§1.4晶体结构的对称性

合集下载

晶体的对称性

晶体的对称性

对称性与人类思维方式的联系
对称性思维方式是人类认知世界的一 种重要方式。人们习惯于将事物进行 对称性的分类、比较和思考,从而更 好地理解和把握事物的本质和内在规 律。
VS
对称性思维方式在科学研究和工程技 术中也发挥着重要作用。科学家们利 用对称性原理探索自然界的奥秘,解 决各种复杂的科学问题。工程师们则 利用对称性设计各种结构,提高产品 的稳定性和可靠性。
晶体的对称性
• 对称性的基本概念 • 晶体中的对称元素 • 对称性和晶体结构 • 对称性在化学中的运用 • 对称性与生物学的关系 • 对称性的哲学思考
01
对称性的基本概念
Hale Waihona Puke 称性的定义对称性是指一个物体或图形在某种变 换下保持不变的性质。在晶体学中, 对称性是指晶体在空间变换下保持不 变的性质。
对称性可以通过对称操作来描述,对 称操作是指将晶体进行刚性旋转、平 移、反演等变换后仍能恢复原状的操 作。
对称性的分类
晶体可以根据其对称性进行分类,常 见的晶体分类包括立方晶系、四方晶 系、六方晶系等。
VS
不同晶系的晶体具有不同的对称性, 晶体的对称性与其内部原子或分子的 排列方式密切相关。
对称操作的数学表达
对称操作可以用数学矩阵来表示,通过矩阵变换可以描述晶体的对称性。
对称操作的数学表达包括旋转矩阵、平移矩阵、反演矩阵等,这些矩阵可以用来描述晶体在空间中的 变换。
02
晶体中的对称元素
点对称元素
定义
01
点对称元素是晶体中以某一点为中心的对称操作,包括旋转、
反演、反映等。
描述
02
点对称元素在晶体中起着关键作用,它们决定了晶体的空间群
对称性在生物医学中的应用

晶体结构的对称性

晶体结构的对称性

滑移面—滑移反映操作:由反应与平移组成的复 合对称操作。根据滑移方向的不同分为3类。第 一类轴线滑移面a(或b,c):如图虚线所示,对应的 操作为反映后,再沿a(或b,c)轴方向平移a/2(或 b/2,c/2);第二类对角 5 线滑移面n:如图B所 示。实点和虚点分别 4 a 3 是位于纸面的上方和 下方,且距离相等处。 对应的操作使反映后 a 2 沿a轴方向移动a/2,再 沿b轴方向移动b/2,即 1' 1 b 反映后又平移a/2+b/2
分子对称性与警惕宏观对称性对照表
分子对称性 晶体宏观对称性
对称操作及 其符号 旋转L(a) 反映M 倒反I 对称元素及其 对称操作及其 对称元素及 符号 符号 其符号 旋转 对称轴C 旋转轴n 对称面s
n
反映 反演 旋转反映
反映面或镜 面m 对称中心i 反轴
对称中心i 象转轴Sn
旋转倒反 L(a)I
1.2 晶体结构的对称性
1.2.1 晶体的对称元素和对称操作
晶体结构最基本的特征是具有空间点阵结构。 晶体的点阵结构使晶体的对称性和分子的对称性 有差别。分子结构的对称性是点对称性,只有4种 类型的对称元素和对称操作。 (1)旋转轴—旋转操作; (2)镜面—反映操作; (3)对称中心—反演操作; (4)反轴—旋转反映操作。 晶体的点阵结构,包括平移的对称操作。一方面 使晶体结构的对称性在上述点对称性的基础上还 增加下列3种类型的对称元素和对称操作。
对同一晶体,在划分平行六面体时,由于选择 向量的大小和方向不同,有许多划分方法,也就 能找到多种不同形状的晶胞。这些晶胞基本分为 二类:素晶胞和复晶胞。素晶胞包含的内容实质 上就是结构基元。若不考虑其他因素,任何晶体 均可划分为素晶胞。如图: 晶胞的基本要素:一个是晶胞的大小和形状, 可用晶胞参数(a,b,c,a,b,g)表示;另一个是晶 胞中原子的位置,通常用分数坐标(x,y,z)表示。 晶胞参数的定义与空间点阵的参数完全相同。 根据a,b,c,选择晶体的坐标轴X,Y,Z,使它们分别 和向量a,b,c平行。因此将a,b,c表示的方向也叫 晶轴。

