晶体的对称性
合集下载
晶体的对称性

对称性与人类思维方式的联系
对称性思维方式是人类认知世界的一 种重要方式。人们习惯于将事物进行 对称性的分类、比较和思考,从而更 好地理解和把握事物的本质和内在规 律。
VS
对称性思维方式在科学研究和工程技 术中也发挥着重要作用。科学家们利 用对称性原理探索自然界的奥秘,解 决各种复杂的科学问题。工程师们则 利用对称性设计各种结构,提高产品 的稳定性和可靠性。
晶体的对称性
• 对称性的基本概念 • 晶体中的对称元素 • 对称性和晶体结构 • 对称性在化学中的运用 • 对称性与生物学的关系 • 对称性的哲学思考
01
对称性的基本概念
Hale Waihona Puke 称性的定义对称性是指一个物体或图形在某种变 换下保持不变的性质。在晶体学中, 对称性是指晶体在空间变换下保持不 变的性质。
对称性可以通过对称操作来描述,对 称操作是指将晶体进行刚性旋转、平 移、反演等变换后仍能恢复原状的操 作。
对称性的分类
晶体可以根据其对称性进行分类,常 见的晶体分类包括立方晶系、四方晶 系、六方晶系等。
VS
不同晶系的晶体具有不同的对称性, 晶体的对称性与其内部原子或分子的 排列方式密切相关。
对称操作的数学表达
对称操作可以用数学矩阵来表示,通过矩阵变换可以描述晶体的对称性。
对称操作的数学表达包括旋转矩阵、平移矩阵、反演矩阵等,这些矩阵可以用来描述晶体在空间中的 变换。
02
晶体中的对称元素
点对称元素
定义
01
点对称元素是晶体中以某一点为中心的对称操作,包括旋转、
反演、反映等。
描述
02
点对称元素在晶体中起着关键作用,它们决定了晶体的空间群
对称性在生物医学中的应用
1-3 晶体对称性

2
2
1 2 3 4 6 2 2 6 4 6
示
平行 斜插纸 纸面 面
二、宏观对称性的组合关系
1. 如果晶体中有两个或两个以上的镜面相交,则每两 个镜面的交线必定是一个对称轴,而对称轴的转角比 定时镜面夹角的二倍。
镜面夹角 180° 90° 60° 45° 30°
旋转轴转 角
360°
180°
120°
90°
Th
Td
O
Oh
晶类(点群)符号 国际符号(全) 国际符号(缩)
1 I(1)
1 I(1)
m
m
2
2
2/m
2/m
3
3
3
3
3m
3m
32
32
32/m
3m
2mm
mm
222
222
2/m2/m2/m
mmm
23
23
2/m3
m3
43m
43m
432
43
4/m32/m
m3m
全对称要素组合
I m(2)
2 2mI
3 3(3I) 33m 332 3323m(3323mI) 23m
三、平移群、布拉菲点阵 例:四方晶系
C→P
F→I
4
晶系 三斜 单斜
菱形
正交
立方
最低对称要素 无
一根二次旋转轴2 或旋转-反演轴2
一根三次旋转轴3 或旋转-反演轴3
三根相互垂直的旋 转轴32或旋转-反 演轴32
四根三次旋转轴43
熊夫列斯符号
C1 Ci(S2) Cs(C1h)
C2 C2h C3 C3i(S6) C3V D3 D3d C2V D2(V) D2h(Vh) T
2
1 2 3 4 6 2 2 6 4 6
示
平行 斜插纸 纸面 面
二、宏观对称性的组合关系
1. 如果晶体中有两个或两个以上的镜面相交,则每两 个镜面的交线必定是一个对称轴,而对称轴的转角比 定时镜面夹角的二倍。
镜面夹角 180° 90° 60° 45° 30°
旋转轴转 角
360°
180°
120°
90°
Th
Td
O
Oh
晶类(点群)符号 国际符号(全) 国际符号(缩)
1 I(1)
1 I(1)
m
m
2
2
2/m
2/m
3
3
3
3
3m
3m
32
32
32/m
3m
2mm
mm
222
222
2/m2/m2/m
mmm
23
23
2/m3
m3
43m
43m
432
43
4/m32/m
m3m
全对称要素组合
I m(2)
2 2mI
3 3(3I) 33m 332 3323m(3323mI) 23m
三、平移群、布拉菲点阵 例:四方晶系
