体的宏观对称操作不包含平移,所以宏 观对称操作时,晶体至少保持有一个点不动,相应 的对称操作又称为点对称操作.
a23
y
z z a31 a32 a33 z
其中: r
x y
z
x
r
y
z
a11
A
a21
a31
a12 a22 a32
a13
a23
a33
x x a11 a12 a13 x
y
y
a21
a22
a23
y
z z a31 a32 a33 z
x x
y
y
cos
z
sin
z
y
sin
z
cos
x 1 0
0 x
y
0
cos
sin
y
z 0 sin cos z
所以,绕x轴旋转的变换矩阵为:
1 0
0
Ax
0
cos
sin
[工学]第一章 晶体学基础-1
![[工学]第一章 晶体学基础-1](https://img.taocdn.com/s3/m/ebc83828de80d4d8d15a4fc7.png)
lattice 点阵
structural motif 结构基元
Crystal structure 晶体结构
晶体结构 = 点阵 + 结构基元
晶体结构
点 阵
结构基元
+
直线点阵 所有点阵点分布在一条直线上。 所有点阵点分布在一个平面上。
点阵
平面点阵 空间点阵
所有点阵点分布在三维空间上。
1、直线点阵:一维点阵
世界上的固态物质可分为二类,一类是晶态,
另一类是非晶态。自然界存在大量的晶体物质 ,如高山岩石、地下矿藏、海边砂粒、两极冰 川都是晶体组成。人类制造的金属、合金器材、 水泥制品及食品中的盐、糖等都属于晶体,不 论它们大至成千上万吨,小至毫米、微米,晶 体中的原子、分子都按某种规律周期性排列。 另一类固态物质,如玻璃、明胶、碳粉、塑料 制品等,它们内部的原子、分子排列杂乱无章, 没有周期性规律,通常称为玻璃体、无定形物 或非晶态物质
晶胞的两个要素: 1.
晶胞的大小与形状:
由晶胞参数a,b,c,α
,β,γ表示, a,b,c 为 六面体边长, α,β,γ 分 别是bc,ca,ab 所组成的 夹角 晶胞的内容:粒子的种类、数目及它在晶胞 中的相对位置
2.
CsCl晶体结构
上图为CsCl的晶体结构。Cl与Cs的1:1存在 若
a≠b 。 a∧b≠120
( a )NaCl
( b )Cu
二维周期排列的结构及其点阵(黑点代表点阵点)
b
a
(c)石墨 二维周期排列的结构及其点阵(黑点代表点阵点)
3、空间点阵:三维点阵特点:
①空间点阵可以分解成一组组平面点阵 ②取不在同一平面的三个向量组成平行六面
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)简单立方(sc、 simple cubic) :
在自然界中该晶体比较少见.如:钋Po在室温时 ( 相). 配位数为6。
原胞即为晶胞。
简立方(sc)的原胞与晶胞
原胞即为晶胞,晶胞中含有1个格点。 格矢即为基矢 a1、a2、a3
a2 aj a3 ak
a1 ai
格点 与(n1, n2, n3)一一对应。
满足上述关系的空间点阵称为布拉菲点阵,相应 的空间格子称为布拉菲格子.
布拉菲格子
一个无限延展的理想点阵,没有边界,其中的 所有格点是等价的。 格点所代表的内容、它的环境与所处的地位是 相同的。(平移对称性, 晶体在上述任一平移下保 持不变)
判断1分布的具体细节,而用一 个几何点来代表它,这样的点称为结点。 实际的晶体结构就可以抽象为一个纯粹的 几何结构,称为点阵。 点阵是一个分立点的无限阵列,是结点在 空间有规则地作周期性排列。从这个阵列的任 何一个结点去看,周围结点的分布与方位都是 精确相同的。
——布拉菲点阵
由于晶体中所有的基元完全等价,所以整个 晶体的结构可看作是由基元沿空间3个不同方向, 各按一定的周期平移而构成。
原胞体积为:
a 、a2 2 (i j k )
a 、a3 2 (i j k )
3 a1 (a2 a3 ) a / 2
原胞体积为晶胞体积的一半。 晶胞中含有2个格点。
(3)面心立方(fcc、 face-centered cubic ):
判断2:石墨层晶体
A
B
虽然所有原子都是 化学性质完全相同的碳 原子,但是几何环境不 完全相同,存在两种几 何环境不同的碳原子A 和 B。 A 原子的右侧一定 距离处有一个碳原子而 左侧没有,但是B 原子 则相反。
如果将A、B两个原子看作为 一个基元,则点阵结构就如前页所 示,格子就是布拉菲格子了。
贵金属Cu、Ag、Au 及Al、Ni、Pb等金属. 面心立方的配位数为 12 . 面心立方是自然界最密集的堆积方式之一, 称为面心立方密堆积,简称立方密堆积或立方密积.