晶体结构和对称性

晶体结构和对称性

晶体结构特点
空间格子
晶体内部原子、分子或离子的排列遵循一定的空间格 子规律。
对称性
晶体具有多种对称性,如旋转、平移、镜面对称等。
最小重复单元
晶体由最小重复单元沿着三维空间不断重复扩展而成。
晶体结构与物理性质的关系
光学性质
晶体的光学性质与其内部结构密切相关,如 光的折射、反射和散射等。
热学性质
晶体的热学性质如热膨胀系数、热容等与内 部结构相关。
详细描述
电子显微镜分析的基本原理是利用电子显微镜的高分辨率和高对比度,将晶体 样品放大并观察其微观结构。该方法可以观察到晶体中的原子排列和晶格结构, 对于研究晶体材料和生物大分子的结构具有重要意义。
原子力显微镜分析
总结词
原子力显微镜分析是一种利用原子力显微镜观察晶体表面的方法,可以观察到原 子级别的表面结构。
电学性质
晶体的电学性质如导电性、介电常数等与内 部结构有关。
机械性质
晶体的硬度、韧性等机械性质与其内部结构 紧密相关。
02
对称性与晶体分类
对称性概念
01
对称性是指物体在某种变换下保 持不变的性质。在晶体结构中, 对称性是指晶体在空间变换下保 持不变的性质。
02
对称性可以通过对称操作来描述 ,对称操作包括旋转、平移、反 演等。
对称性分类
根据对称性的不同,晶体可以分为七 大晶系,即三斜晶系、单斜晶系、正 交晶系、四方晶系、立方晶系、三方 晶系和六方晶系。
每个晶系又可以分为不同的点群,点 群是指晶体在空间变换下保持不变的 点对称操作。
对称性在晶体中的应用
01
对称性在晶体结构分析中具有重要的作用,通过对晶体结构的 对称性分析,可以确定晶体的晶系和点群,进而确定晶体的空

晶体对称性

晶体对称性
6次反轴为3次轴加对称面
准 晶
晶体中只有1, 2,3,4,6 次旋转轴,没有 5次轴和大于6 次以上的轴,可 以直观的从只有正方形、长方形、正三角形、正六边形可以重复布满平面, 而 5 边形和 n (>6)边形不能布满平面空间来直观理解。因此固体中不可能存 在 5 次轴曾是大家的共识,然而1984年美国科学家Shechtman在急冷的铝 锰合金中发现了晶体学中禁戒的 20 面体具有的 5 次对称性,这是对传统晶 体观念的一次冲击。
晶体的宏观对称性的描述
原子的周期性排列形成晶格,不同的晶格表现出不同 的宏观对称性 概括晶体宏观对称性的方法是考察晶体在正交变换的 不变性 三维情况下,正交变换的表示:
x x ' a11 y y ' a 12 z z' a 13
−1 ������ = 0 0
0 0 −1 0 0 −1
0 0 −1
1 0 ������(������������) = 0 1 0 0 1 0 ������ = 0 1 0 0 0 0 1
像转操作(Rotary reflection):
������������������������ ������ ������ = ������������������������ 0
目前普遍的认识是:晶体的必要条件是其 构成原子的长程有序,而不是平移对称性, 具有 5 次对称性的准晶体(Quasicrystal) 就是属于原子有严格的位置有序,而无平 移对称性的晶体。它的图像可从二维 Penrose拼图中得到理解。实际是一种准 周期结构,是介于周期晶体和非晶玻璃之 间的一种新的物质形态—准晶态。
(3). 底心单斜
C2 , Cs , C2 h