C→P
F→I
4
晶系 三斜 单斜
菱形
正交
立方
最低对称要素 无
一根二次旋转轴2 或旋转-反演轴2
一根三次旋转轴3 或旋转-反演轴3
三根相互垂直的旋 转轴32或旋转-反 演轴32
四根三次旋转轴43
熊夫列斯符号
C1 Ci(S2) Cs(C1h)
C2 C2h C3 C3i(S6) C3V D3 D3d C2V D2(V) D2h(Vh) T
晶体的对称性

7. 三斜–点阵符号后是1或(- 1)。
晶体结构的对称性-董成
从空间群符号确定点群
点群可以从简略H-M符号通过下列变换得出: 1.把所有滑移面全部转换成镜面; 2.把所有螺旋轴全部转换成旋转轴。 例如: 空间群= Pnma 点群= mmm
空间群= I `4c2 点群= `4m2 空间群= P42/n 点群= 4/m
21,31,32,41,42,43,61,62,63,64,65
41
对称要素的符号表示
从晶系到空间群
7个晶系 (按照晶胞的特征对称元素分类)
旋转,反射,反演
32个点群
平移
14种Bravais格子
螺旋轴,滑移面
230个空间群
空间群国际符号LS1S2S3
运用以下规则,可以从对称元素获得H-M空间群符号。
对称方向
三斜 单斜
正交 四方 六角 三角 三角
立方
从空间群符号辨认晶系
1. 立方–第2个对称符号: 3 或 `3 (如: Ia3, Pm3m, Fd3m)
2. 四方–第1个对称符号: 4, `4 , 41, 42 或 43 (如: P41212, I4/m, P4/mcc)
3. 六方–第1个对称符号: 6, `6 , 61, 62, 63, 64 或 65 (如: P6mm, P63/mcm)
立变化。 特殊位置:所有不在一般位置的。 1. 处于一个或多个对称元素上的位置;
2. 其多重性是一般位置多重性的公因子,即比一般位置小(一个整数倍)。
3. 特殊位置的分数座标中必有一个(或多个)是不变的常数。
晶体结构的完整描述
1、晶体化学式 (化学成分)
2、名称
Chem Name Min Name
晶体结构的对称性-董成
从空间群符号确定点群
点群可以从简略H-M符号通过下列变换得出: 1.把所有滑移面全部转换成镜面; 2.把所有螺旋轴全部转换成旋转轴。 例如: 空间群= Pnma 点群= mmm
空间群= I `4c2 点群= `4m2 空间群= P42/n 点群= 4/m
21,31,32,41,42,43,61,62,63,64,65
41
对称要素的符号表示
从晶系到空间群
7个晶系 (按照晶胞的特征对称元素分类)
旋转,反射,反演
32个点群
平移
14种Bravais格子
螺旋轴,滑移面
230个空间群
空间群国际符号LS1S2S3
运用以下规则,可以从对称元素获得H-M空间群符号。
对称方向
三斜 单斜
正交 四方 六角 三角 三角
立方
从空间群符号辨认晶系
1. 立方–第2个对称符号: 3 或 `3 (如: Ia3, Pm3m, Fd3m)
2. 四方–第1个对称符号: 4, `4 , 41, 42 或 43 (如: P41212, I4/m, P4/mcc)
3. 六方–第1个对称符号: 6, `6 , 61, 62, 63, 64 或 65 (如: P6mm, P63/mcm)
立变化。 特殊位置:所有不在一般位置的。 1. 处于一个或多个对称元素上的位置;
2. 其多重性是一般位置多重性的公因子,即比一般位置小(一个整数倍)。
3. 特殊位置的分数座标中必有一个(或多个)是不变的常数。
晶体结构的完整描述
1、晶体化学式 (化学成分)
2、名称
Chem Name Min Name
晶体的对称性

( 1 )回转对称轴 ( 4 )回转 —反演轴 ( 2 3 )对称中心 )对称面
