函数的奇偶性、周期性、对称性三者之间的关系

合集下载

函数的单调性奇偶性和周期性和对称性之间的关系

函数的单调性奇偶性和周期性和对称性之间的关系

函 数 的 对 称 性一个函数的自对称定义1、定义域为R 的函数()f x ,若满足()()f a x f a x +=-或是(2)()f a x f x -=,图像特征函数自身关于x a =对称。

就是该函数的对称轴是x a =。

定义2、定义域为R 的函数()f x ,若满足()()f a x f a x +=--或是(2)()f a x f x -=-,图像特征函数自身关于点(,0)a 对称。

就是该函数的对称点是(,0)a 。

定义3、定义域为R 的函数()f x ,若满足()()f a x f b x +=-,图像特征函数自身关于2a b x +=对称。

就是该函数的对称轴是2a b x +=。

定义2、定义域为R 的函数()f x ,若满足()()f a x f b x +=--,图像特征函数自身关于点(,0)2a b +对称。

就是该函数的对称点是(,0)2a b +。

还可以推广为()()f a x m f b x +=-- 含义:函数()f x 关于(,)22a b m +这个点对称。

周期性:若()f x 对于定义域中的任意x 均有()()f x T f x +=,则()f x 是周期函数.它的变形有: (1)f(x-1)=f(x+1) (2)f(x+2)=-f(x);(3)f(x+2)=1()f x - (4)f(x+3) +f(x)=1 (5)f(x+1)=)(11)(x f x f -+ 特征是x 的符号相同。

习 题1、已知()f x 是R 上的偶函数,且f(-x-1)=f(-x+1) 当[0,1]x ∈时,()1f x x =-+,求当[5,7]x ∈时,()f x 的解析式。

2、定义域为R 的()f x 既是奇函数又是周期函数,T 是它的一个周期.问:区间[,]T T -上它有几个根?(财富:奇函数的半周期也是0点)3、定义在R 上的偶函数()f x 以3为周期,且(2)0f =,则方程()0f x =在区间(0,6) 上有几个根?4、()f x 是R 上的偶函数,若将()f x 的图象向右平移一个单位又得到一个奇函数,且(2)1f =-,求(1)(2)(3)(2008)f f f f ++++L 的值.5、定义在R 上的函数()f x 满足5()()02f x f x ++=且5()4f x +为奇函数,下列结论谁正确? ①函数()f x 的最小正周期是52;②函数()f x 的图象关于点(5,04)对称;③函数()f x 的图象关于52x =对称;④函数()f x 的最大值为5()2f . 6、函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( )(A) ()f x 是偶函数; (B) ()f x 是奇函数(C) ()(2)f x f x =+ ; (D) (3)f x +是奇函数例4举例子,构造新函数,用定义,平移,伸缩处理四道抽象函数题。

函数奇偶性、对称性与周期性有关结论

函数奇偶性、对称性与周期性有关结论

函数奇偶性、对称性与周期性奇偶性、对称性和周期性是函数的重要性质,下面总结关于它们的一些重要结论及运用它们解决抽象型函数的有关习题。

一、几个重要的结论(一)函数)(x f y =图象本身的对称性(自身对称)2、)2()(x a f x f -=⇔)(x f y =的图象关于直线a x =对称。

3、)2()(x a f x f +=-⇔)(x f y =的图象关于直线a x =对称。

4、)()(x b f x a f -=+⇔)(x f y =的图象关于直线22)()(b a x b x a x +=-++=对称。

5、b x a f x a f 2)()(=-++⇔)(x f y =的图象关于点),(b a 对称。

6、b x a f x f 2)2()(=-+⇔)(x f y =的图象关于点),(b a 对称。

7、b x a f x f 2)2()(=++-⇔)(x f y =的图象关于点),(b a 对称。

8、c x b f x a f 2)()(=-++⇔)(x f y =的图象关于点),2(c b a +对称。

(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称。

2、函数)(x f y =与)2(x a f y -=图象关于直线a x =对称3、函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称4、函数)(x a f y +=与)(x b f y -=图象关于直线0)()(=--+x b x a 对称 即直线2a b x -=对称 5、函数)(x f y =与)(x f y -=图象关于X 轴对称。