07-2.3晶体的对称性

07-2.3晶体的对称性
2.3.2.1 点群
定义:点群是指一个晶体中所有点对称元素的集合。 点对称操作的集合称为点群。
晶体可能存在的对称类型可通过宏观对称元素在一点 上组合运用而得出。
点群在宏观上表现为晶体外形的对称。利用组合定律 可导出晶体外形中只能有32种对称点群。
点群可以用对称元素相结合而导出,在不破坏原有对称的
前提下,结合方式有n/m (表示m⊥n,镜面垂直于n次旋转轴), nm (表示m∥n,镜面包含n次旋转轴), n/mm或n/m m(第
晶体绕某一轴回转能复原n次,就称之为n次对称轴。 晶体中实际可能存在的对称轴有五种,并用符号1,
2,3,4,和6来表示。
旋转角 n名称 符号
360 180 120 90 60 度
1
2 3 4 6 次轴
1
2 356
2. 对称面
立方晶系{100} {110}
晶体通过某一平面作 镜像反映而能复原, 则该平面称为对称面 或镜面,用符号m表示。 对称面通常是晶棱或 晶面的垂直平分面或 者为多面角平分面, 且必定通过晶体几何
晶体基本的对称操作有点对称操作和平移对称操作。
在对称操作过程中保持空间至少有一个不动点的操作 称为点对称操作。在一般的对称操作过程中,空间有许多 点在动,但操作前后状态一样。 如旋转,反演,平面反映 均为点对称操作。
用点对称操作ห้องสมุดไป่ตู้组合可以描述有规则几何外形的单晶 体所具有的点对称性,但许多金属单晶体虽然不一定具备 规则的几何外形,但它们相应的点对称性却仍然存在。
180º与P3点重合,再经O点反 演而与P’重合,则称BB‘为2
次旋转—反演轴。
旋转—反演轴有1,2,3,4
和6次五种,分别以国际符号
_ ____

晶体的对称性理论

晶体的对称性理论
1、旋转轴-旋转 对称要素:旋转轴,符号 n 对称动作:旋转 符号:L(α),α为基转角, n为旋转轴的轴次,即阶次,二者的关系 n=360°/α 特点:一条线不动,旋转能使相等图形重合,不能 使左右手重合。
7
2、反映面——反映 对称要素:反映面,符号:m 对称动作:反映, 符号:M 阶次:2 一个面不动,反映能使左右手重合,一次反映不 能使相等的图形重合 特点:两个等同图形中相应点连线⊥反映面
30
问题:八种宏观对称要素之间究竟存在着多少种组 合方式?即晶体的宏观对称类型有多少种呢? 组合要符合如下条件: (1)对称要素间是相互作用的,两个对称要素相组 合,必然产生新的对称要素来; (2)对称要素间的组合不是任意的,需要满足: A- 参加组合的对称要素必须至少相交于一点。 这是因为晶体的外形是有限的、封闭的多 面体。 B- 晶体是一种点阵结构,对称要素的组合结果 不容许产生与点阵结构不相容的对称要素 来。(5、7····等)
5、反轴 == 旋转+倒反(点在线上)
对称要素:反轴, 符 号:n 复合对称动作:旋转+倒反 (点在线上)又称旋转倒反 阶 次: 如果旋转轴的轴次n是偶数,那么反轴的阶次=n 如果旋转轴的轴次n是奇数,那么反轴的阶次=2n 旋转倒反动作只能使左右手重合,不能使相等图 形重合。
11
12
6、螺旋轴-旋转+平移
21
(3)对称轴、反映面、对称中心、反轴,对应的对 称动作是点动作,在动作中至少有一点不动, 既存在于无限结构中,又存在于有限晶体外形 的结构中; 点阵、螺旋轴、滑移面,对应的对称动作 是空间动作,每一点都移动了只能存在于无限 结构中,而不能存在于有限晶体外形的结构 中。 旋转轴、螺旋轴→统称对称轴; 反映面、滑移面→统称对称面。