反映出晶体外形和其宏 观性质的对称性 当晶体围绕某一轴回转 若通过晶体作一平面,使 当晶体绕某一轴回转到 若晶体中所有的点在经 而能复原时,此轴即为 晶体的各对应点经此平面 一定角度时,再以轴上 过某一点反演后能复原, 回转对称轴。 反映后都能重合一致,则 的一个中心点做反演之 则该点就称为对称中心, 在回转一周的过程中, 该平面称为对称面,用符 用符号i表示 后能复原时,该轴称为 晶体能复原几次,就称 号 m— 表示 回转 反演轴。 几次对称轴。 晶体中实际可能存在的 对称轴有1、2、3、4和 6种,用国际符号1、2、 3、4、6表示。 5次及高于6次的不可能 存在
微观对称元素
( (2 1)螺旋轴 )滑动面
与宏观对称要素配合运用反映出晶 体中原子排列的对称性
螺旋轴是由回转 它是由一个对 轴和平行于轴的 称面加上沿着 平移所构成。晶 此面的平移所 体结构可借绕螺 组成,晶体结 旋轴回转一定角 构可借此面的 度同时沿此轴平 反映并沿此面 移一定距离而得 平移一定距离 而复原。 到重合,从螺旋 轴称为n次螺旋 轴。
晶 系 对 称 要 素
三 单 斜 斜 1 -1 m 2 2/m
正交 2mm 222 2/m 2/m 2/m
四方 -4 4 4/m -4 2 m 4mm 422 4/m 2/m 2/m 1个4或-4
菱方 3 -3 3m 32 -3 2/m
六方 -6 6 6/m -6 2 m 6mm 622 6/m 2/m 2/m 1个6或-6
点群及空间群
点群:晶体形态中全部对称要素的组合称为该晶体 形态的对称型或点群。
晶体的对称性可通过一些对称要素的运用而体现, 各种晶体因其对称性不同所具有的对称要素也不 同。晶体可能存在的对称类型可通过宏观对称要 素在一点上组合应用而得出,但这些组合并不是 任意的例如对称面不能不能与位于此面以外的对 称中心或任意倾斜的对称轴组合。因此,分析了 各种可能组合情况后确定只有32种点群。点群在 宏观上表现为晶体外形的对称。32种点群见表
反映出晶体外形和其宏 观性质的对称性 当晶体围绕某一轴回转 若通过晶体作一平面,使 当晶体绕某一轴回转到 若晶体中所有的点在经 而能复原时,此轴即为 晶体的各对应点经此平面 一定角度时,再以轴上 过某一点反演后能复原, 回转对称轴。 反映后都能重合一致,则 的一个中心点做反演之 则该点就称为对称中心, 在回转一周的过程中, 该平面称为对称面,用符 用符号i表示 后能复原时,该轴称为 晶体能复原几次,就称 号 m— 表示 回转 反演轴。 几次对称轴。 晶体中实际可能存在的 对称轴有1、2、3、4和 6种,用国际符号1、2、 3、4、6表示。 5次及高于6次的不可能 存在
微观对称元素
( (2 1)螺旋轴 )滑动面
与宏观对称要素配合运用反映出晶 体中原子排列的对称性
螺旋轴是由回转 它是由一个对 轴和平行于轴的 称面加上沿着 平移所构成。晶 此面的平移所 体结构可借绕螺 组成,晶体结 旋轴回转一定角 构可借此面的 度同时沿此轴平 反映并沿此面 移一定距离而得 平移一定距离 而复原。 到重合,从螺旋 轴称为n次螺旋 轴。
晶 系 对 称 要 素
三 单 斜 斜 1 -1 m 2 2/m
正交 2mm 222 2/m 2/m 2/m
四方 -4 4 4/m -4 2 m 4mm 422 4/m 2/m 2/m 1个4或-4
菱方 3 -3 3m 32 -3 2/m
六方 -6 6 6/m -6 2 m 6mm 622 6/m 2/m 2/m 1个6或-6
点群及空间群
点群:晶体形态中全部对称要素的组合称为该晶体 形态的对称型或点群。
晶体的对称性可通过一些对称要素的运用而体现, 各种晶体因其对称性不同所具有的对称要素也不 同。晶体可能存在的对称类型可通过宏观对称要 素在一点上组合应用而得出,但这些组合并不是 任意的例如对称面不能不能与位于此面以外的对 称中心或任意倾斜的对称轴组合。因此,分析了 各种可能组合情况后确定只有32种点群。点群在 宏观上表现为晶体外形的对称。32种点群见表
07-2.3晶体的对称性

2.3.2.1 点群
定义:点群是指一个晶体中所有点对称元素的集合。 点对称操作的集合称为点群。
晶体可能存在的对称类型可通过宏观对称元素在一点 上组合运用而得出。
点群在宏观上表现为晶体外形的对称。利用组合定律 可导出晶体外形中只能有32种对称点群。