6、函数)(x f y =与)(x f y -=图象关于Y 轴对称。

7、函数)(x f y =与)(x f y --=图象关于原点对称(三)函数的周期性1、)()(x f T x f =+⇔)(x f y =的周期为T2、)()(b x b f a x f ++=+)(b a <⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+⇔)(x f y =的周期为a T 2= 6、)(1)(1)(x f x f a x f +-=+⇔)(x f y =的周期为a T 3= 7、1)(1)(+-=+x f a x f ⇔)(x f y =的周期为a T 3= 8、)(1)(1)(x f x f a x f -+=+⇔)(x f y =的周期为a T 4= 9、)()()2(x f a x f a x f -+=+⇔)(x f y =的周期为a T 6=10、)(x f y =有两条对称轴a x =和b x =()b a <⇔)(x f y =周期)(2a b T -=11、)(x f y =有两个对称中心)0,(a 和)0,(b ⇔)(x f y =周期)(2a b T -=12、)(x f y =有一条对称轴a x =和一个对称中心)0,(b ⇔)(x f y =周期)(4a b T -=13、奇函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y =周期a T 4=。

函数的奇偶性周期性和对称性

函数的奇偶性周期性和对称性

返回目录
退出
奇偶函数的性质
(1) 奇函数在对称区间上的单调性相同,偶 函数在对称区间上的单调性相反。 (2) 奇函数如果在x=0有意义,则f(0)=0。 (3) 奇函数的最大值与最小值互为相反数。
返回目录
退出
2.周期性 (1)周期函数:对于函数 y=f(x),如果存在一个非零常数 T,使得当 x 取定 义域内的任何值时,都有 f(x+T)= f(x) ,那么就称函数 y=f(x)为周期函数, 称 T 为这个函数的周期. (2)最小正周期:如果在周期函数 f(x)的所有周期中 存在一个最小的正 数,那么这个 最小正数就叫做 f(x)的最小正周期.
B.
2 3
C. D.1
4
3
3.函数 f(x)=(m-1)x +2mx+3 为偶函数,则 f(x)在区间(-5,-3)上( A.先减后增 B.先增后减 C.单调递减 D.单调递增
D ).
返回目录
退出
4.若 f(x)是 R 上周期为 5 的奇函数,且满足 f(1)=1,f(2)=2,则 f(3)-f(4)=( A ). A.-1 B.1 C.-2 D.2
返回目录
退出
1.函数 f(x)= -x 的图象关于(
������
1
C
).
A.y 轴对称 B.直线 y=-x 对称 C.坐标原点对称 D.直线 y=x 对称
返回目录
退出
������ 2.若函数 f(x)= 为奇函数,则 a=( (2������+1)(������-������)
A
).
A.
1 2
2
1.
3
2
23 .奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单 调性相同,偶函数在关于原点对称的区间上的单调性相反.

初中数学知识归纳函数的奇偶性与周期性

初中数学知识归纳函数的奇偶性与周期性

初中数学知识归纳函数的奇偶性与周期性函数是数学中重要的概念之一,它描述了数值之间的关系。

在初中数学中,我们学习了函数的奇偶性与周期性的概念。

本文将对这两个概念进行归纳总结,并提供相关的例子,以帮助大家更好地理解和应用这些知识。

一、函数的奇偶性1. 定义一个函数f(x),若对于任意x,有f(-x) = f(x),则称该函数为偶函数;若对于任意x,有f(-x) = -f(x),则称该函数为奇函数。