面心立方(fcc)的原胞与晶胞
a a a a1 ( j k ) 、 a 2 (i k ) 、 a 3 (i j ) 2 2 2
§1.1 晶体及其平移对称性
一、晶体结构 与 基元
晶体结构 = 点阵 + 基元
1、晶体结构 = 点阵 + 基元
基元:
构成晶体的基本结构单元。
基元是化学组成、空间结构、排列取向、周围 环境相同的原子、分子、离子或离子团的集合。 可以是一个原子(如铜、金、银等),可以是两 个或两个以上的原子(如金刚石、氯化钠、磷化镓 等),有些无机物晶体的一个基元可有多达100个以 上的原子,如金属间化合物NaCd2的基元包含1000 多个原子,而蛋白质晶体的一个基元包含多达 10000 个以上的原子。
即:晶体结构 = 点阵 + 基元。
2、原胞与晶胞
用平行的直线连接点阵中所有的格点所形成网 格,称为晶格。 构成晶格的最小周期性结构单元称为原胞. 原胞的选取不唯一。原胞中只含一个格点。 原胞基矢用a1、a2、a3来表示。
原胞往往不能反映晶格的对称性。 在能够保持晶格对称性的前提下,构成晶体 的最小的周期性结构单元,称为结晶学原胞,简 称晶胞。 晶胞一般不等于原胞。其体积(面积)可以 是原胞的整数倍。晶胞中可含多个格点。 晶胞基矢用a、b、c (晶格常数)来表示。
原胞体积为:
a1 (a2 a3 ) a3
(2)体心立方(bcc、 body-centered cubic):
碱金属Li、Na、K、Rb、Cs, 难熔金属Cr、Mo、 W等. 体心立方的配位数是 8 .
体心立方(bcc)的原胞与晶胞
原胞基矢为: a a1 (i j k ) 2
二维蜂窝格子 (非布拉菲格子)
14种布拉菲格子:
1.简单三斜; 2.简单单斜, 3.底心单斜; 4.简单正交, 5.底心正交, 6.体心正交, 7.面心正交; 8.六角; 9.三角; 10.简单四方, 11.体心四方; 12.简单立方, 13.体心立方, 14.面心立方。
二、几种典型的晶体结构
1、立方晶系的布拉菲晶胞 由同一种元素的原子所组成,基元只有一个原子。 有:简单立方、体心立方、面心立方。
第一章 晶体结构及其对称性
§1.1 晶格及其平移对称性
§1.2 晶列与晶面 §1.3 倒点阵 §1.4 晶体的宏观对称性 §1.6 晶体X射线衍射
固体分类 晶体定义:原子、分子、离子、原子团有规则 地在三维空间的周期性重复排列形成的固体, 具有长程序。 晶体分单晶体和多晶体。 非晶体:内部粒子在三维空间不是周期性的有规 则的排列。长程无序,但在一个原子附近的若干 原子的排列是有一定规则的排列——短程有序。 准晶体:介于周期晶体和非晶玻璃之间的一种新 的固体物质形态。
由两个面心立方 子晶格相互位移套 构而成。
4、布拉菲(Bravais)格子
布喇菲(A. Bravais),法国学者,1850年提出。 定义: 各晶体是由一些基元(或格点)按一定规则, 周 期重复排列而成。任一格点的位矢均可以写成形式 Rn n1a1 n2 a2 n3 a3 。其中, n3 取整数, n1 、 n2、 a1 、 a2 、 Rn 为布拉菲格子的格矢。 a3 为基矢,
3、简单晶格与复式晶格 简单晶格: 如果晶体由完全相同的一种原子组成,例 如铜晶体的基元只包含一个铜原子,这种晶体 的晶格称为简单晶格,简单晶格与晶体基元代 表点的空间格子相同。
复式晶格:
如果晶体的基元中包含两种或两种以上的原 子。显然 , 每一种等价原子各构成与晶体基元代 表点的空间格子相同的网格,称为晶体的子晶格. 每一种等价原子的子晶格具有相同的几何结构, 整个晶格可视为,子晶格相互位移套构而成。该 晶体晶格称为复式晶格. 例如:氯化钠晶体