点群可以用对称元素相结合而导出,在不破坏原有对称的
前提下,结合方式有n/m (表示m⊥n,镜面垂直于n次旋转轴), nm (表示m∥n,镜面包含n次旋转轴), n/mm或n/m m(第
晶体绕某一轴回转能复原n次,就称之为n次对称轴。 晶体中实际可能存在的对称轴有五种,并用符号1,
2,3,4,和6来表示。
旋转角 n名称 符号
360 180 120 90 60 度
1
2 3 4 6 次轴
1
2 356
2. 对称面
立方晶系{100} {110}
晶体通过某一平面作 镜像反映而能复原, 则该平面称为对称面 或镜面,用符号m表示。 对称面通常是晶棱或 晶面的垂直平分面或 者为多面角平分面, 且必定通过晶体几何
晶体基本的对称操作有点对称操作和平移对称操作。
在对称操作过程中保持空间至少有一个不动点的操作 称为点对称操作。在一般的对称操作过程中,空间有许多 点在动,但操作前后状态一样。 如旋转,反演,平面反映 均为点对称操作。
用点对称操作ห้องสมุดไป่ตู้组合可以描述有规则几何外形的单晶 体所具有的点对称性,但许多金属单晶体虽然不一定具备 规则的几何外形,但它们相应的点对称性却仍然存在。
180º与P3点重合,再经O点反 演而与P’重合,则称BB‘为2
次旋转—反演轴。
旋转—反演轴有1,2,3,4
和6次五种,分别以国际符号
_ ____
定义:点群是指一个晶体中所有点对称元素的集合。 点对称操作的集合称为点群。
晶体可能存在的对称类型可通过宏观对称元素在一点 上组合运用而得出。
点群在宏观上表现为晶体外形的对称。利用组合定律 可导出晶体外形中只能有32种对称点群。
点群可以用对称元素相结合而导出,在不破坏原有对称的
前提下,结合方式有n/m (表示m⊥n,镜面垂直于n次旋转轴), nm (表示m∥n,镜面包含n次旋转轴), n/mm或n/m m(第
晶体绕某一轴回转能复原n次,就称之为n次对称轴。 晶体中实际可能存在的对称轴有五种,并用符号1,
2,3,4,和6来表示。
旋转角 n名称 符号
360 180 120 90 60 度
1
2 3 4 6 次轴
1
2 356
2. 对称面
立方晶系{100} {110}
晶体通过某一平面作 镜像反映而能复原, 则该平面称为对称面 或镜面,用符号m表示。 对称面通常是晶棱或 晶面的垂直平分面或 者为多面角平分面, 且必定通过晶体几何
晶体基本的对称操作有点对称操作和平移对称操作。
在对称操作过程中保持空间至少有一个不动点的操作 称为点对称操作。在一般的对称操作过程中,空间有许多 点在动,但操作前后状态一样。 如旋转,反演,平面反映 均为点对称操作。
用点对称操作ห้องสมุดไป่ตู้组合可以描述有规则几何外形的单晶 体所具有的点对称性,但许多金属单晶体虽然不一定具备 规则的几何外形,但它们相应的点对称性却仍然存在。
180º与P3点重合,再经O点反 演而与P’重合,则称BB‘为2
次旋转—反演轴。
旋转—反演轴有1,2,3,4
和6次五种,分别以国际符号
_ ____
晶体的对称性

晶体对称性
晶体性质
晶体具异向性,并不排斥在某些特定的方向上性质相同。
这是因为在晶体的格子构造中,这些方向质点的排列是一样的,这就是晶体的对称性,表现在晶体外形上,即相等的晶面、晶棱和角顶有规律地重复出现。
晶体的对称性是晶体极其重要的性质。
中文名称
晶体对称性
英文名称
symmetry of crystal
定义
根据晶体其对称元素进行对称操作,能使其等同部分产生规律性的重合特性。
应用学科
材料科学技术(一级学科),材料科学技术基础(二级学科),材料科学基础(三级学科),材料组织结构(四级学科)
晶体的格子构造是晶体实现最小内能的结果。
由于晶体具有最小的内能,所以处于相对稳定的状态,这就是晶体的稳定性。
晶体只有在得到外来能量时,才能破坏其稳定性,有使之向非晶质转化。
这一点可以从晶体的加热曲线得到证明。
晶体的对称性

21
c
开普勒的老问题:为什么天上不下五角形雪花?