2. 性质(1)偶函数的图像关于y轴对称,即关于原点中心对称;奇函数的图像关于坐标原点对称。

(2)偶函数的奇点(f(x) = 0的点)关于y轴对称,奇函数的奇点关于原点对称。

(3)偶函数与偶函数的和、差、积仍为偶函数;奇函数与奇函数的和、差为偶函数,积为奇函数。

(4)若函数可以表示为偶函数与奇函数的和,那么该函数为任意函数。

3. 举例(1)常见的偶函数:f(x) = x^2、f(x) = cos(x)等。

(2)常见的奇函数:f(x) = x、f(x) = sin(x)等。

二、函数的周期性1. 定义一个函数f(x),若存在正数T,对于任意实数x,有f(x+T) = f(x),则称该函数为周期函数,T称为函数的周期。

2. 性质(1)周期函数的图像在每一个周期内完全重复。

(2)一个函数的周期不唯一,只要存在一个T使得f(x+T) = f(x),那么T的所有倍数也是f(x)的周期。

(3)若f(x)和g(x)都是周期为T的周期函数,那么f(x) ± g(x)、f(x) × g(x)也是周期为T的周期函数。

3. 举例(1)常见的周期函数:f(x) = sin(x)、f(x) = cos(x)等。

(2)常见的非周期函数:f(x) = x^2、f(x) = e^x等。

三、奇偶性与周期性的关系1. 性质(1)对于一个函数f(x),若它既是奇函数又是周期函数,那么它的周期必须是2π的整数倍。

(2)对于一个函数f(x),若它既是偶函数又是周期函数,那么它的周期必须是2π的整数倍且f(0)为其最小正周期。

从一考题探析函数的奇偶性、周期性、对称性之关系

从一考题探析函数的奇偶性、周期性、对称性之关系
本文通过一道高考题深入探讨了函数的奇偶性、周期性和对称性之间的关系。首先,介绍了这三个性质在函数中的重要地位,并给出了二次轴对称与周期性、奇偶性的三个论断。通过证明这些论断,揭了函数的图像关于某直线对称与其周期性之间的内在联系。具体地,当函数图像关于两条不同的直线对称时,该函数必为周期函数,且其周期与这两条对称轴之间的距离有关。此外,还进一步推导出,若函数图像关于某直线对称且具有周期性,则该函数图像将有无数条平行于y轴的对称轴。这些结论不仅深化了对函数基本性质的理解,也为解决相关函数问题提供了有力的工具。最后,通过具体的解题应用,展示了如何运用这些性质来判断函数的奇偶性和周期性,进一步验证了所得结论的实用性和有效性。

浅谈函数奇偶性、周期性、对称性之联系

浅谈函数奇偶性、周期性、对称性之联系

在 给 出“ 子 问题” , 师 说: 绳 后 老 我们 假 设一 边
长 为 X , 另 一边 长 是 多少 呢?大 多数 学 生 齐 米 那
答 (0一X 米, 5 ) 也有少数说 (0 10—2 ) x 米.老师 说: 要除 以2 另一边长是 (0 ) 老师在 对, , 5 一X 米.
黑板 上 列 出方 程, 学生 解 方 程, 后 检 验作 答 , 让 最

・ ・







. .
+() , 一k ≤k】 ) f +1 = (立 ) 定x k 如n 一 一 成 +1 } 、 一 , 1 七2+<≤+) 一++( 1 七2 k() 的周 , k=0 4 , 4 … , , - , 24 - 则显然fx AT=2
维普资讯
20 年第 4 08 期
数 学教 学
4l 一l
浅 谈 函 数 奇 偶 性 、周 期 性 、对 称 性 之 联 系
2 21 华东师范大学数学系2 4 04 0 0 级学生 张绍林 王 江 0
当前中学教学中, 函数的奇偶性、周期性、 ‘ fx 是T=2 的周期函数, . () 。 a 对称性既是难点又是重点.本文以实际教学为 . fx =Ix+2) 令t 。 () ( . a. =X+a , 出发点, 系统地归纳出了三者之间的联系, 并深 Ift ) (+n, . (—a =ft ) . 入进行了讨论. . fx+a =fx—n. ’ ( . ) ( ) 1引理 . ( 充分性) 引理 1 设a . 1 为任意常数, 函数fx 满足 () ‘ fx+a =fx—n, =X—a . ( ‘ ) ( )令t , fx+a =一, , () ( ) ()则fx 是T=2 的周期函 a . ft a =,t, ‘ (+2 ) ( . ) 数. 反之, 则不一定成立. . fx AT=2 的周期函数. . () . a 证明:. ( 。 x+a =一 () 。f ) , , 引理1 设0 是任意常数, (+ ) . 3 、6 则,n = , +2) 【 +n +n ( n =,( ) 】 fb 的充要条件是, 关于 (— ) () : 对称. , +n =, , ( ) () 证明: ( 必要性) , 是 =2 的周期函数・ () n - , + :fb )令 : + n . ) (— ・ , 反之, () 若, AT=2 的周期函数, n 则, ,t :,n+6 ) ( ) ( 一t,