晶体的对称性

晶体的对称性

点式操作组合定理
定理1:如果有一个二次轴2垂直N次轴n,则必有N个2垂直 n。 定理2:如果有一个对称面m包含n,则必有N个m包含n 定理3:如果有一个偶次轴垂直对称面m,则必在对称轴与 对称面的交点上产生一个对称中心。
晶体学点群的对称元素方向及国际符号
晶系 第一位 可能对称 元素 三斜 1,`1 单斜 2,m,2/m 正交 2,m 四方 4,`4, 4/m 三方 3,`3 六方 6,`6, 6/m 方向 第二位 可能对称 元素 无 2,m Y 无, 2,m X 方向 第三位 可能对称 元素 无 无 2,m Z 无, 2,m 底对 角线 无 无, 2,m 底对 角线 方向 1,`1 2,m,2/m 222,mm2,mmm 4,`4,4/m,422, 4mm, `42m, 4/mmm 3,`3, 32,3m, `3m 6,`6, 6/m,622, 6mm, `62m, 6/mmm 23,m3,432, `43m, m`3m 点群(32个)
点群
八个基本对称操作
m, 2, 3, 4, 6, 1, 4, 6
那么,在晶体中,究竟有哪些对称元素和对称操作可以同时存在?它们的 组合方式有多少种?在数学上,把对称元素(或对称操作)的集合叫做 “对称群”。因为上述对称元素中,不包括平移对称性,进行对称操作时 总是有一点保持不动,所以只包括上述对称元素的集合叫做“点群”。一 个晶体上可以同时存在多个对称要素,这些对称要素共存时一定要符合对 称要素组合定理,不能任意共存。 人们经过长期研究的结果,发现这八种对称元素共有32种组合方式,即 32种点群。这32种点群对应于晶体的32种宏观对称类型,就是说自然界 千千万万种晶体,可以归纳为32种宏观对称类型。
对称( symmetry )告诉我们原子所在乊处具有的对称元素。

第一章 晶体的对称性

第一章 晶体的对称性

第一章晶体的对称性§1-1 晶体内部结构的周期性---点阵与晶格大家都知道晶体内部原子(分子、离子和原子团等,以后称质点)的排列是规则的,具有一定的周期性,这是晶体的主要特点。

不同晶体中的质点在空间中的排列规律是不同的,有许多种排列方式。

因此,在对晶体进行研究时,为了归类方便,常将构成晶体的实际质点抽象成纯粹的几何点,并称之为阵点。

这样的阵点在空间中周期性规则排列并有相同的周围环境。

这种阵点的空间排列就称为空间点阵,或晶体点阵,也称布拉法格子,简称点阵或晶格,共有14种。

§1-2 晶体的宏观对称性---点对称操作晶体内部结构不仅具有周期性,还具有比较复杂的对称性。

实际上,晶体宏观性质和外形的对称性都是其内部结构对称性的反映,与其有着密切关系。

应该说,人们最初认识晶体,是从它们丰富多彩又有规则的外部形状开始的,后来才逐步认识到,晶体外形上的规则性及其宏观性质的对称性,是与其内部微观结构的对称性密切相关的。