……从瓷砖铺 地的二维问题 来联想一下:
AB = 2acos = n a 由于-1cos1,所以,n = 0,±1,±2 所以,cos = 0,±1/2,±1; 得到基转角为90o,180º;60º,120º,360º 对应的旋转轴为 1,2,3,4,6对称轴。
晶体中存在3,6;不存在5,7,8
晶体的宏观对称元素
晶体的理想外形及其在宏观观察中表现出来的对称性称 为晶体的宏观对称性.
32个晶体学点群
将宏观对称元素合理组合得到32个宏子点群与晶体点群的区别: 水 C2V 冰 D6h 苯 D6h 苯晶体 D2h
晶体结构的对称性
晶体结构的对称性
晶体对称性的两个定理
1. 晶体中的对称轴(旋转轴、反轴、螺旋轴)必与一组 直线点阵平行, 除一重轴外, 对称轴必与一组平面点阵垂直; 晶体中的对称面(镜面、滑移面)必与一组平面点阵平行, 而 与一组直线点阵垂直.
2. 轴次定理: 晶体中的对称轴(旋转轴、反轴、螺旋轴) 的轴次只有1、2、3、4、6.
晶体的对称性

(5)n度螺旋轴:若绕轴旋转2/n角以后,再沿轴方向平
移l(T/n),晶体能自身重合,则称此轴为n度螺旋轴。其中T是
轴方向的周期, l是小于n的整数。 n只能取1、2、3、4、6。 (6)滑移反映面:若经过某面进 行镜象操作后,再沿平行于该面的某 个方向平移T/n后,晶体能自身重合,
则称此面为滑移反映面。 T是平行
B1
A1
A
B
1 cos 0, ,1 2
θ
π 2π , ,π 2 3
θ
2π 2π 2π , , 4 3 2
2π , n 1, 2, 3, 4, 6 综合上述证明得: θ n
晶体中允许的旋转对称轴只能是1,2,3,4,6度轴。
1
2
3
4
6
正五边形沿竖直轴每旋转720恢 复原状,但它不能重复排列充满一个 平面而不出现空隙。因此晶体的旋转
高 立 立方的 方 体对角 线方向
29
23 43,32 2 43,32,3m, i m3
432 43,34,62
43m 2 4
(4)旋转--反演对称
( x1 , x2 , x3 )
1 0 0 A 0 1 0 0 0 1
A 1
2π 以后,再经过中心反演,晶体自 n 身重合,则此轴称为n次(度)旋转--反演对称轴。
若晶体绕某一固定轴转
旋转--反演对称轴只能有1,2,3,4,6度轴。
旋转--反演对称轴用 1, 2, 3, 4, 6 表示。 旋转--反演对称轴并不都是独立的基本对称素。如:
1 0 0 A 0 1 0 0 0 1
A 1
(3)镜象(m,对称素为面) 如以x3=0面作为对称面,镜象是将图形的任何一点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点式操作组合定理
定理1:如果有一个二次轴2垂直N次轴n,则必有N个2垂直 n。 定理2:如果有一个对称面m包含n,则必有N个m包含n 定理3:如果有一个偶次轴垂直对称面m,则必在对称轴与 对称面的交点上产生一个对称中心。
晶体学点群的对称元素方向及国际符号
晶系 第一位 可能对称 元素 三斜 1,`1 单斜 2,m,2/m 正交 2,m 四方 4,`4, 4/m 三方 3,`3 六方 6,`6, 6/m 方向 第二位 可能对称 元素 无 2,m Y 无, 2,m X 方向 第三位 可能对称 元素 无 无 2,m Z 无, 2,m 底对 角线 无 无, 2,m 底对 角线 方向 1,`1 2,m,2/m 222,mm2,mmm 4,`4,4/m,422, 4mm, `42m, 4/mmm 3,`3, 32,3m, `3m 6,`6, 6/m,622, 6mm, `62m, 6/mmm 23,m3,432, `43m, m`3m 点群(32个)
点群
八个基本对称操作
m, 2, 3, 4, 6, 1, 4, 6
那么,在晶体中,究竟有哪些对称元素和对称操作可以同时存在?它们的 组合方式有多少种?在数学上,把对称元素(或对称操作)的集合叫做 “对称群”。因为上述对称元素中,不包括平移对称性,进行对称操作时 总是有一点保持不动,所以只包括上述对称元素的集合叫做“点群”。一 个晶体上可以同时存在多个对称要素,这些对称要素共存时一定要符合对 称要素组合定理,不能任意共存。 人们经过长期研究的结果,发现这八种对称元素共有32种组合方式,即 32种点群。这32种点群对应于晶体的32种宏观对称类型,就是说自然界 千千万万种晶体,可以归纳为32种宏观对称类型。