函数的对称性、周期性以及之间的关系

函数的对称性、周期性以及之间的关系

函数的对称性、周期性以及之间的关系对称性、奇偶性、周期性、单调性函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础.在研究函数图象的对称性时,一定要区分是一个图象自身的对称(称之为“自对称”),还是两个函数图象间的对称(称之为“互对称”)。

函数的对称性指的是函数的图象的对称性,通常包括点对称和直线对称,即中心对称和轴对称。

自对称一、函数的对称性关于函数图象的对称性,我们有这样两个命题。

命题1:如果函数y=f(x)的图像关于点M(m, n)对称,那么f (m +x) + f (m-x)=2n 即f(x)+f(2m-x)=2n命题2:如果函数y=f(x)的图像关于直线x=m对称,那么f (m +x) = f (m-x)即f (x) = f (2m-x)二、函数的奇偶性与对称性的联系命题1:函数y=f(x)的图像关于点M(0, 0)对称的充要条件是函数y= f (x)是奇函数,即f (x) + f (-x) = 0命题2:函数y=f(x)的图像关于点直线x=0对称的充要条件是函数y= f (x)是偶函数,即f (x) = f (-x)三、函数的周期性与对称性的联系包括点点对称、线线对称、点线对称的周期性命题:①若函数y = f (x) 图像同时关于点A (m ,c)和点B (n ,c)成中心对称(m ≠n),则y = f (x)是周期函数,且2| m-n|是其一个周期.②若函数y = f (x) 图像同时关于直线x = m 和直线x = n成轴对称(m≠n),则y = f (x)是周期函数,且2| m-n|是其一个周期.③若函数y = f (x)图像既关于点A (m ,c) 成中心对称又关于直线x =n成轴对称(m≠n),则y = f (x)是周期函数,且4| m-n|是其一个周期.(同为中心对称或同为轴对称乘2;一中心对称一轴对称乘4)四、函数的奇偶性、周期性和对称性的联系奇偶性只是特殊的点线对称。

2023届高考数学一轮复习奇偶性,对称性,周期性+课件

2023届高考数学一轮复习奇偶性,对称性,周期性+课件

f (2x+1)为奇函数,则
B
A. f (- 1) = 0 2
B. f (-1) = 0
C. f (2) = 0
D. f (4) = 0
分析:f (x)关于x = 2对称
令g(x) = f (2x+1) ∴g(-x) = -g(x) ∴ f (-2x+1) = - f (2x+1)
∴g(0) = f (1) = 0 ∴ f (3) = f (1) = 0
T =4|a|
分析:T =8
f (2022) = f (-2) = - f (2) = -3
练习:若 f (x)满足f (x+2) = 1 , f (1) = -5,则f ( f (5)) = f (x)
-1 5
第二关 例2.若f (x)是R上的奇函数,且满足 f (x+2) = - f (x), 则f (6) =
2
(a+ x, f (a+ x)) 由图知:f (a+ x) = - f (a - x)
横坐标关于a对称: a+ x+a - x = a 2
纵坐标关于0对称: f (a+ x)+ f (a - x) = 0 2
(a - x, f (a - x))
发现:点的横坐标关于 横坐标对称, 纵坐标关于纵坐标对称
A.-50
B.0
C.2
D.50
解:奇函数+ x =1⇒T = 4
又f (0) = 0, f (1) = 2 ∴ f (2) = 0, f (3) = f (-1) = - f (1) = -2 f (4) = f (0) ∴ f (1)+ f (2)+ f (3)+ f (4) = 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的奇偶性、周期性和对称性三者之间的关系
1、若函数)(x f 在R 上满足图像关于直线)(,,b a b x a x ≠==对称,则函数)(x f 为周期函数,)(2b a T -=是它的一个周期。