在本节及以下几节中,通过对晶体的宏观对称性的描述,引进群的初步概念,给出晶体的32个点群,并依据晶体对称性特征,区分晶类和晶系。

1.晶体的宏观对称性。

晶体外形上(宏观上)的规律性,突出表现在晶面的对称排列上。

如:把立方体的岩盐晶体绕其中心轴每转900后,晶体自身就会重合,而把六面柱体的石英晶体绕其柱轴每转600后,晶体亦会自身重合。

这里提到的绕轴转动称旋转操作,是一种点对称操作。

通常把经过某种点对称操作后晶体自身重合的性质称为晶体的宏观对称性。

描述晶体宏观对称性的方法,就是列举使其自身重合的所有点对称操作。

为了明确对称性和对称操作的概念,先给出以下概念:●相等图形。

如花瓣。

●等同图形。

如左右手。

相等图形属于等同图形,但等同图形不一定是相等图形。

●对称图形。

由两个或两个以上的等同图形构成的并在空间有规律排列的图形称对称图形。

2.对称性。

对称图形中各等同部分在空间排列的特殊规律性称对称性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
把B格子按照点对称性进行分类,可分成 7类,称为七种晶系。
45
二.分数周期平移T/n
平移:a.周期平移T,晶体自身重合; b.分数周期平移T/n,本身并不能使晶体
自身重合,而与转动或镜象操作结合后 才能使晶体重合,即二者结合构成一个 操作。
1.n度螺旋轴U:绕轴旋转2π/n,再沿该轴平移
L×T/n,其中T为轴方向的周期,n=1,2,3,4,6, L为小于n的整数。
3.无公度调制结构
无公度调制是指在基本晶格(周期为a)上
附加一个周期为 的某种调制,/a为无理
数,就得到无公度调制,得到的相为无公度 相。
在无公度相中,调制只对基本晶格产生另 一周期的微扰,基本晶格的衍射图样仍然保 留,但在正常衍射斑点之间偏离有理分数处 出现卫星斑点。
无公度相严格来讲也是一种准周期结构 。
2
2
2.中心反演对称性(用i表示)
以晶体中一点O为中心。将
晶体中的位矢r变为- r以后,
晶体完全重合的操作。 O点称为反演中心。
请看动画GT009b
3.镜象操作---用σ表示
在晶体中选一平面,以这平面为镜面进 行镜象操作,若操作后晶体能自身重合, 则说该晶体具有镜象操作对称性。
若镜面是与X轴垂直的Y-Z面,镜象操 作相当于坐标变换:x -x, y,z不变。
2.滑移反映面
先经过某面进行镜象操作,再沿平行于 该面的某个方向平移T/2后,晶体自身重合, 则称该面为滑移反映面。(见图)
考虑了平移操作后,晶体 共有230种对称类型,称为
230种空间群
B格子共有14种对称类型, 称为14种B格子。
四.七种晶系和十四种布拉菲格子
晶体结构 布拉菲格子
• 点群数
30
请看动画《GT009》
4.旋转-反演操作(象转操作)
若绕某轴旋转θ=2π/n 角度后再经中心
反演,晶体能自身重合,则称该操作为旋
转-反演操作,此轴称为n度旋转-反演
轴。n=1,2,3,4,6.分别用 C1,C2,C3,C4, C6表示。
可以证明, C1
i
C2
σ镜面垂直于转轴
C3
C3• i (•表示联合操作)
§1.4晶体结构的对称性
晶体操作
平移操作______周期平移T, 分数周期平移T/n
点操作(至少一点不动) _____旋转、反演、镜象等
一.基本点对称操作
1.旋转操作:将晶体绕某轴旋转一定角
度 后,晶体能自身重合的操作。
若转动的角度θ=2π/n ,则称该轴为n度旋 转轴。
由于晶体周期性的制约,晶体只有1,2, 3C,6表4,示6。五请种看转动轴画,《常对用称C操1,作C》2,C3,C4, 说明:传统的讲法认为,晶体不存在五 重轴。
如果我们将太极图沿垂直于 图面的轴旋转180’,再引入一个 新的对称操作:黑白颠倒,图形 就可以复原。
黑白群也可以看作三维空间群朝四维的推广, 而第四个维度限于两种值:黑与白,正与反。 当然可以推广到多种颜色。还可以是波函数的 相位、自旋、电荷符号等。这类广义的对称群 被称为色群。
磁结构是由磁性材料的晶体结构加上磁性原子 的磁矩构成的。磁对称群是一种色群,第四个 变量为磁性原子的自旋。在一般的对称操作基 础上,加上使磁矩反转的操作,可把230种空间 群增加到能描述铁磁和反铁磁性晶体对称性的 1651个对称群,这还不包括螺旋磁结构。
类似,C6
C3 •σ( σ与C3轴垂直)
以上要求左、右互为充要条件,且
C3 ,C6与C3 为同一转轴。
注意:c 4与C4,i并不互为充要条件。
请看动画GT021a和GT021b。
可选以下操作为晶体结构基本 点对称操作
C1,C2,C3,C4,C6,i,σ, C4
共八个
把晶体按照点对称性进行分类,可分成 32类,称为32种点群,
32 •
7
(七种晶系)
Hale Waihona Puke • 空间群 230 • 14 (十四种B格子)
讨论: 超出空间群的结构
1. Penrose拼砌图和准晶
在急冷的Al-Mn合金中获得了 具有二十面体对称性(包括五重对 称轴)、斑点明锐的电子衍射图。
可认为,这是三维准周期结构,简 称准晶(quasicrystal)。
2.色群和磁结构
相关文档
最新文档