对称( symmetry )告诉我们原子所在乊处具有的对称元素。
Pm空间群的 Wyckoff位置
多重性 Wyckoff记号 点对称 坐标 (2) x, - y, z x, ½, z x, 0, z
2
1 1
c
b a
1
m m
(1) x, y, z
在晶体结构描述中,经常把多重性和Wyckoff 记号结合在一起作为等效位置的名称。如把Pm 空间群中的等效点位置称为1a,1b,2c 等。
四方–第1个对称符号: 4, `4 , 41, 42 或 43 (如: P41212, I4/m, P4/mcc)
六方–第1个对称符号: 6, `6 , 61, 62, 63, 64 或 65 (如: P6mm, P63/mcm) 三方–第1个对称符号: 3, `3 ,31 或 32 (如: P31m, R3, R3c, P312) 正交–点阵符号后的全部三个符号是镜面,滑移面,2次旋转轴或2次螺旋 轴 (即Pnma, Cmc21, Pnc2) 单斜–点阵符号后有唯一的镜面、滑移面、2次旋转或者螺旋轴,或者轴/ 平面符号(即Cc、P2、P21/n)。 三斜–点阵符号后是1或(- 1)。
比如:单斜空间群Pm 仅有垂直于b轴的二个镜面。 一
个在y = 0,另一个在y = ½位置。
通过镜面操作,在x, y, z的原子 --〉在x, - y, z
第二个原子。如果我们安置原子在其中一个镜面(它的Y座标将
必须是0戒½),镜面反射操作就丌会产生第二个原子。
Wyckoff位置 (2)
多重性( multiplicity ):告诉我们如果安置一个特定原子在该位置,经过空间 群的所有对称操作,总共会产生多少个原子。 记号( letter )是从高对称性位置开始按英文字母顺序指定的位置标记。
空间群国际符号LS1S2S3
1. 2.
运用以下规则,可以从对称元素获得H-M空间群符号。
第一字母(L)是点阵描述符号,指明点阵带心类型: P, I, F, C, A, B, R。 其于三个符号(S1S2S3)表示在特定方向(对每种晶系分别规定)上的对 称元素。
3.
如果没有二义性可能,常用符号的省略形式 (如Pm,而丌用写成 P1m1)。
* 由于丌同的晶轴选择和标记,同一个空间群可能有几种丌同的符号。如 P21/c,如滑移面选为在a方向,符号为P21/a;如滑移面选为对角滑移, 符号为P21/n。
对称方向
三斜 单斜
正交
四方
六角
三角 三角
立方
从空间群符号辨认晶系
1.
2.
立方–第2个对称符号: 3 或 `3 (如: Ia3, Pm3m, Fd3m)
晶体结构的对称性-董成
国际表中的空间群P21/c
晶体结构的对称性-董成
P21/c
晶体结构的对称性-董成
P21/c的图示
分数坐标
Zn4Sb3 原子参数
Wycloff 晶位
分数坐标
占有率
Wyckoff位置 (1)
在国际表中包含的一个最有用的信息是Wyckoff位置。
Wyckoff位置告诉我们在晶体中何处可以找到原子。
1. 丌处在任何一个对称元素上的位置;
2. 一般位置具有最高多重性(M)。初级晶胞中M等于点群的对称操作 总数;带心晶胞M等于点群的阶数乘以晶胞中的阵点数。
3. 在一般位置的原子总具有三个位置自由度,它的三个分数坐标都可以独 立变化。 特殊位置:所有丌在一般位置的。 1. 处于一个戒多个对称元素上的位置; 2. 其多重性是一般位置多重性的公因子,即比一般位置小(一个整数倍)。 3. 特殊位置的分数座标中必有一个(戒多个)是丌变的常数。
主要内容 晶体的宏观对称要素
晶体的微观对称要求
点群及其国际符号
空间群及其国际符号
物体的组成部分之间或不同物体之间特征的对应、 等价或相等的关系。 由于平衡或和谐的排列所显示的美。 形态和(在中分平面、中心或一个轴两侧的)组元 的排列构型的精确对应。 指图形或物体对某个点、直线或平面而言,在大小、 形状和排列上具有一一对应关系。(辞海)
3、晶系
4、空间群 5、晶胞参数 6、原子参数
SOF 1
U
每个晶胞包含Z个晶体化 学式的原子
作业
1.什么是宏观对称操作?写出基本的宏观对称操作元素? 2.什么是点群?一共有多少种点群?