证:根据题意有:)()2();()2(x f x b f x f x a f -=+-=+
令b x x 2-=,代入上式得:)2()22(b x f b x a f +-=-+——————————①
)2()(b x f x f +-=—————————————②
将②式代入①式得:)()](2[x f b a x f =-+
∴函数)(x f 是周期函数,且)(2b a T -=是它的一个周期。

2、若函数)(x f 在R 上满足图像关于点))(0,(),0,(b a b a ≠对称,则函数)(x f 为周期函数,)(2b a T -=是它的一个周期。

证:根据题意有:0)()2(,0)()2(=-++=-++x f x b f x f x a f
令b x x 2-=,代入上式得:)2()22(b x f b x a f +--=-+————————① )2()(b x f x f +--=————————————②
将②式代入①式得:)()](2[x f b a x f =-+
∴函数)(x f 是周期函数,且)(2b a T -=是它的一个周期。

3、若函数)(x f 在R 上满足图像关于直线a x =和点))(0,(b a b ≠对称,则函数)(x f 为周期函数,)(4b a T -=是它的一个周期。

证:根据题意有:0)()2(),()2(=-++-=+x f x b f x f x a f
令b x x 2-=,代入上式得:)2()22(b x f b x a f +-=-+,)2()(b x f x f +--=
则)()22(x f b a x f -=-+,又令b a x x 22-+=,得)22()](4[b a x f b a x f -+-=-+ )()](4[x f b a x f =-+∴
∴函数)(x f 是周期函数,且)(4b a T -=是它的一个周期。

4、若函数)(x f 在定义域上是奇函数,其图像关于直线)0(≠=a a x 对称,则函数)(x f 为周期函数,a T 4=是其一个周期。

证:根据题意有:)0(),()(),()(≠-=+-=-a x a f x a f x f x f
令a x x +=,有)()()2(x f x f x a f -=-=+
又令a x x 2+=,有)2()4(x a f x a f +-=+,)()4(x f x a f =+∴
∴函数)(x f 为周期函数,a T 4=是其一个周期。

5、若函数)(x f 在定义域上是奇函数,其图像关于点)0)(0,(≠a a 对称,则函数)(x f 为周期函数,a T 2=是其一个周期。

证:根据题意有:)0(,0)()(),()(≠=-++-=-a x a f x a f x f x f
令a x x +=,有)()()2(x f x f x a f =--=+
∴函数)(x f 为周期函数,a T 2=是其一个周期。

6、若函数在定)(x f 义域上是奇函数,且以T 为周期(T >0)的函数,则其图像关于点)0,(T 对称。

证:根据题意有:)()(),()(x f x T f x f x f =+-=-
则有)()()(x f x f T x f -=-=+-,即)()(x T f x T f --=+0)()(=+-++⇒T x f T x f ∴函数)(x f 的图像关于点)0,(T 对称。

7、若f (x )为偶函数,且以T 为周期(T >0)的函数,则图象关于直线x=T 对称; 证:根据题意有:)()(),()(x f x T f x f x f =+=-
则有)()()(x f x f T x f =-=+-,即)()(x T f x T f -=+
∴函数)(x f 的图像关于直线x=T 对称。

8、若f (x )为偶函数,且图象关于直线x=a (a ≠0)对称,则f (x )为周期偶函数,且2a 是它的一个周期;
证:根据题意有:)()(),()(x a f x a f x f x f -=+=-
令a x x +=,有)()()2(x f x f x a f =-=+
∴函数)(x f 为周期函数,a T 2=是其一个周期。

9、若f (x )的图象关于直线x=a (a ≠0)对称,且f (x )是以2a 为周期的周期函数,则f (x )是偶函数。

证:根据题意有:)()2(),()(x f x a f x a f x a f =+-=+
令a x x -=,有)()2()(x f x a f x f -=-=
∴函数)(x f 为偶函数。

相关文档
最新文档