3.什么是微观对称操作?a,b,c,d,n,e 分别表示什么?
4.什么是空间群,一共有多少种? 5.分别写出下列空间群所属的晶系及各符号所代表的意义。 P21/m, Imm2, Ccca, I422, P4/mmm, R3, P3212, P63mc, Fd-3, Im-3m 6. 什么是等效点系,特殊等效点系有什么特点? 7. 什么是wyscoff 晶位,如何表示? 8. 原子参数中的占有率指的是什么? 9. 一般晶体结构数据描述中的Z值指的是什么? 10.完整描述晶体结构的要素有哪些?
对称就是通过某些操作后的重合。
晶体外形的对称
晶体内部原子排列的对称性源自NaCl晶体结构 金刚石晶体结构
对称操作——对称性的体现
晶体的宏观对称操作就是至少保持一个点不动的操作 一、点对称 1. 全同操作 (1) 2. 对称中心(又称反演中心) 1
二、面对称
1. 对称面(镜面)m 三、轴对称 360/n 能使物体重复的最小旋转角称为“基转角”
(一)旋转轴 1、2、3、4、6
(二)旋转倒反轴(反轴) (三)旋转反映轴(映轴)
1, 2,3, 4, 6 1, 2,3, 4, 6
2=m 3=3+1
1=2, 2=1, 3=6, 4=4, 6=3
3 3i
4
4i
6
6i
旋转倒反轴
旋转反映轴
3
3
晶体结构的完整描述
1、晶体化学式 (化学成分) 2、名称
Chem Name Min Name Unit Cell Vol Z Space Group SG Number Cryst Sys Atom C Carbon Diamond 3C 3.5667 3.5667 3.5667 90. 90. 90. 45.37 8 F d -3 m 227 cubic SITE x y z 8b 0.5 0.5 0.5
晶体结构的对称性-董成
3.
4.
5. 6. 7.
从空间群符号确定点群
点群可以从简略H-M符号通过下列变换得出:
1.把所有滑移面全部转换成镜面;
2.把所有螺旋轴全部转换成旋转轴。
例如:
空间群= Pnma 点群= mmm 空间群= I `4c2 点群= `4m2 空间群= P42/n 点群= 4/m
C 滑移面
滑移面
2. 滑移面 n 称为对角滑移面
3.滑移面 d 称为金刚石滑移面
滑移面
4. 双滑移面 e -只出现在带心的晶胞中,2005年新定义的滑移面。
螺旋轴
先绕轴进行逆时针方向360/n度的旋转,接着作平行于该轴的平移,平移量为(p/n) t, 这里t是平行于转轴方向的最短的晶格平移矢量,符号为np, n称为螺旋轴的次数,
(n可以取值2,3,4,6),而p只取小于n的整数。所以可以有以下11种螺旋轴:
21,31,32,41,42,43,61,62,63,64,65
41
对称要素的符号表示
从晶系到空间群
7个晶系
(按照晶胞的特征对称元素分类)
旋转,反射,反演
平移
14种Bravais格子
螺旋轴,滑移面
32个点群
230个空间群
等效点系
晶胞中对称元素按照一定的方式排布。在晶胞中某个坐标点有一个原子时,由于
对称性的要求,必然在另外一些坐标点也要有相同的原子。这些由对称性联系起 来,彼此对称等效的点,称为等效点系。
等效点系在空间群表中表示为Wyckoff位置 。
一般位置-特殊位置
一般位置:空间群表里最先列出的Wyckoff位置,